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Abstract. In this work, we present the concept of θ-Φℵ-contraction, θ-Φℵ-Suzuki contraction, θ-Φℵ-Kannan type

contraction, and θ-Fℵ-expansion, and establish some novel fixed point theorems in the light of Banach space. In order

to verify our results, we construct some examples. Furthermore, we use our results to check the existence of a solution

to differential equations.

1. Introduction and Preliminaries

Among the most flexible tools in mathematics, differential equations provide the basis for real-

world dynamic system comprehension and modeling. In fields ranging from physics, engineering,

biology, and economics, they are indispensable since they clarify how quantities vary in regard to
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one another. From simulating the spread of diseases to predicting planetary motion, differential

equations provide a basis for converting real-world phenomena into mathematical language. Their

flexibility is in their ability to capture the essence of linear or nonlinear, slow or fast change.

Second-order differential equations are special among the several varieties of differential equa-

tions in that they can characterize systems in which acceleration, or the second derivative of a

parameter, is absolutely vital. These equations are important for characterizing processes in-

cluding forces, oscillations, and energy transformations. They are fundamental for mechanical

vibrations—that is, for the swing of a pendulum, the bounce of a spring, or the swaying of a

skyscraper in the breeze. Using components like capacitors and inductors, electrical engineering

circuits mimic the flow of energy between electric and magnetic fields. Second-order equations

help one to better grasp predator-prey dynamics—that is, interactions between species produce

changes in population size.

Second-order differential equations are interesting in that they expose intricate features such

as stability, damping, and resonance. They could clarify, for example, why a bridge might fall

in particular wind conditions or how a tuning fork generates a single, continuous sound. Apart

from helping us to forecast the behavior of systems, these equations clarify how to maximize or

regulate them. Second-order differential equations find many useful applications in design of

automobile shock absorbers, tuning of musical instruments, and heart rate determination. By

exposing latent patterns and relationships, their answers can help us better grasp our built and

natural surroundings.

We give a brief overview with definitions, fundamental ideas, and necessary conclusions to

reach completeness. The following notations and ideas will be applied across this work:

1. Notations for Sets:

• R: The set of real numbers.

• R+: The interval [0,∞).

• N : The set of positive integers.

• Q: Set Q′s closure.

• coQ: Set Q′s convex hull closure.

2. Banach Space and Related Concepts:

• E : A Banach space.

• $E : The collection of all bounded subsets for E , defined as:

$E = {D , ∅ : D represent a bounded subset for E }.

• kerℵ: A function ℵ : $E → [0,∞),with kernel defined as:

kerℵ = {D ∈ $E : ℵ(D) = 0}.

• ℘E : The subfamily of $E comprising of all relatively compact sets.
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• f: The set of all convex, bounded, non-empty and closed subsets of E , defined as:

f = {D : D , ∅, convex, closed, and bounded subset of E }.

Numerous scholars have shown a keen interest in fixed point theory. One of the two primary

outgrowths of this concept is the Banach contraction principle, which was the initial major finding

about contraction maps on metric spaces. In the second branch, the emphasis is on operators with

discontinuity in convex and compact subsets of a Banach space, which has two noteworthy out-

comes in this domain: first, Brouwer’s fixed point theorem, which asserts that , Every continuous

map from the closed unit ball of Rn into itself must have a fixed point, and second, its infinite

dimensional extension. The fixed point theorem of Schauder declares that ,every continuous and

compact mapping on convex, bounded, and closed subset of a Banach space. Compactness is

essential in both the theorems. In order to handle such obstacle, one of the effective way is to

employ the concept of Measure of noncompactness (MN C ). Measures of noncompactness is

a mathematical concept that is widely used in nonlinear functional analysis. This concept has

proven to be very useful in various fields, including the theory of operators, the normed spaces

geometry, the functional differential and integral equations theory.

