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Abstract. This paper introduces and investigates two new notions of paracompactness in ideal topological spaces: b∗-

I-paracompactness and b∗1-I-paracompactness. These concepts generalize classical paracompactness using b∗-I-open

sets and ideal-related refinements. We establish fundamental properties of these spaces, including their preservation

under subspaces, finite unions, and continuous mappings. Furthermore, we provide characterizations of these spaces

and compare them with existing variants such as β-paracompactness, β1-paracompactness and I-paracompactness,

supported by illustrative examples. Our results extend the theory of ideal topological spaces and offer a framework for

future studies on generalized covering properties.

1. Introduction and Preliminaries

General topology has proven valuable in both theoretical and applied contexts, particularly in

computational topology, geometric modeling, and engineering design. Khalimsky et al. [16] and

Kong and Kopperman [18] advanced digital topology using connected topologies on finite ordered

sets. Topological methods have also been applied in geometric [21] and engineering design [25].

Paracompact spaces, introduced by Dieudonné [10], generalize compact and metrizable spaces.

A space is paracompact if every open cover has a locally finite open refinement. In Hausdorff

spaces, this is equivalent to admitting partitions of unity subordinate to any open cover, and such

spaces are normal [12]. Generalizations such as S-paracompactness [4], P3-paracompactness [5],

and β-paracompactness [9] have been studied extensively. Ideal topological spaces, introduced by

Kuratowski [19] and Vaidyanathaswamy [28], extend classical topologies through the use of ideals.
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This framework has been applied to ideal resolvability [11], I-open sets [15], ideal continuity [14],

and related concepts [1, 2, 13, 17, 20].

The study of paracompactness relative to ideals began with Zahid [30] and was expanded by

Hamlett et al. [13], Sathiyasundari and Renukadevi [27], and Sanabria et al. [26], who introducedI-

S-paracompactness. Demir and Ozbakir [9] later introduced β-paracompact spaces, while Yildirim

et al. [29] explored their ideal counterparts. Boonpok et al. [6,8] and Boonpok and Sama-Ae [7] pro-

posed and characterized weaker versions, such as δ-βI-paracompactness, δ1-βI-paracompactness,

and strong β-I-paracompactness.

This paper presents the notions of b∗-I-paracompact and b∗1-I-paracompact spaces, which are

defined using b∗-I-open sets. The study explores their fundamental properties and investigates

their connections with β-paracompactness [29] and β1-paracompactness [24]. Additionally, several

characterizations are established to further develop the framework of ideal topology and extend

its potential applications.

Throughout this paper, unless stated otherwise, we denote by (X, τ) (or simply X) a general

topological space without any assumptions regarding separation axioms. For any subset A ⊆ X,

the closure and interior of A are represented by cl(A) and int(A), respectively.

An ideal I on a set X is a nonempty collection of subsets of X satisfying the following conditions:

if A ∈ I and B ⊆ A, then B ∈ I; and if A, B ∈ I, then A∪B ∈ I. A topological space (X, τ) equipped

with an ideal I is called an ideal topological space and is denoted by (X, τ,I). The power set of X is

denoted by P(X). A set operator (·)∗ : P(X)→ P(X), referred to as a local function [19], is defined

in terms of the topology τ and the ideal I. For any A ⊆ X, it is given by

A∗(I, τ) =
{
x ∈ X : U ∩A < I for all U ∈ τ(x)

}
,

where τ(x) = {U ∈ τ : x ∈ U} denotes the family of open neighborhoods of x.

The operator (·)∗ induces a finer topology on X, called the ∗-topology, and denoted by τ∗(I). In

this topology, the closure of a set A is defined as cl∗(A) = A ∪A∗, and its interior is denoted by

int∗(A) [15]. The topology τ∗(I) is generated by the subbasis

β(I, τ) = {U − I : U ∈ τ, I ∈ I}.

It should be emphasized that, in general, β(I, τ) does not constitute a topology. When β(I, τ) =

τ∗, the ideal I is referred to as τ-simple. Furthermore, the ideal I is called I-codense if I∩ τ = {∅}

[15].

It is clear that if A ⊆ B, then A∗ ⊆ B∗ and consequently cl∗(A) ⊆ cl∗(B). Since τ ⊆ τ∗(I), it follows

that cl∗(A) ⊆ cl(A) and int(A) ⊆ int∗(A).

Definition 1.1. Let (X, τ,I) be an ideal topological space. A subset A ⊆ X is called b∗-I-open if it satisfies:

A ⊆ cl(int∗(A))∪ int∗(cl(A)).

The complement of a b∗-I-open set is said to be b∗-I-closed.
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Remark 1.1. As stated in Definition 1.1, within an ideal topological space, every open set is b∗-I-

open, and every closed set is b∗-I-closed. Moreover, the union of any collection of b∗-I-open sets

is again b∗-I-open, and the intersection of any family of b∗-I-closed sets is also b∗-I-closed.

In the following example, we show that there exists a b∗-I-open set which is not open in the

original topology, and that the intersection of two b∗-I-open sets may fail to be b∗-I-open.

Example 1.1. Let (X, τ,I) be an ideal topological space, where X = {1, 2, 3}, the topology is given

by τ = {∅, {1}, X}, and the ideal is I = {∅, {2}, {3}, {2, 3}}.

The associated ∗-topology is τ∗ = {∅, {1}, {1, 2}, {1, 3}, X}. Consequently, the family of all b∗-I-open

sets is

{∅, {1}, {1, 2}, {1, 3}, {2, 3}, X}.

Observe that the set A = {1, 2} is b∗-I-open, even though it is not open in the original topology

τ. Furthermore, both sets {1, 3} and {2, 3} are b∗-I-open, yet their intersection {3} is not b∗-I-open.

Definition 1.2. Let (X, τ,I) be an ideal topological space and A ⊆ X.

(1) The b∗-I-closure of A, denoted by b∗ clI(A), is defined as:

b∗ clI(A) = ∩{F ⊆ X | A ⊆ F and F is b∗-I-closed}

(2) The b∗-I-interior of A, denoted by b∗ intI(A), is defined as:

b∗ intI(A) = ∪{U ⊆ X | U ⊆ A and U is b∗-I-open}

Remark 1.2. Using Definition 1.2, it follows that in an ideal topological space (X, τ,I), for any

subset A ⊆ X, we have b∗ intI(A) ⊆ A ⊆ b∗ clI(A). Moreover, the usual interior satisfies int(A) ⊆

b∗ intI(A), and the ideal closure satisfies b∗ clI(A) ⊆ cl(A). Additionally, whenever A ⊆ B ⊆ X, it

holds that b∗ intI(A) ⊆ b∗ intI(B) and b∗ clI(A) ⊆ b∗ clI(B).

Lemma 1.1. Let A and B be subsets of an ideal topological space (X, τ,I). The following statements hold:

(1) X − b∗ clI(A) = b∗ intI(X −A); and
(2) X − b∗ intI(A) = b∗ clI(X −A).

Proof. We establish the duality between b∗-I-closure and b∗-I-interior:

(1) For the complement of b∗-I-closure:

X − b∗ clI(A) = X −∩{F | A ⊆ F, F is b∗-I-closed}

= ∪{X − F | X − F ⊆ X −A, X − F is b∗-I-open}

= ∪{G | G ⊆ X −A, G is b∗-I-open}

= b∗ intI(X −A).
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(2) For the complement of b∗-I-interior:

X − b∗ intI(A) = X −∪{G | G ⊆ A, G is b∗-I-open}

= ∩{X −G | X −A ⊆ X −G, X −G is b∗-I-closed}

= ∩{F | X −A ⊆ F, F is b∗-I-closed}

= b∗ clI(X −A).