In certain situations, it might not always produce a contraction operator but rather another kind

of operator, such as an expansive or non-expansive one. Among the most fascinating areas of fixed

point theory research is the study of expansive mappings. The idea of expanding mapping was

first presented by Gillespie et al. [9] and established fixed point result for such expansion. There are

many authors, who consider expansions and their fixed point problems [13, 15, 20]. Górnicki [10]

generalized the concept of expansions to F -expansion. Zada et al. [23] developed the notion of

Fℵ-expansion in the non-compact circumstances and demonstrated fixed point results under such

expansion in Banach space. The axiomatic definition for MN C is as follows:

Definition 1.1. [1] We say that a mapping ℵ : $E → [0,∞) represent MN C in E when ∀D,D1,D2 ∈

$E it fulfills the below axioms:

(i) The family kerℵ = D ∈ $E : $(D) = 0 is a nonempty with kerℵ ⊆ ℘E ;
(ii) (Monotonic)D1 ⊂ D2 ⇒ ℵ(D1) ≤ ℵ(D2);

(iii) (Invariant under closure) ℵ(D) = ℵ(D);

(iv) (Invariant under convex hull) ℵ(coD) = ℵ(D);

(v) ℵ(ηD1 + (1− η)D2) ≤ ηℵ(D1) + (1− η)ℵ(D2), ∀η ∈ [0, 1];

(vi) (Generalized Cantor’s intersection theorem) If {Dn} denotes a sequence for closed sets within $E in
a manner thatDn+1 ⊂ Dn, ∀n ∈ N with lim

s→+∞
ℵ(Dn) = 0, thusD∞ =

⋂+∞
n=1Dn , ∅.

Employing the MN C concept, Darbo [8] presented a fixed point result, that establishes the ex-

istence of fixed points.The Darbo’s fixed-point theorem in regards to a measure of noncompactness

ℵ could be expressed as:
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Theorem 1.1. [8] Let D ∈ f and Ψ : D → D is continuous mapping defined on every subset D0 of f
such that

ℵ(Ψ(D0)) ≤ kℵ(D0),

whereD0 ⊂ D, k ∈ [0, 1) with ℵ as MN C as described on E , as a result Ψ assures a fixed-point (FP) in
f.

Finally, we recall some essential functions, which we will use for the contraction of our main

results.

Definition 1.2. [16] Θ represent collection of functions θ : R −→ R where the following assumptions
hold for it:

(Θ1) θ denotes a non-decreasing mapping with no discontinuity;
(Θ2) lim

n→∞
θn(k) = −∞, for every 0 < k;

(Θ3) k > θ(k), for all k ≥ 0.

Definition 1.3. [4] Φ is the set of mappings φ : (0,∞)→ R that fullfill the following conditions:

(Φ1) φ increases strictly;
(Φ2) For every {Dn}n∈N a sequence of positive numbers the lim

n→∞
Dn = 0 iff lim

n→∞
φ(Dn) = −∞;

(Φ3) φ is continuous in (0,+∞).

Definition 1.4. [18] Suppose F : (0,∞) −→ R denotes a mapping in sense that

(F1) F identified as an increasing;
(F2) lim

n→+∞
δn = 0⇐⇒ lim

n→+∞
F (δn) = −∞, for arbitrary any {δn} ⊂ (0,∞);

(F3) It is possible to find out y ∈ (0, 1) to the extent that 0 = lim
s→0+

δyF (δ).

Symbolize with F, the collection of such mappings as F : (0,∞) −→ R which fulfill the axioms (F1)− (F2).
Moreover with S, those all mappings as τ : (0,∞) −→ R to the extent that lim

t→s+
inf τ(k) > 0, ∀s ∈ [0,∞).

The following lemma is necessary to determine the FP of expansion maps.

Lemma 1.1. [10] For surjective mapping g :M→M, ∃ a mapping as described g∗ :M→M such that
g ◦ g∗ :M→M is an identity mapping.

The aim of our work is to utilize definition (1.2) and (1.3) and establish Darbo type results.

2. Generalized Darbo type Contractions with Fixed Point Theorems

Here we present, θ-Φℵ contraction, θ-Φℵ-Suzuki contractions, and θ-Φℵ-Kannan type contrac-

tion of Darbo type and FP theorems to the mappings holding such contraction conditions in

Banach space endowed by MN C . First we need to know what θ-Φℵ contraction is:

Definition 2.1. ForD ∈ f, the map Ψc : D → D will be identified as θ-Φℵ contraction when ∃ φ ∈ Φ

along θ ∈ Θ in a manner where

ℵ(D1) > 0⇒ θ(ℵ(Ψc(D1))) ≤ φ(θ(∆(D1,D2))), (2.1)
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while D1 and D2 denote subsets for D, ℵ(D1), ℵ(Ψc(D1)), ℵ(Ψc(D2)) > 0, ℵ represent an MN C

described in E and

∆(D1,D2) = max
{
ℵ(D1),ℵ(Ψc(D1)),ℵ(Ψc(D2)),

1
2
ℵ(Ψc(D1)∪Ψc(D2))

}
.