This completes the proof of both statements. �

The following lemma outlines fundamental characteristics and conditions related to b∗-I-open

and b∗-I-closed sets within the context of ideal topological spaces.

Lemma 1.2. Let A be a subset of an ideal topological space (X, τ,I). The following properties hold:

(1) b∗ intI(A) is b∗-I-open, and A is b∗-I-open if and only if A = b∗ intI(A);
(2) b∗ clI(A) is b∗-I-closed, and A is b∗-I-closed if and only if A = b∗ clI(A); and
(3) x ∈ b∗ clI(A) if and only if U ∩A , ∅ for every b∗-I-open set U containing x.

Proof. (1): Let Uω be any b∗-I-open set such that Uω ⊆ A. By the definition of a b∗-I-open set, it

follows that Uω ⊆ b∗ intI(A). Moreover, since Uω is b∗-I-open, we have

Uω ⊆ cl(int∗(Uω))∪ int∗(cl(Uω)).

Then,

b∗ intI(A) = ∪ωUω

⊆ ∪ω cl(int∗(Uω))∪ int∗(cl(Uω))

⊆ cl(int∗(∪ωUω))∪ int∗(cl(∪ωUω))

= cl(int∗(b∗ intI(A)))∪ int∗(cl(b∗ intI(A))),

and therefore b∗ intI(A) is a b∗-I-open set.

Since b∗ intI(A) is the union of all b∗-I-open sets contained in A, it follows that b∗ intI(A) ⊆ A.

Therefore, A is b∗-I-open if and only if A = b∗ intI(A).

(2): From part (2) of Lemma 1.1, we know that b∗ clI(A) is a b∗-I-closed set. Since it is defined

as the intersection of all b∗-I-closed sets that contain A, it necessarily follows that A ⊆ b∗ clI(A).

Therefore, a set A is b∗-I-closed if and only if A = b∗ clI(A).

(3): Let x ∈ b∗ clI(A). Then, x is an element of all b∗-I-closed sets containing A. Suppose, to the

contrary, that there exists a b∗-I-open set U containing x such that U∩A = ∅. Then A ⊆ X−U, and

since X−U is b∗-I-closed and does not contain x, this would imply x < b∗ clI(A) — a contradiction.

Conversely, suppose that for every b∗-I-open set U containing x, we have U ∩A , ∅. Assume,

for contradiction, that x < b∗ clI(A). Then there exists a b∗-I-closed set F such that A ⊆ F and x < F.

Thus, x ∈ X − F, which is a b∗-I-open set disjoint from A, again yielding a contradiction. Hence, it

must be that x ∈ b∗ clI(A). �
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2. b∗-I-Paracompactness and Its Characterizations

This section explores the notion of b∗-I-paracompactness, which is a variant of the original

paracompactness and the I-β-paracompactness concept introduced by Yildirim et al. [29]. We aim

to present a formal description of this concept.

Let A = {Aω : ω ∈ Λ1} and B = {Bµ : µ ∈ Λ2} be two families of subsets in a topological space

X. We say thatA is a refinement of B if for every ω ∈ Λ1, there exists µ ∈ Λ2 such that Aω ⊆ Bµ.

Definition 2.1. A collection A of subsets of an ideal topological space (X, τ,I) is said to be b∗-I-locally
finite if for each x ∈ X, there exists a b∗-I-open set U containing x and U intersects at most finitely many
members ofA.

Lemma 2.1. Let A be a collection of subsets of an ideal topological space (X, τ,I). If A is locally finite,
then it is b∗-I-locally finite.

Proof. LetA be locally finite. We will verify thatA is b∗-I-locally finite. Let x ∈ X. SinceA is locally

finite, there exists an open set Gx containing x, which intersects at most finitely many elements

of A. Given that Gx is an open, it follows that it is b∗-I-open. Consequently, A is b∗-I-locally

finite. �

Definition 2.2. An ideal topological space (X, τ,I) is said to be b∗-I-paracompact if every open cover of X
has a b∗-I-locally finite refinementA = {Aα : α ∈ Λ} consisting of b∗-I-open sets (not necessarily a cover)
such that X − ∪{Aα : α ∈ Λ} ∈ I. The collection A of subsets of X such that X − ∪{Aα : α ∈ Λ} ∈ I is
called an I-cover.

A subset A of an ideal topological space (X, τ,I) is said to be b∗-I-paracompact relative to X if for any
open cover of A has a b∗-I-locally finite refinement B = {Bω : ω ∈ Ω} consisting of b∗-I-open sets such
that X −∪{Bω : ω ∈ Ω} ∈ I.

Example 2.1. Let R denote the set of real numbers. Equip R with the standard topology τ. Define

the ideal I to be the collection of all countable subsets of R.

Consider the open cover U = {(−n, n) : n ∈ N} of R. Suppose there exists a b∗-I-locally finite

refinement A of U consisting of b∗-I-open sets. However, for any point x ∈ R − ∪n∈N(−n, n) —

which must be countable — every neighborhood of x intersects infinitely many sets of the form

(−n, n), and hence intersects infinitely many members of A, since A refines U. This contradicts

the definition of local finiteness. Therefore, the space (X, τ,I) is not b∗-I-paracompact.

Theorem 2.1. If a topological space (X, τ) is paracompact, then (X, τ,I) is b∗-I-paracompact.

Proof. Using Lemma 2.1 and the inclusion ∅ ∈ I. �

Example 2.2. Consider the set of all positive integers, denoted by N. Define a topology τ on N as

follows:

τ = {∅, N} ∪ {{1, 2, . . . , n} : n ∈N} .
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Let I = {A ⊆N : 1 < A}, which clearly forms an ideal on N. Now, consider the open cover

A = {{1, 2, 3, . . . , n} : n ∈N}

of N. It is straightforward to verify that there is no locally finite open refinement B ofA that still

covers N. Therefore, the space (N, τ) is not paracompact in the classical sense.

However, N is b∗-I-paracompact. Given any open cover U of N, one can take the refinement

V = {{1}}. In fact, the complement N− {1} = {2, 3, 4, . . . } belongs to the ideal I, and the singleton

{1} is a b∗-I-open set. Moreover, V is trivially b∗-I-locally finite, thus satisfying the condition for

b∗-I-paracompactness.

Theorem 2.2. Let (X, τ,I) be an ideal topological space and A ⊆ X. Then G∩ b∗ clI(A) = ∅ if and only
if G∩A = ∅, for all b∗-I-open subset G of X.

Proof. By part (3) of Lemma 1.2 and since A ⊆ b∗ clI(A), the verification of the proof is now

complete. �

Theorem 2.3. LetA = {Aω : ω ∈ Ω} be a collection of subsets of an ideal topological space (X, τ,I). The
following statements are true.

(1) IfA is b∗-I-locally finite and Bω ⊆ Aω for all ω ∈ Ω, then B = {Bω : ω ∈ Ω} is b∗-I-locally finite.
(2) A is b∗-I-locally finite if and only if {b∗ clI(Aω) : ω ∈ Ω} is b∗-I-locally finite.

Proof. (1): Let x ∈ X. Since A is b∗-I-locally finite, there exists a b∗-I-open set U containing x,

which intersects at most finitely many elements of A. As Bω ⊆ Aω for all ω ∈ Ω, it follows that

U intersects at most finitely many of the sets in B = {Bω : ω ∈ Ω}. Hence, B = {Bω : ω ∈ Ω} is

b∗-I-locally finite.

(2): LetAbe b∗-I-locally finite and let x ∈ X. Then, there exists a b∗-I-open set G containing x that

satisfies G∩Aω = ∅ for everyω , ω1,ω2, . . . ,ωn. By Theorem 2.2, we obtain that G∩ b∗ clI(Aω) = ∅

for every ω , ω1,ω2, . . . ,ωn. Therefore, {b∗ clI(Aω) : ω ∈ Ω} is b∗-I-locally finite.

The converse follows from (1). �

Remark 2.1. It is noted that if (X, τ,I) is b∗-I-paracompact and J is an ideal on X with I ⊆ J , then
(X, τ,J) is b∗-J-paracompact.

Lemma 2.2. If an open coverA = {Aω : ω ∈ Ω} of an ideal topological space (X, τ,I) has a b∗-I-locally
finite b∗-I-open refinement B = {Bµ : µ ∈ Λ} such that X−∪{Bµ : µ ∈ Λ}} ∈ I, then there exists a precise
b∗-I-locally finite b∗-I-open refinement C = {Cω : ω ∈ Ω} ofA such that X −∪{Cω : ω ∈ Ω} ∈ I.

Proof. A similar technique is employed as in the proof of Lemma 1.3 in [26]. �

Definition 2.3. An ideal topological space (X, τ,I) is said to be b∗-I-regular if for every closed set F ⊆ X
and any point x < F, there exist disjoint b∗-I-open sets U and V such that x ∈ U and F−V ∈ I.

Theorem 2.4. If (X, τ,I) is a Hausdorff space that is b∗-I-paracompact, then (X, τ,I) is b∗-I-regular.
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Proof. Let F be a closed subset of X, and let x < F. For each point y ∈ F, since X is Hausdorff,

there exist disjoint open neighborhoods Vx and Oxy such that x ∈ Vx and y ∈ Oxy. This ensures

y < cl(Vx). Now, consider the collection

A = {Oxy : y ∈ F} ∪ {X − F},

which forms an open cover of X. By the hypothesis, there exists a b∗-I-locally finite b∗-I-open

refinement

B = {Hxy : y ∈ F} ∪ {W},

where Hxy ⊆ Oxy for each y ∈ F and W ⊆ X − F, with

X −
(
∪y∈FHxy ∪W

)
∈ I.

Define the sets

V = ∪y∈FHxy, and U = X − b∗ clI(∪y∈FHxy).

We claim that U and V are disjoint b∗-I-open subsets of X. Since Hxy ⊆ Oxy and

b∗ clI(Hxy) ⊆ cl(Hxy) ⊆ cl(Oxy),

and since x < cl(Oxy), it follows that x < b∗ clI(Hxy), hence x ∈ U. Moreover, we have:

F−V = F−∪y∈FHxy ⊆ X −
(
∪y∈FHxy ∪W

)
∈ I.

Therefore, U and V are disjoint b∗-I-open subsets of X such that x ∈ U and F−V ∈ I. This proves

that the space (X, τ,I) is b∗-I-regular. �

Lemma 2.3. Let (X, τ,I) be an ideal topological space. The following statements are equivalent:

(1) For every closed subset F of X and every x < F, there exist disjoint b∗-I-open sets U and V such
that x ∈ U and F−V ∈ I.

(2) For every open subset G of X and every x ∈ G, there exists a b∗-I-open set U such that x ∈ U and
b∗ clI(U) −G ∈ I.

Proof. (1) ⇒ (2): Let G be an open set and x ∈ G. Then X −G is closed, and since x < X −G, by

assumption, there exist disjoint b∗-I-open sets U and V such that x ∈ U and (X−G)−V ∈ I. Since

U and V are disjoint, by Theorem 2.2, we have b∗ clI(U) ⊆ X −V. Therefore, b∗ clI(U)∩ (X −G) ⊆

(X −G) −V. Hence, we conclude that b∗ clI(U)∩ (X −G) = b∗ clI(U) −G ∈ I.

(2) ⇒ (1): Let F be a closed set and x < F. This implies that X − F is open, and x ∈ X − F. By

assumption, there exists a b∗-I-open set U such that x ∈ U and b∗ clI(U) − (X − F) ∈ I. Thus,

we define V = X − b∗ clI(U), which is a b∗-I-open set. Since U and V are disjoint, we have

F−V = F− (X − b∗ clI(U)) = b∗ clI(U) − (X − F) ∈ I. �

By Theorem 2.4 and Lemma 2.3, we have the following theorem.

Theorem 2.5. If an ideal topological space (X, τ,I) is both Hausdorff and b∗-I-paracompact, then for
any open set G ⊆ X and for every point x ∈ G, there exists a b∗-I-open set U such that x ∈ U and
b∗ clI(U) −G ∈ I.
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Theorem 2.6. If an ideal topological space (X, τ,I) is both regular and b∗-I-paracompact, then every open
cover of X has a b∗-I-locally finite I-cover refinement of b∗-I-closed sets.

Proof. Let A be an open cover of X. Since X is regular, for each point x ∈ X and each open set

Ux ∈ A containing x, there exists an open set Gx such that x ∈ Gx and cl(Gx) ⊆ Ux. Define the

collectionA1 = {Gx : x ∈ X}, which forms an open cover of X. As X is b∗-I-paracompact, the cover

A1 admits a b∗-I-locally finite refinement B1 = {Bω : ω ∈ Ω} consisting of b∗-I-open sets such that

X −∪ω∈ΩBω ∈ I.

Since Bω ⊆ b∗ clI(Bω) for each ω ∈ Ω, X −∪ω∈Ωb∗ clI(Bω) ⊆ X −∪ω∈ΩBω, we also have:

X −∪ω∈Ωb∗ clI(Bω) ∈ I.

By Theorem 2.3, the collection

B = {b∗ clI(Bω) : ω ∈ Ω}

is b∗-I-locally finite. Since each Bω ∈ B1 refines some Gx ∈ A1, we have:

b∗ clI(Bω) ⊆ cl(Bω) ⊆ cl(Gx) ⊆ Ux,

implying that B refinesA.

Thus, the collectionB is a b∗-I-locally finite refinement of b∗-I-closed sets that forms an I-cover

of X. �

Theorem 2.7. If an ideal topological space (X, τ,I) is Hausdorff and A is a b∗-I-paracompact subset of X,
then A is a closed set in (X, τ∗).

Proof. Let x ∈ X −A. Since X is Hausdorff, for each point y ∈ A, there exists an open set Gy ∈ τ

such that y ∈ Gy and x < Gy. Therefore, the collection A = {Gy : y ∈ A} forms an open cover

of A. As A is a b∗-I-paracompact subset of X, the cover A admits a b∗-I-locally finite refinement

B = {Bω : ω ∈ Ω} consisting of b∗-I-open sets such that

A−∪ω∈ΩBω ∈ I.

As x < cl(Bω) for all ω ∈ Ω, it follows that

x < ∪ω∈Ω cl(Bω).