In the view of the above θ-Φℵ-contraction, our findings are as follows.

Theorem 2.1. Let D ∈ f. When Ψc : D → D represent θ-Φℵ contraction with being continuous. It
results to a FP for Ψc inD

Proof. Let us formulate a sequence {Dn}
∞

n=0 in a way that

D0 = D and Dn = co(ΨcDn−1), ∀n ∈ N . (2.2)

We must show thatDn+1 ⊂ Dn and ΨcDn ⊂ Dn, ∀n ∈ N . Now, the 1st inclusion is accomplished

through induction. When n = 1, so with the help of (2.2), we come up with D0 = D and D1 =

co(ΨcD0) ⊂ D0. Next, for n > 1, we assume that Dn ⊂ Dn−1, then co(Ψc(Dn)) ⊂ co(Ψc(Dn−1)),

Using equation (2.2). We obtained the first inclusion

Dn+1 ⊂ Dn. (2.3)

With the help of above inclusion (2.3), we are able to derive the second inclusion as:

ΨcDn ⊂ co(ΨcDn) = Dn+1 ⊂ Dn. (2.4)

We will now examine two scenarios pertaining to ℵ. When an integer m which is non-negative

can be identified in a way that ℵ(Dm) = 0, then Dm is compact. However Ψc : Dm → Dm, so by

Schauder’s Theorem, Ψc ensure a FP inDm ⊂ D. In place of this, if we consider ℵ(Dn) > 0, ∀n ∈
N . After that, we’ll need to provide testimony affirming thatD∞ ⊂ Dn ∈ f. Initially, we should

verify that ℵ(Dn) → 0 as n→ +∞. Based on inclusion (2.3), it can be written ℵ(Dn+1) < ℵ(Dn),

that is {ℵ(Dn)} is non-increasing sequence which converges to s ∈ R along s ≥ 0. Furthermore, since

ℵ(Dn) ∈ (0,∞) and s ∈ [0,∞), Using contraction condition (2.1) with D1 = Dn and D2 = Dn+1,

we write

θ(ℵ(Dn+1)) =θ(ℵ(co(Ψc(Dn))))

=θ(ℵ(Ψc(Dn)))

≤φ(θ(∆(Dn,Dn+1))),

(2.5)

where

∆(Dn,Dn+1) =max
{
ℵ(Dn),ℵ(Ψc(Dn)),ℵ(Ψc(Dn+1)),

1
2
ℵ(Ψc(Dn)∪Ψc(Dn+1))

}
≤max

{
ℵ(Dn),ℵ(Dn),ℵ(Dn+1),

1
2
ℵ(Dn ∪Dn+1)

}
=max

{
ℵ(Dn),ℵ(Dn),ℵ(Dn+1),

1
2
ℵ(Dn)

}
=ℵ(Dn).
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Thus from inequality (2.5), we obtain that

θ(ℵ(Dn+1)) ≤φ(θ(ℵ(Dn))). (2.6)

Thus

θ(ℵ(Dn+1)) ≤φ(θ(ℵ(Dn)))

≤φ2(θ(ℵ(Dn−1)))

≤φ3(θ(ℵ(Dn−2)))

...

≤φn+1(θ(ℵ(Dn0))).

Taking n → ∞ and applying (Θ1), we have lim
n→+∞

θ(ℵ(Dn+1)) = −∞ and utilizing property (F2),

It is possible for us to say lim
n→+∞

ℵ(Dn+1) = 0. Therefore with the help of definition (vi)-(1.1),

∅ ,
⋂+∞

n=1Dn = D∞ and ΨcD∞ ⊂ D∞ as ΨcDn ⊂ Dn. Also, since D∞ ⊂ Dn for all n ∈ N , so

via definition (ii)-1.1, ℵ(D∞) ≤ ℵ(Dn), ∀n ∈ N . Thus ℵ(D∞) = 0, which means D∞ ∈ kerℵ,

and hence D∞ yields to be bounded. But D∞ represent closed in a sense that D∞ is compact.

Consequently, Schauder’s Theorem ensures a FP for Ψc inD∞ ⊂ D. �

To illustrate the Theorem 2.1, the below example is constructed.