Moreover, because the family B is locally finite, it is closure-preserving. Hence,

∪ω∈Ω cl(Bω) = cl (∪ω∈ΩBω) ,

which implies

x < cl (∪ω∈ΩBω) .

Now define the open set G = X − cl (∪ω∈ΩBω), and let K = A− cl (∪ω∈ΩBω). Then G ∈ τ and

K ⊆ A−∪ω∈ΩBω ∈ I.

Furthermore, we have (G−K)∩A = ∅. Hence, x < A∗, and it follows that A∗ ⊆ A. �
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Theorem 2.8. Let A and B be subsets of an ideal topological space (X, τ,I). If A and B are b∗-I-paracompact
subsets of X, then A∪ B is also a b∗-I-paracompact subset of X.

Proof. LetA = {Aω : ω ∈ Ω} be an open cover of A∪ B. This coverA also serves as an open cover

for both A and B. By assumption, there exist b∗-I-locally finite b∗-I-open familiesB = {Bω : ω ∈ Ω1}

for A and C = {Cµ : µ ∈ Ω2} for B, which refineA such that:

A−∪ω∈Ω1Bω ∈ I, B−∪µ∈Ω2Cµ ∈ I.

This implies that:

A ⊆ ∪ω∈Ω1Bω ∪ I1, B ⊆ ∪µ∈Ω2Cµ ∪ I2,

where I1, I2 ∈ I. Therefore, we have:

A∪ B ⊆ (∪ω∈Ω1Bω)∪ (∪µ∈Ω2Cµ)∪ (I1 ∪ I2).

It follows that:

A∪ B−∪ω∈Ω1,µ∈Ω2(Bω ∪Cµ) ⊆ I1 ∪ I2 ∈ I.

We see that the collection D = {Bω ∪ Cµ : ω ∈ Ω1,µ ∈ Ω2} of b∗-I-open sets is b∗-I-locally finite

and refinesA. Consequently, A∪ B is a b∗-I-paracompact subset of X. �

Theorem 2.9. Let (X, τ,I) be an ideal topological space. If A is a b∗-I-paracompact subset of X and B is a
closed subset of X, then A∩ B is also a b∗-I-paracompact subset of X.

Proof. Let A = {Aω : ω ∈ Ω} be an open cover of A ∩ B. Since X − B is open in X, the collection

A1 = {Aω : ω ∈ Ω} ∪ {X−B} serves as an open cover of A. By the given assumption and Lemma 2.2,

there exists a precise b∗-I-locally finite b∗-I-open refinement B = {Bω : ω ∈ Ω} ∪ {V} of A1 such

that:

Bω ⊆ Aω for all ω ∈ Ω, V ⊆ X − B, and A− (∪ω∈ΩBω ∪ {V}) ∈ I.

Now, observe that:
A∩ B−∪ω∈ΩBω = A∩ B− (∪ω∈ΩBω ∪ {V})

⊆ A− (∪ω∈ΩBω ∪ {V}) ∈ I.

Thus, A∩B−∪ω∈ΩBω ∈ I. It follows that the collectionB1 = {Bω : ω ∈ Ω}, consisting of b∗-I-open

sets, is b∗-I-locally finite and refinesA. Therefore, A∩ B is a b∗-I-paracompact subset of X. �

As a consequence of Theorem 2.9, we obtain the following corollary.

Corollary 2.1. Let (X, τ,I) be a b∗-I-paracompact space. Then the following hold:

(1) Every closed subset of X is b∗-I-paracompact.
(2) The union of two closed subsets of X is also b∗-I-paracompact.
(3) If A ⊆ X is b∗-I-paracompact and B is an open subset of X with B ⊆ A, then the set A − B is

b∗-I-paracompact.

Lemma 2.4. [13] Let I be an ideal on a topological space X. If Y is a subset of X, then IY = {I∩Y : I ∈ I}
is an ideal on Y.
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As illustrated in Example 1.1, the intersection of two b∗-I-open sets may fail to be b∗-I-open.

Hence, it is essential to explicitly assume this condition in the following theorem.

Theorem 2.10. In an ideal topological space (X, τ,I), let A and B be subsets of X where A is contained in
B. Suppose that for any b∗-IB-open in B is b∗-I-open in X. If A is a b∗-IB-paracompact subset of B, then it
is a b∗-I-paracompact subset of X.

Proof. LetA = {Aω : ω ∈ Ω} be an open cover of A in X. Consider the collectionBA = {Aω∩B : ω ∈

Ω}, which forms an open cover of A when viewed as a subset of B. Since A is b∗-IB-paracompact

in B, there exists a b∗-IB-locally finite refinement CA = {Cω : ω ∈ Ω} consisting of b∗-IB-open sets

in B, where Cω ⊆ Aω ∩ B for each ω ∈ Ω. Moreover,

A−∪ω∈ΩCω ∈ IB.

Since Cω ⊆ Aω for everyω ∈ Ω, the familyCA is also a refinement ofA. By the given assumption,

CA is a refinement consisting of b∗-I-open sets in X that is b∗-I-locally finite. Furthermore,

A−∪ω∈ΩCω ∈ IB ⊆ I.

Therefore, A is b∗-I-paracompact in X. �

3. b∗1-I-Paracompactness and Its Characterizations

This section examines the notion of b∗1-I-paracompactness, a stricter variant of β1-

paracompactness introduced by Qahis [24], and subsequently investigates its characterization.

Al-Jarrah [3] defined β1-paracompactness as follows: A topological space (X, τ) is called β1-

paracompact if every β-open cover of X has a locally finite open refinement. Qahis [24] expanded

the notion of β1-paracompactness to β1-paracompactness concerning an ideal as follows: An ideal

topological space (X, τ,I) is said to be β1I-paracompact if every β-open coverU of X has a locally

finite open refinementV such that X −∪{V : V ∈ V} ∈ I. Utilizing b∗-I-open sets, we introduce a

new form of paracompactness analogous to the one proposed by Qahis.

Definition 3.1. An ideal topological space (X, τ,I) is said to be b∗1-I-paracompact if every b∗-I-open
cover of X has a locally finite open refinement A = {Aα : α ∈ Λ} (not necessarily a cover) such that
X − ∪{Aα : α ∈ Λ} ∈ I. The collection A of subsets of X such that X − ∪{Aα : α ∈ Λ} ∈ I is called an
I-cover of X.

A subset A of an ideal topological space (X, τ,I) is said to be b∗1-I-paracompact relative to X if for every
b∗-I-open cover of A has a locally finite open refinementB = {Bλ : λ ∈ Ω} such that A−∪{Bλ : λ ∈ Ω} ∈ I.

Example 3.1. Consider the ideal topological space (X, τ,I), where X = {1, 2, 3}, τ = {∅, X, {1}} and

I = {∅, {2}, {3}, {2, 3}}. Hence, the set of all b∗-I-open sets of X is {∅, {1}, {1, 2}, {1, 3}, X}. Every b∗-I-

open coverU of X possesses a locally finite open refinementV = {{1}}, such that X−{1} = {2, 3} ∈ I.

Consequently, (X, τ,I) is b∗1-I-paracompact.
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Example 3.2. Let us consider an ideal topological space (N, τ,I), where N, the set of natural

numbers, τ = {∅} ∪ {A ⊆N : N−A is finite}, and I = {A ⊆N : A is finite}.

Now, we consider the collection U = {Un = N − {n} : n ∈ N}. Each Un is a cofinite set, hence

Un ∈ τ, and clearly ∪n∈NUn = N. Thus,U is a τ-open cover of X. It is easy to verify that each Un

is also b∗-I-open.

Now suppose there exists a locally finite refinementA = {Aα : α ∈ Λ} ofU such that

X −∪α∈ΛAα ∈ I.

Then ∪α∈ΛAα must cover all of X except possibly a finite number of points. Since each Aα is open

in the cofinite topology, it must be cofinite, and so the intersection of finitely many Aα’s is also

cofinite.

But in the cofinite topology, a locally finite collection of cofinite sets must be finite, because for

any point x ∈ X, the only open set containing x is cofinite, and any infinite number of cofinite sets

will intersect infinitely often. Hence,Amust be finite.

As a result, ∪α∈ΛAα can miss infinitely many points, which contradicts the requirement that

X − ∪α∈ΛAα ∈ I. Therefore, no such locally finite refinement exists, and the space is not b∗1-I-

paracompact.

Based on the definitions of b∗-I-paracompactness and b∗1-I-paracompactness in ideal topolog-

ical spaces, it can be deduced that if (X, τ,I) is b∗1-I-paracompact, then it is necessarily b∗-I-

paracompact. This leads to the following theorem.

Theorem 3.1. If an ideal topological space (X, τ,I) is b∗1-I-paracompact, then it also be b∗-I-paracompact.

Proof. Assume that A is an open cover of X. Then, A also constitutes a b∗-I-open cover. Given

that (X, τ,I) is b∗1-I-paracompact, there exists a locally finite open refinement B = {Bω : ω ∈ Ω} of

A such that

X −∪ω∈ΩBω ∈ I.

By Lemma 2.1, the family B is b∗-I-locally finite. Hence, (X, τ,I) is b∗-I-paracompact. �

In the subsequent theorem, we discuss a space endowed with two topologies; hence, to avoid

ambiguity, we must redefine the concept of local finiteness. A collectionV of subsets of an ideal

topological space (X, τ,I) is said to be τ-locally finite if for each x ∈ X, there exists an open set

U ∈ τ such that x ∈ U and U intersects with at most finitely many elements of V. As stated in

Example 1.1, the intersection of any two b∗-I-open sets is not necessarily a b∗-I-open set; therefore,

this assumption must be made in the subsequent theorem.

Theorem 3.2. Let (X, τ,I) be an ideal topological space. Suppose that I is codense and τ-simple, that
(X, τ∗,I) is b∗1-I-paracompact, that every b∗-I-open set in (X, τ,I) is also b∗-I-open in (X, τ∗,I), and
that the intersection of any two b∗-I-open sets in (X, τ,I) remains b∗-I-open. Then every b∗-I-open cover
of (X, τ,I) admits a locally finite refinement consisting of b∗-I-open sets that forms an I-cover.
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Proof. Let A = {Aω : ω ∈ Λ1} be a b∗-I-open cover of (X, τ,I). Then, A is also a b∗-I-open

cover of (X, τ∗,I). Since (X, τ∗,I) is b∗1-I-paracompact, there exists a τ∗-locally finite refinement

B = {Bλ : λ ∈ Λ2} ofA such that

X −∪λ∈Λ2Bλ ∈ I,

where each Bλ = Vλ − Iλ with Vλ ∈ τ and Iλ ∈ I.

Since B is τ∗-locally finite, for each x ∈ X, there exists a b∗-I-open set H containing x such that

H intersects only finitely many members of B, say Bλ1 , Bλ2 , . . . , Bλn . As I is τ-simple, such a set H
can be written as H = U − I, where U ∈ τ and I ∈ I. Then, for each λ < {λ1, . . . ,λn}, we have

(U − I)∩ Bλ = ∅ ⇒ (U ∩Vλ) − (I ∪ Iλ) = ∅.

Since I is codense, it follows that U ∩Vλ = ∅ for such λ. Hence,

U ∩ (Vλ ∩Aω) = ∅ for all ω ∈ Λ1 and λ < {λ1, . . . ,λn}.

Therefore, the collection C = {Vλ ∩Aω : ω ∈ Λ1,λ ∈ Λ2} is τ-locally finite.

We now show that C is a b∗-I-open refinement of A. Since B refines A, for each Bλ ∈ B, there

exists Aω ∈ A such that Bλ ⊆ Aω. Then,

Bλ = Aω ∩ Bλ = Aω ∩ (Vλ − Iλ) = (Vλ ∩Aω) − Iλ ⊆ Vλ ∩Aω ⊆ Aω.

Thus, C refinesA.

Finally, since

X −∪λ∈Λ2,ω∈Λ1(Vλ ∩Aω) ⊆ X −∪λ∈Λ2Bλ ∈ I,

it follows that X −∪λ∈Λ2,ω∈Λ1(Vλ ∩Aω) ∈ I. Therefore, C is a τ-locally finite b∗-I-open refinement

ofA, completing the proof. �

Theorem 3.3. Let (X, τ,I) be an ideal topological space that is b∗1-I-paracompact. If the union of any
collection of sets in I belongs to I, then the space (X, τ∗,I) is also b∗1-I-paracompact.

Proof. Let A = {Aω : ω ∈ Ω} be a b∗-I-open cover of (X, τ∗,I), where each Aω = Gω − Iω with

Gω ∈ τ and Iω ∈ I for all ω ∈ Ω. Then, the collection B = {Gω : ω ∈ Ω} forms a b∗-I-open cover of

(X, τ,I). Since (X, τ,I) is b∗1-I-paracompact by assumption, there exists a precise τ-locally finite

open refinement C = {Cω : ω ∈ Ω} of B such that

X −∪ω∈ΩCω ∈ I.

For a fixed ω′ ∈ Ω1, consider the family {Cω ∩ Iω′ : ω ∈ Ω }. Since each Cω ∩ Iω′ lies in I, it

follows from the assumption that

∪ω∈Ω (Cω ∩ Iω′) ∈ I.

Therefore,

X −∪ω∈Ω(Cω − Iω′) ⊆ (X −∪ω∈ΩCω)∪ (∪ω∈Ω(Cω ∩ Iω′)) ∈ I,

which implies that

X −∪ω∈Ω(Cω − Iω′) ∈ I.
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SinceC is τ-locally finite and τ∗ is finer than τ, the collectionC′ = {Cω − Iω′ : λ ∈ Ω} is a τ∗-locally

finite family of τ∗-open sets. Moreover, C′ refinesA. Hence, (X, τ∗,I) is b∗1-I-paracompact. �

Theorem 3.4. If an ideal topological space (X, τ,I) is a Hausdorff space and A is b∗1-I-paracompact relative
to X, then A is closed in (X, τ∗).

Proof. We aim to prove that A∗ ⊆ A. Assume that x < A. Since (X, τ,I) is Hausdorff, for each

y ∈ A, there exists an open set Gy ∈ τ such that y ∈ Gy and x < cl(Gy). Hence, the collection

A = {Gy : y ∈ A} forms an open cover of A, and therefore a b∗-I-open cover.

Because A is b∗1-I-paracompact, there exists a τ-locally finite open refinement B = {Bω : ω ∈ Ω}

ofA such that

A−∪ω∈ΩBω ∈ I.

For each ω ∈ Ω, we have x < cl(Bω), so

x < ∪ω∈Ω cl(Bω).