Example 2.1. Suppose D = [−8, 9] represent a subset to the Banach space R. So evidently D ∈ f.
Next, define φ : [1,∞) −→ R, Ψc : D → D, θ : R −→ R, as φ (k) = ln k + k, Ψc(k) = 1 − k, and
θ(k) =

3√
k − 1

2 (k ≥ 1) respectively. It is obvious to justify that Ψc is continuous, θ ∈ Θ and φ ∈ Φ.
Further, MN C is described as ℵ : B(E )→ [0,∞) by

ℵ (D) = sup
k,u∈D

|k− u| = diam (D) .

Next, suppose D1 = [2, 3] with D2 = [2, 9] represent subsets for D. So ℵ (D1) = ℵ (Ψc (D1)) = 1,
ℵ (Ψc (D2)) = 7, ℵ (Ψc (D1)∪Ψc (D2)) = 8, and hence

∆(D1,D2) =max
{
ℵ(D1),ℵ(Ψc(D1)),ℵ(Ψc(D2)),

1
2
ℵ(Ψc(D1)∪Ψc(D2))

}
=max {1, 1, 7, 4} = 7.

Thus from contraction (2.1), we write

θ(φ(ℵ(D0))) = θ(φ(1)) = 1 < 2.57591 = θ(φ(∆(D1,D2))).

That is θ-φ-weak contraction. As a result with the help of theorem 2.1, Ψc assures a FP 1
2 ∈ D.

A number of crucial consequences can be deduced from Theorem 2.1. We introduce a number of

useful corollaries that expand upon and encompass various well-known findings in the literature.

Notably, When we choose θ(t) = et and φ(t) = eφ(t) we conclude the corollary below.
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Corollary 2.1. SupposeD ∈ f. If the θ-φ map Ψc : D → D represent a map with ni discontinuity such
that

ℵ(Ψc(D1)) ≤ φ(ℵ(D1))), (2.7)

if we choose φ(t) = t− τ, we conclude the following corollary.

Corollary 2.2. LetD ∈ f with Ψc : D→D representing a map with no discontinuity such that

τ+ θ(ℵ(ΨcD)) ≤ θ(∆(D1,D2)),

whereD ⊆ f. Consequently, Ψc will assures a FP inD.

Remark 2.1. From the above corollary we can derive the Darbo’sFP theorem when we chooseθ(k) = ln(k),
for every k > 0.

Now, this work introduces θ-Φℵ-Suzuki and θ-Φℵ-Kannan type contractions as below:

Definition 2.2. SupposeD ∈ f. The Ψc : D → D mapping is θ-Φℵ-Suzuki contraction when ∃ φ ∈ Φ

and θ ∈ Θ such that for anyD1,D2 ∈ D, we have

1
2
ℵ(Ψc(D1)) < ℵ(D1)⇒ θ(ℵ(Ψc(D1))) ≤ φ(θ(∆(D1,D2))),

where

∆(D1,D2) = max
{
ℵ(D1),ℵ(Ψc(D1)),ℵ(Ψc(D2)),

1
2
ℵ(Ψc(D1)∪Ψc(D2))

}
.

With the help of the above contraction the following theorem can be constructed, it is straight-

forward to prove it, so we skip the proof.

Theorem 2.2. AssumeD ∈ f and suppose Ψc : D→D represent a θ-Φℵ-Suzuki contraction, as a result
Ψc will assures a unique FP.

Definition 2.3. Assume D ∈ f. Then Ψc : D → D will be θ-Φℵ-Kannan type contraction when ∃
θ ∈ Θ with φ ∈ Φ in a manner that

θ(ℵ(Ψc(D1))) ≤ φ

(
θ

(
ℵ(Ψc(D1) + Ψc(D2))

2

))
. (2.8)

In the view of the above θ-Φℵ-Kannan type contraction, we give the following result.

Theorem 2.3. AssumeD ∈ f and Ψc : D→D represent a map with no discontinuity. if we have θ ∈ Θ,
φ ∈ Φ, and τ > 0 such a way

θ(ℵ(Ψc(D1))) ≤ φ

(
θ

(
ℵ(Ψc(D1) + Ψc(D2))

2

))
. (2.9)

then Ψc has at least a FP.
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Proof. Let a sequence {Dn}
∞

n=0 in such a way that

D0 = D and Dn = co(ΨcDn−1), ∀n ∈ N . (2.10)

We need to show thatDn+1 ⊂ Dn and ΨcDn ⊂ Dn, ∀n ∈ N . Our proof of first inclusion is based

on induction. When n = 1, then with the help of (2.10), we come up with D0 = D and D1 =

co(ΨcD0) ⊂ D0. Next, for n > 1 we assume that Dn ⊂ Dn−1, then co(Ψc(Dn)) ⊂ co(Ψc(Dn−1)),

utilizing equation (2.10), our first inclusion is obtained

Dn+1 ⊂ Dn. (2.11)

The secondary inclusion has been acquired by the application of the inclusion (2.11),

ΨcDn ⊂ co(ΨcDn) = Dn+1 ⊂ Dn. (2.12)

We will now examine two situations based on the values of ℵ. If a non-negative integer m can be

identified such a way ℵ(Dm) = 0, then Dm turns out to be compact. However Ψc : Dm → Dm,

so Schauder’s Theorem ensures a FP for Ψc inDm ⊂ D. In place of this, if we consider ℵ(Dn) >

0, ∀n ∈ N . So it must be justified that D∞ ⊂ Dn ∈ f. Primarily we should verify ℵ(Dn) → 0 as

n→ +∞. Based on inclusion (2.11), we may express the following as a sequence {ℵ(Dn)}, where

Dn+1 < ℵ(Dn) is decreasing down and will eventually converge to s ∈ R with s ≥ 0. Therefore

ℵ(Dn) ∈ (0,∞) along s ∈ [0,∞), thus by assumption on τ, lim
t→s+

inf τ(t) > 0, implies to have r > 0

with n0 ∈ N such a way τ(ℵ(Dn)) ≥ r, ∀n ≥ n0. Using contraction condition (2.9) withD1 = Dn

andD2 = Dn+1, we write

θ(ℵ(Dn+1)) = θ(ℵ(co(Ψc(Dn)))) = θ(ℵ(Ψc(Dn))) ≤ φ

(
θ

(
ℵ(Ψc(Dn) + Ψc(Dn+1))

2

))
.

Consequently,

θ(ℵ(Dn)) ≤φ

(
θ

(
ℵ(Ψc(Dn) + Ψc(Dn+1))

2

))
≤φ ·φ

(
θ

(
ℵ(Ψc(Dn−1) + Ψc(Dn))

2

))
≤φ2
·φ

(
θ

(
ℵ(Ψc(Dn−2) + Ψc(Dn−1))

2

))
...

≤φn+1
(
θ

(
ℵ(Ψc(Dn0) + Ψc(D1))

2

))
, ∀n > n0.

Therefore

lim
n→∞

θ(ℵ(Dn)) = −∞.

Since θ satisfies condition (Θ2), it is clear that

lim
n→∞
ℵ(Dn) = 0.
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Therefore the definition 1.1(vi) implies,D∞ =
⋂+∞

n=1Dn , ∅ and ΨcD∞ ⊂ D∞ as ΨcDn ⊂ Dn. Also,

since D∞ ⊂ Dn for every n ∈ N , as a result of definition 1.1(ii), ℵ(D∞) ≤ ℵ(Dn), ∀n ∈ N . Thus

ℵ(D∞) = 0, which isD∞ ∈ kerℵ, henceD∞ comes to be bounded. ButD∞ is closed such thatD∞
is compact. Consequently, by Schauder’s Theorem Ψc assures a FP inD∞ ⊂ D. �

From the above theorem we deduce several pivotal results in particular, if we choose θ(k) = ek

with φ(k) = k2α, we conclude the below corollary.

Corollary 2.3. SupposeD ∈ f. If the Kannan-type mapping Ψc : D→D has no discontinuity such that

ℵ(Ψc(D1)) ≤ α(ℵ(Ψc(D1)) + ℵ(Ψc(D2))), (2.13)

where α ∈ [0, 1
2 ),D1 andD2 are subsets ofD. As a result Ψc ensure a FP inD.

By following these contractions, one can prove a number of findings that prove or expand upon

a number of well-known theorems.

3. Generalized Darbo type Expansion with Fixed Point Theorems

We introduce θ-Fℵ expansion and then provide FP results satisfying such expansion.