Because the family B is locally finite, it is closure-preserving. Therefore,

∪ω∈Ω cl(Bω) = cl (∪ω∈ΩBω) ,

it follows that

x < cl (∪ω∈ΩBω) .

Define the sets

U1 = X − cl (∪ω∈ΩBω) and U2 = A− cl (∪ω∈ΩBω) .

Then clearly U1 ∈ τ, U2 ∈ I, and (U1 −U2)∩A = ∅. Since x ∈ U1 −U2 and U1 −U2 ∈ τ∗, it follows

that x < A∗. Thus, A∗ ⊆ A, and consequently, A is closed in the topological space (X, τ∗). This

completes the proof. �

Theorem 3.5. If an ideal topological space (X, τ,I) is b∗1-I-paracompact and A ⊆ X is b∗-I-closed in X,
then A is b∗1-I-paracompact.

Proof. LetA = {Aω : ω ∈ Ω} be a b∗-I-open cover of A. Since X −A is a b∗-I-open subset of X, the

collection

A1 = {Aω : ω ∈ Ω} ∪ {X −A}

forms a b∗-I-open cover of X. By assumption, A1 has a precise locally finite open refinement

B = {Bω : ω ∈ Ω} ∪ {V} such that for each ω ∈ Ω, Bω ⊆ Aω, and V ⊆ X −A, satisfying:

X − (∪ω∈ΩBω ∪V) ∈ I.

Observe that

A−∪ω∈ΩBω = A∩ (X −∪ω∈ΩBω)

= A∩ (X − (∪ω∈ΩBω ∪V))

⊆ X − (∪ω∈ΩBω ∪V) ,
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and hence A−∪ω∈ΩBω ∈ I. Since Bω ⊆ Aω for every ω ∈ Ω, it follows that {Bω : ω ∈ Ω} is a locally

finite open refinement ofA. Therefore, A is b∗1-I-paracompact. �

Theorem 3.6. Let A and B be subsets of an ideal topological space (X, τ,I). If A and B are b∗1-I-paracompact
in X, then A∪ B is b∗1-I-paracompact.

Proof. Let A = {Aω : ω ∈ Ω} be a b∗-I-open cover of A ∪ B. Then A also serves as a b∗-I-

open cover for both A and B individually. By assumption, there exist locally finite open families

B = {Bλ : λ ∈ Ω1} and C = {Cµ : µ ∈ Ω2} that refineA over A and B, respectively, such that:

A−∪λ∈Ω1Bλ ∈ I and B−∪µ∈Ω2Cµ ∈ I.

Let I1 = A−∪λ∈Ω1Bλ and I2 = B−∪µ∈Ω2Cµ, with I1, I2 ∈ I. Then we have:

A∪ B ⊆ (∪λ∈Ω1Bλ ∪ I1)∪
(
∪µ∈Ω2Cµ ∪ I2

)
=
(
∪λ∈Ω1Bλ)∪ (∪µ∈Ω2Cµ

)
∪ (I1 ∪ I2).

Hence, (A ∪ B) − (
(
∪λ∈Ω1Bλ)∪ (∪µ∈Ω2Cµ

)
) ∈ I. Since both B and C are locally finite, for each

x ∈ X, there exist b∗-I-open sets G1 and G2 such that G1 intersects only finitely many members

of B, and G2 intersects only finitely many members of C. Consequently, the intersection G1 ∩G2

meets only finitely many members of the collection {Bλ ∪ Cµ : λ ∈ Ω1,µ ∈ Ω2}. Thus, A ∪ B is

b∗1-I-paracompact. �

Theorem 3.7. Let A and B be subsets of an ideal topological space (X, τ,I). If A is b∗1-I-paracompact and
B is b∗-I-closed in X, then A∩ B is b∗1-I-paracompact.

Proof. LetA = {Aω : ω ∈ Ω1} be a b∗-I-open cover of A∩ B. Since X− B is a b∗-I-open subset of X,

the collection

A1 = {Aω : ω ∈ Ω1} ∪ {X − B}

is a b∗-I-open cover of A. As A is b∗1-I-paracompact, the cover A1 admits a locally finite open

refinement B = {Bλ : λ ∈ Ω2} ∪ {V}, such that for each λ ∈ Ω2, Bλ ⊆ Aω for some ω ∈ Ω1, and

V ⊆ X − B, with

A− (∪λ∈Ω2Bλ ∪V) ∈ I.

Now consider:

A∩ B−∪λ∈Ω2Bλ = A∩ B− (∪λ∈Ω2Bλ ∪V)

⊆ A− (∪λ∈Ω2Bλ ∪V) ,

and therefore, (A ∩ B) − ∪λ∈Ω2Bλ ∈ I. Since each Bλ ⊆ Aω for some ω ∈ Ω1, it follows that

{Bλ : λ ∈ Ω2} is a locally finite open refinement of the coverA. Thus, A∩B is b∗1-I-paracompact. �

Corollary 3.1. The finite union of b∗-I-closed sets of a b∗1-I-paracompact ideal topological space (X, τ,I)

is also b∗1-I-paracompact.
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Proof. According to Theorem 3.6, every b∗-I-closed subset of a b∗1-I-paracompact space (X, τ,I)

remains b∗1-I-paracompact. Furthermore, Theorem 3.7 ensures that the union of two b∗1-I-

paracompact subsets is also b∗1-I-paracompact. �

4. On Preservation of b∗-I-Paracompactness

This section shows that b∗-I-paracompactness is maintained under specific conditions. Before

continuing, we first introduce the following definition.

Definition 4.1. Let (X, τ,I) and (Y,ψ,J) be ideal topological spaces, and let f : X→ Y be a function.

(1) The function f is said to be b∗-I-open if the image of every b∗-I-open set in X is a b∗-J-open set in
Y.

(2) The function f is said to be b∗-I-closed if the image of every b∗-I-closed set in X is a b∗-J-closed
set in Y.

(3) The function f is said to be b∗-I-irresolute if the preimage of every b∗-J-open set in Y is a b∗-I-open
set in X.

Note that if f : X→ Y is a function and Y is a topological space equipped with an idealJ , then

the preimage f−1(J) defines an ideal on X. Moreover, if f is surjective and X carries an ideal I,

then the image f (I) constitutes an ideal on Y.

We now explore the behavior of a function between two ideal topological spaces, focusing on

how certain properties are preserved from one space to the other. As a foundation, we introduce the

concept of b∗-I-compactness and present a lemma that will be instrumental in proving Theorem 4.1.

Definition 4.2. An ideal topological space (X, τ,I) is called b∗-I-compact if every collection of b∗-I-open
sets that covers X has a finite subcollection that also covers X.

Lemma 4.1. Let (X, τ,I) and (Y,ψ,J) be ideal topological spaces, and f : X→ Y be surjective. Then, f
is b∗-I-closed if and only if for every y ∈ Y and for every b∗-I-open set U in X containing f−1({y}), there
exists a b∗-J-open set V containing y such that f−1(V) ⊆ U.

Proof. Let y ∈ Y, and suppose G1 is a b∗-I-open subset of X such that f−1({y}) ⊆ G1. Define the set

G2 = Y − f (X −G1). Then G2 is a b∗-J-open set in Y, and clearly y ∈ G2 with f−1(G2) ⊆ G1. This

proves the necessity.

Now consider a b∗-I-closed subset F ⊆ X, and let y ∈ Y − f (F). Then f−1({y}) ⊆ X − F. By

hypothesis, there exists a b∗-J-open set Vy ⊆ Y such that y ∈ Vy and f−1(Vy) ⊆ X − F, implying

Vy ⊆ Y − f (F). Thus,

Y − f (F) = ∪{Vy : y ∈ Y − f (F)}

is a union of b∗-J-open sets, and hence b∗-J-open. It follows that f (F) is b∗-J-closed in Y. �

Theorem 4.1. Let (X, τ,I) be a b∗-I-paracompact ideal topological space, and let (Y,ψ,J) be another
ideal topological space. Assume that a function f : X→ Y satisfies the following conditions:
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(1) f is continuous;
(2) f is b∗-I-open;
(3) f is b∗-I-closed;
(4) f is surjective;
(5) For each y ∈ Y, the preimage f−1({y}) is b∗-I-compact; and
(6) f (I) ⊆ J .

Then, Y is b∗-J-paracompact.

Proof. Let A = {Aω : ω ∈ Ω} be an open cover of Y. Using (1), we deduce that B = { f−1(Aω) :

ω ∈ Ω} forms an open cover of X. Since X is b∗-I-paracompact, the collection B has a precise

b∗-I-locally finite refinement C = {Bω : ω ∈ Ω}, where each Bω is b∗-I-open and

X −∪ω∈ΩBω ∈ I.

Since f is b∗-I-open, the family f (C) = { f (Bω) : ω ∈ Ω} consists of b∗-J-open sets and is a

refinement ofA. Moreover, by conditions (4) and (6), we have

Y −∪ω∈Ω f (Bω) ∈ J .

Next, we check that f (C) is b∗-J-locally finite. Let y ∈ Y. Since C is b∗-I-locally finite, for each

x ∈ f−1({y}), there exists a b∗-I-open set Gx containing x such that Gx intersects at most finitely

many elements of C. Because f−1({y}) is b∗-I-compact, and the family {Gx : f (x) = y} forms a

b∗-I-open cover of f−1({y}), there exists a finite subcover {Ky1 , Ky2 , ..., Kym} such that

f−1({y}) ⊆ Ky1 ∪Ky2 ∪ · · · ∪Kym ,

and Ky1 ∪Ky2 ∪ · · ·∪Kym intersects at most finitely many elements ofC. As f is b∗-I-closed, applying

Lemma 4.1, there exists a b∗-J-open set Wy containing y such that

f−1(Wy) ⊆ Ky1 ∪Ky2 ∪ · · · ∪Kym .

Thus, f−1(Wy) intersects at most finitely many elements of C, which implies that Wy intersects at

most finitely many elements of f (C). Therefore, f (C) is b∗-J-locally finite in Y. Consequently,

(Y,ψ,J) is b∗-J-paracompact. �

The following result provides characterizations of a function f : (X, τ,I) → (Y,ψ), where

(X, τ,I) is a b∗-I-paracompact ideal topological space and (Y,ψ) is a topological space, such that

Y inherits the same structural properties as X.

Theorem 4.2. Let (X, τ,I) be a b∗-I-paracompact ideal topological space, and let (Y,ψ) be a topological
space. Suppose a function f : X→ Y satisfies the following conditions:

(1) f is continuous;
(2) f is b∗-I-irresolute;
(3) f is b∗-I-open;
(4) f is surjective; and
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(5) For every b∗-I-locally finite familyV in X, the image f (V) is b∗- f (I)-locally finite in Y.

Then, (Y,ψ, f (I)) is a b∗- f (I)-paracompact ideal topological space.

Proof. As f is surjective, f (I) is an ideal in Y. LetA = {Aω : ω ∈ Ω} be an open cover of Y. From (1),

it follows that B = { f−1(Aω) : ω ∈ Ω} constitutes an open cover of X. Since X is b∗-I-paracompact,

the collection B has a precise b∗-I-locally finite b∗-I-open refinement C = {Bω : ω ∈ Ω} such that

X −∪ω∈ΩBω ∈ I.

Since

Y −∪ω∈Ω f (Bω) ⊆ f (X −∪ω∈ΩBω) ,

and f (X −∪ω∈ΩBω) ∈ f (I), it follows that

Y −∪ω∈Ω f (Bω) ∈ f (I).

Based on assumptions (3) and (5), f (C) = { f (Bω) : ω ∈ Ω} forms a b∗- f (I)-locally finite consisting

b∗- f (I)-open subsets in Y.

Now, we proceed to verify that f (C) refines A. For each f (Bω) ∈ f (C), we have Bω ∈ C, and

there exists Aω ∈ A such that Bω ⊆ f−1(Aω), as C refines B. This implies that

f (Bω) ⊆ f ( f−1(Aω)) ⊆ Aω.

Consequently, (Y,ψ, f (I)) is b∗- f (I)-paracompact. �

Based on Theorem 4.2, the conclusion remains valid if conditions (4) and (5) are replaced by the

assumption that the function f is bijective. This leads to the following corollary.

Corollary 4.1. Let (X, τ,I) be a b∗-I-paracompact ideal topological space, and let (Y,ψ) be a topological
space. If a function f : X → Y is bijective, continuous, b∗-I-irresolute, and b∗-I-open, then the space
(Y,ψ, f (I)) is b∗- f (I)-paracompact.

The next theorem provides criteria under which a mapping from a topological space X to a

b∗-J-paracompact ideal topological space Y guarantees that X inherits the b∗-J-paracompactness

property from Y.

Theorem 4.3. Let (X, τ) be a topological space, and let (Y,ψ,J) be a b∗-J-paracompact ideal topological
space. Assume a function f : X→ Y satisfies the following conditions:

(1) f is open;
(2) f is b∗- f−1(J)-irresolute; and
(3) f is a bijection.

Then, (X, τ, f−1(J)) is a b∗- f−1(J)-paracompact ideal topological space.
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Proof. LetA = {Aω : ω ∈ Ω} be a open cover of X. Since f is open, the collection f (A) = { f (Aω) :

ω ∈ Ω} is an open cover of Y. By hypothesis, f (A) has a precise b∗-J-locally finite b∗-J-open

refinement B = {Bω : ω ∈ Ω} such that

Y −∪ω∈ΩBω ∈ J .

This implies that Y −∪ω∈ΩBω = J for some J ∈ J , which means

f−1(Y) −∪ω∈Ω f−1(Bω) = f−1(Y) − f−1(∪ω∈ΩBω) = f−1(J).

Hence,

X −∪ω∈Ω f−1(Bω) ∈ f−1(J).

Let I = f−1(J). Since f is b∗-I-irresolute, the collection C = { f−1(Bω) : ω ∈ Ω} forms a b∗-I-

locally finite collection of b∗-I-open sets. For each f−1(Bω) ∈ C, since Bω ∈ B, there exists Aω ∈ A

such that Bω ⊆ f (Aω) as B refines f (A). Thus,

f−1(Bω) ⊆ f−1( f (Aω)) = Aω.

The refinement ofA byC is then asserted. Therefore, (X, τ,I) is shown to be b∗-I-paracompact. �

5. On Preservation of b∗1-I-Paracompactness

This section establishes that b∗1-I-paracompactness is preserved under certain conditions. We

begin with the following theorem, which characterizes functions from a b∗1-I-paracompact ideal

topological space (X, τ,I) to another ideal topological space (Y,ψ,J), under which the space Y
also inherits the b∗1-J-paracompactness property.