Definition 3.1. The mapping Ψc : D→D represent θ-Fℵ-expanding if ℵ(D0) > 0, for allD0 ⊂ D and
there exists τ ∈ S with F ∈ F, and θ ∈ Θ in a way that

F (ℵ(Ψc(D0))) ≥ θ(F (ℵ(D0))) + τ(ℵ(D0)), (3.1)

The below result is presented in the context of the θ-Fℵ-expanding map.

Theorem 3.1. When the mapping Ψc : D → D represent θ-Fℵ-expanding, surjective with continuity.
Then Ψc assures a FP inD.

Proof. Since Ψc : D→D is surjective, as a result by Lemma 1.1 one can find a mapping Ψ∗c : D→D

such that Ψc ◦Ψ∗c is the identity mapping onD. SupposeD1 andD2 represent any subsets ofD in

a sense thatD2 = Ψ∗c(D1). Suppose that ℵ(D2) > 0, so via (3.1), one can write

F (ℵ(Ψc(D2))) ≥ θ(F (ℵ(D2))) + τ(ℵ(D2)). (3.2)

Since Ψc(D2) = Ψc(Ψ∗c(D1)) = (Ψc ◦Ψ∗c)(D1) = D1, so that inequality (3.2) becomes

F (ℵ(D1)) ≥ θ(F (ℵ(Ψ∗c(D1)))) + τ(ℵ(Ψ∗c(D1))). (3.3)

However, if Ψ∗cu = u, then Ψcu = Ψc(Ψ∗cu) = u. Thus to investigate the FP of Ψc, it is enough to

find it for the Ψ∗c. For this, a sequence is described as {Dn}
∞

n=0 such a way

D0 = D and Dn = co(Ψ∗cDn−1), ∀ n ∈ N . (3.4)

It is obvious to show that Dn+1 ⊂ Dn and Ψ∗cDn ⊂ Dn. Further, if one take an integer m which is

non-negative along ℵ(Dm) = 0, thenDm is compact and Theorem Schauder, ensures the existence

of FP of Ψ∗c in Dm ⊂ D. Then as the sequence {ℵ(Dn)} is decreasing converging to non-negative
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real number s. Assume that ℵ(Dn+1) > 0, then 0 < ℵ(Dn+1) = ℵ(co(Ψ∗c(Dn))) = ℵ(Ψ∗c(Dn)), that

is, ℵ(Ψ∗c(Dn)) ∈ (0,∞) and s ∈ [0,∞), so that lim
t→s+

inf τ(ℵ(Ψ∗c(Dn))) > 0, that is we found 0 < r and

n0 ∈ N along τ(ℵ(Ψ∗c(Dn))) ≥ r, for all n ≥ n0. Application of (3.3) withD = Dn, we write

τ(ℵ(Ψ∗c(Dn))) + θ(F (ℵ(Dn+1))) =τ(ℵ(Ψ∗c(Dn))) +F (ℵ(co(Ψ∗c(Dn))))

=τ(ℵ(Ψ∗c(Dn))) +F (ℵ(Ψ∗c(Dn)))

≤F (ℵ(Dn)).

Moving forward, we write

θ(F (ℵ(Dn+1))) ≤ F (ℵ(Dn)) − τ(ℵ(Ψ∗c(Dn))) ≤ F (ℵ(Dn)) − r.

Consequently,

θ(F (ℵ(Dn))) ≤ F (ℵ(Dn−1)) − r.

By routine calculation, one can easily obtained that

θ(F (ℵ(Dn))) ≤F (ℵ(Dn0)) − (n− n0)r, ∀n > n0.

Clearly lim
n→+∞

θ(F (ℵ(Dn))) = −∞, and utilizing property (F2), one could say F ( lim
n→+∞

ℵ(Dn)) = 0.

So by Definition 1.1, D∞ =
⋂+∞

n=1Dn , ∅ and D∞ ⊃ Ψ∗cD∞ as Dn ⊃ Ψ∗cDn. Also, since D∞ ⊂ Dn,

∀n ∈ N , so by Definition 1.1(ii), ℵ(D∞) ≤ ℵ(Dn), for every n ∈ N . Thus ℵ(D∞) = 0 and hence

D∞ ∈ kerℵ, that isD∞ turns out to be bounded. ButD∞ is closed such thatD∞ is compact. Hence

by Theorem Schauder, Ψ∗c assures a FP inD∞ ⊂ D. Therefore, Ψc ensures a FP inD∞ ⊂ D. �

To further demonstrate the Theorem, the following example is developed (3.1).

Example 3.1. Suppose D = [−8, 9] ⊆ R. Therefore, it is evident D ∈ f. Moreover define Ψc : D → D

with F : (0,∞) −→ R and τ : (0,∞) −→ R as Ψc(k) = 1 − k, θ(k) =
3√

k − 1
2 (k ≥ 1) , τ(k) = ln

√
k

with F (k) = ln k + k, correspondingly. It is simple to verify that F ∈ F with τ ∈ S, θ ∈ Θ, and Ψc is
continuous. Further, define an MN C , ℵ : B(E )→ [0,∞) by

ℵ (D) = diam (D) = sup
k,u∈D

|k− u| .

Now, let D0 = [0, 1] be subset of D. As a result ℵ (D0) = ℵ (Ψc (D0)) = 1. Thus from expansion
(3.1), we write

θ(F (ℵ(D0))) + τ(ℵ(D0)) = θ(F (1)) + τ(1) = 0.5 < 1 = F (ℵ(Ψc(D0))).

That is, θ-Fℵ-weak expansion. As a result, Ψc has a FP 1
2 ∈ D according to Theorem (3.1).

Remark 3.1. We can deduce many essential expansion from expansion (3.1). We provide some preferable
expansions that extend and covers various familiar theorems in the literature. Notably:

(1) If we choose F (k) = ln k, 0 < k, we deduce

ℵ(Ψc(D)) ≥ ℵ((D))θeτ(ℵ(D)), for all D ⊂ D;
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(2) If we take F (k) = ln k + k, k > 0, we deduce

ℵ(Ψc(D)) ≥ (ℵ(D))θeτ(ℵ(D))−ℵ(Ψc(D))+ℵ(D), for all D ⊂ D;

(3) If we choose F (k) = ln(k2 + k), k > 0, we deduce

ℵ(Ψc(D))(ℵ(Ψc(D)) + 1) ≥ (ℵ(D))θ(ℵ(D) + 1)eτ(ℵ(D)), for all D ⊂ D;

(4) If we choose F (k) = arctan
(
−1
k

)
with k > 0, we deduce

ℵ(Ψc(D)) ≥
ℵ(D) + θ tan τ(ℵ(D))

θ− tan τ(ℵ(D)) + ℵ(D)
, for all D ⊂ D.

By applying these extensions, one can prove a number of findings that generalise and build

upon a number of well-established theorems from the existing body of literature.

4. Applications

Here in this part, the study applies the result for the existence of solution to second order

differential equations. Suppose (E , ‖.‖) represent a Banach space, B(a, r) denotes a closed ball

along r radius with center a, and Br denotes the ball B(0, r). Our goal is to demonstrate sufficient

conditions for the existence of solution to the differential equation:u′′(t) =ψ(t, u(t)), t ∈ [0, 1],

u(0) =u0, u(1) = u1.
(4.1)

Where ψ : [0, 1] ×R → R represent a function with no discontinuous. It is possible to express the

previously mentioned problem as an integral equation:

u(t) = F(t) + ξ

∫ 1

0
Gr(t, s)u(s)ds, t ∈ [0, 1], (4.2)

in which F(t) = u0 + t(u1 − u0) and Gr(t, s) is the Green’s function, described by

Gr(t, s) =

s(1− s) 0 ≤ s ≤ t ≤ t,

t(1− s) 0 ≤ t ≤ s ≤ 1.
(4.3)

We are now in the position to exhibit the existence result.

Theorem 4.1. Suppose u, v ∈ Br with ψ : [0, 1] ×R → R represent a mapping with no discontinuous in
the extent that

‖u(t) − v(t))‖ ≤
1
ξ

sup
t∈[0,1]

√
(
∣∣∣u(t) − v(t)

∣∣∣2 − r)e−τ, (4.4)

and

M

6
≤ r, (4.5)
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where |u(t) − v(t)| > r, r ≥ 0, and sup
t∈[0,1]

∣∣∣u(s)∣∣∣ = M < ∞. Then there exists a solution of the second order

differential equation (4.2) in Br. Consequently, there exists a solution of the differential equation of second
order (4.1) in Br.

Proof. Let Br =
{
u ∈ C ([0,T] ,R) : ‖u‖ ≤ r

}
. Then, Br is a non-empty, bounded, convex, and closed

subset of (E , ‖.‖). Define θ : R −→ R as θ(k) = ln k and Φ : (0,∞) → R, with τ > 0, and the

operator Ψc : Br → Br by

Ψcu(t) = F(t) + ξ

∫ 1

0
Gr(t, s)u(s)ds.

Moreover, define MN C ℵ : B(E )→ [0,∞) by

ℵ (ΨcD1) = sup
t∈[0,1]

∣∣∣Ψcu (t) −Ψcv (t)
∣∣∣2 , for all u, v ∈ D.

First, we will prove that Ψc : Br → Br is well-defined. Assume u ∈ Br for a specific value of r. For

every t ∈ [0, 1], it follows that ∣∣∣Ψcu(t)
∣∣∣ = ∣∣∣∣∣∣F(t) + ξ

∫ 1

0
Gr(t, s)u(s)ds

∣∣∣∣∣∣
≤F(t) + ξ

∫ 1

0
Gr(t, s)

∣∣∣u(s)∣∣∣ ds

≤ sup
s∈[0,1]

∣∣∣u(s)∣∣∣ ∫ 1

0
Gr(t, s)ds

≤M

[
t3

6
−

t2

2
+

t
2

]1

0

=
M

6
≤r.

That is
∥∥∥Ψc (u)

∥∥∥ ≤ r, ∀u ∈ Br, that means that Ψc (u) ∈ Br and consequently Ψc : Br → Br is

well-defined.

Next, we need to prove that Ψc : Br → Br is a contraction. Assume

|Ψcu (t) −Ψcv (t) | =

∣∣∣∣∣∣F(t) + ξ

∫ 1

0
Gr(t, s)u(s)ds− F(t) − ξ

∫ 1

0
Gr(t, s)v(s)ds

∣∣∣∣∣∣
≤ ξ

∫ 1

0
Gr(t, s)

∣∣∣u(s) − v(s)
∣∣∣ ds

≤ sup
t∈[0,1]

∣∣∣u(t) − v(t)
∣∣∣ ξ∫ 1

0
Gr(t, s)ds

≤ sup
t∈[0,1]

√
(
∣∣∣u(t) − v(t)

∣∣∣2 − r)e−τ
∫ 1

0
Gr(t, s)ds
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=

[
t3

6
−

t2

2
+

t
2

]1

0
sup

t∈[0,1]

√
(
∣∣∣u(t) − v(t)

∣∣∣2 − r)e−τ

=
1
6

sup
t∈[0,1]

√
(
∣∣∣u(t) − v(t)

∣∣∣2 − r)e−τ.

Using the definition of MN C , we get

‖Ψcu−Ψcv‖2 ≤
{
(‖u− v‖2 − r)e−τ

}
,

or

ℵ (ΨcD1) ≤ (ℵ (D1))e−τ, (4.6)

therefore implying that

ℵ (ΨcD1) ≤ ∆(D1,D2)e−τ, (4.7)

where

∆(D1,D2) = sup
{
ℵ(D1),ℵ(Ψc(D1)),ℵ(Ψc(D2)),

1
2
ℵ(Ψc(D1)∪Ψc(D2))

}
.

We obtain by applying logarithms to inequality (4.7).

ln(ℵ (ΨcD1)) ≤ −τ+ ln (∆(D1,D2)) ,

which implies that

τ+ θ(ℵ (ΨcD1)) ≤ θ (∆(D1,D2)) .

Ψc assures a FP in Br. For that reason, the corollary (2.2) ensure a solution in Br. �

5. Conclusion

Several new θ-Φℵ-contraction and θ-Fℵ-expansion have been introduced through measure

of noncompactness. There are several existing results that can be derived from the FP results

that were established in Banach space. For the validity of established results, we construct some

examples, and also we have established the existence of a solution to the second order differential

equation in order to ensure the accuracy of our results.

Funding: This research was funded by National Science, Research and Innovation Fund (NSRF),

and King Mongkut’s University of Technology North Bangkok with Contract no. KMUTNB-FF-

68-B-25.

Authors’ Contributions: Each of the writers contributed significantly and equally to this paper.

Every author has reviewed and given their approval to the final version.

Acknowledgment: The authors M. Sarwar and K. Abodayeh are thankful to Prince Sultan Uni-

versity for the support of this work through TAS research lab.



14 Int. J. Anal. Appl. (2025), 23:220

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References
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