Theorem 5.1. Let (X, τ,I) be a b∗1-I-paracompact and ideal topological spaces and let (Y,ψ,J) be ideal
topological spaces. Suppose that f : X→ Y satisfies the following statements:

(1) f is open;
(2) f is b∗-I-irresolute;
(3) f is b∗-I-closed;
(4) f is a surjective function;
(5) f−1({y}) is b∗-I-compact for every y ∈ Y; and
(6) f (I) ⊆ J .

Then (Y,ψ,J) is b∗1-J-paracompact.

Proof. Let A = {Aω : ω ∈ Ω} be a b∗-I-open cover of Y. Since f is b∗-I-irresolute, the collection

B = { f−1(Aω) : ω ∈ Ω} forms a b∗-I-open cover of X. Given that X is b∗1-I-paracompact, there

exists a locally finite refinement C = {Cµ : µ ∈ Λ} of B such that

X −∪µ∈ΛCµ ∈ I.
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Since f is open, the collection f (C) = { f (Cµ) : µ ∈ Λ} forms an open refinement ofA. Moreover,

because X −∪µ∈ΛCµ ∈ I, it follows that

Y −∪µ∈Λ f (Cµ) ∈ J .

Next, we show that f (C) is locally finite. Let y ∈ Y. For each x ∈ f−1({y}), since C is locally finite,

there exists an open neighborhood Gx of x that intersects only finitely many members of C. The

collection {Gx : x ∈ f−1({y})} is an open cover of f−1({y}). As f−1({y}) is b∗-I-compact, there exists

a finite subcollection {Ky1 , Ky2 , . . . , Kym} such that

f−1({y}) ⊆ Ky1 ∪Ky2 ,∪ · · · ∪Kym ,

and Ky1 ∪Ky2 ,∪ · · · ∪Kym intersects only finitely many elements of C.

Now, since f is b∗-I-closed, by Lemma 4.1, there exists a b∗-J-open set Uy containing y such

that

f−1(Uy) ⊆ Ky1 ∪Ky2 ,∪ · · · ∪Kym .

This implies that f−1(Uy) intersects only finitely many members of C, and therefore Uy intersects

only finitely many members of f (C). Thus, the collection f (C) is locally finite in Y. We conclude

that (Y,ψ,J) is b∗1-J-paracompact. �

Let (X, τ) and (Y, σ) denote topological spaces. A function f : (X, τ) → (Y, σ) is called almost

closed [23] if for any regular closed set F in X, the image f (F) is closed in Y. A subset K of the

space X is defined as N-closed relative to X if every cover of K by regular open sets of X possesses

a finite subcover.

The following theorem and its corollaries provide characterizations of functions mapping from

a b∗1-I-paracompact ideal topological space (X, τ,I) into a topological space (Y,ψ), ensuring that

Y inherits the corresponding paracompactness property. The proof of the theorem requires the

following lemma.

Lemma 5.1. [22] Let (X, τ) and (Y, σ) be topological spaces and f : (X, τ) → (Y, σ) be almost closed
surjection with N-closed point inverse. If {Uα : α ∈ Λ} is a locally finite open cover of X, then { f (Uα) : α ∈

Λ} is a locally finite cover of Y.

Theorem 5.2. Let (X, τ,I) be a b∗1-I-paracompact ideal topological space and let (Y,ψ) be an ideal
topological space. Suppose that f : X→ Y satisfies the following statements:

(1) f is open;
(2) f is b∗-I-irresolute;
(3) f is almost closed; and
(4) f is a surjective function with N-closed point inverse.

Then (Y,ψ, f (I)) is b∗1- f (I)-paracompact.

Proof. Given that f : X→ Y is surjective, the image f (I) forms an ideal on Y. LetA = {Aω : ω ∈ Ω}

be a b∗1- f (I)-open cover of Y. As f is b∗-I-irresolute, the collection B = { f−1(Aω) : ω ∈ Ω} is a
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b∗-I-open cover of X. Since X is b∗1-I-paracompact, the cover B has a precise locally finite open

refinement B1 = {Cω : ω ∈ Ω} such that

X −∪ω∈ΩCω ∈ I.

It follows that

f (X −∪ω∈ΩCω) ∈ f (I).

Moreover, we have

Y −∪ω∈Ω f (Cω) ⊆ f (X −∪ω∈ΩCω) ,

which implies

Y −∪ω∈Ω f (Cω) ∈ f (I).

As f is open, almost closed, surjective, and has N-closed point inverses, and since B1 is locally

finite, it follows by Lemma 5.1 that the collection f (B1) = { f (Cω) : ω ∈ Ω} is locally finite in Y.

Next, we verify that f (B1) refines A. Let f (Cω) ∈ f (B1) for some ω ∈ Ω. Since B1 refines B,

there exists ω ∈ Ω such that Cω ⊆ f−1(Aω). Then,

f (Cω) ⊆ f ( f−1(Aω)) ⊆ Aω.

Therefore, (Y,ψ, f (I)) is b∗1- f (I)-paracompact. �

As any compact set is an N-closed set and any closed map is an almost closed map, by Theorem

5.2, we have the following corollaries.

Corollary 5.1. Let a function f : (X, τ,I) → (Y,ψ) be open, b∗-I-irresolute, closed, and surjective with
compact point inverse. If (X, τ,I) is b∗1-I-paracompact, then (Y,ψ, f (I)) is b∗1- f (I)-paracompact.

By observing the proof of Theorem 5.2, we will obtain the following corollary.

Corollary 5.2. Let a function f : (X, τ,I) → (Y,ψ) be open, b∗-I-irresolute, almost closed, surjective,
and f (V) is locally finite in Y for every locally finite V in X. If (X, τ,I) is b∗1-I-paracompact, then
(Y,ψ, f (I)) is b∗1- f (I)-paracompact.

The following theorem provides properties of a function that maps from a topological space X
to a b∗1-I-paracompact ideal topological space Y guarantees that X exhibits identical characteristics

to Y.

Lemma 5.2. [13] Let (X, τ) and (Y, σ) be topological spaces. If f : (X, τ) → (Y, σ) is a continuous
surjective function and {Uα : α ∈ Λ} is a locally finite in Y, then { f−1(Uα) : α ∈ Λ} is a locally finite in X.

Theorem 5.3. Let (X, τ) be a topological space and let (Y,ψ,J) be a b∗1-J-paracompact ideal topological
space. Suppose that f : X→ Y satisfies the following statements:

(1) f is continuous;
(2) f is b∗-I-open; and
(3) f is bijective.
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Then (X, τ, f−1(J)) is b∗1- f−1(J)-paracompact.

Proof. Let I = f−1(J). Consider a b∗-I-open cover A = {Aω : ω ∈ Ω} of X. Since f is b∗-I-open,

the collection f (A) = { f (Aω) : ω ∈ Ω} is a b∗-J-open cover of Y. By assumption, f (A) has a

precise locally finite open refinement B = {Bω : ω ∈ Ω} such that Y −∪ω∈ΩBω ∈ J . That is, there

exists J ∈ J such that Y = ∪ω∈ΩBω ∪ J.
Applying f−1 to both sides gives:

X = f−1(Y) = f−1 (∪ω∈ΩBω ∪ J) = ∪ω∈Ω f−1(Bω)∪ f−1(J).

Since f−1(J) ∈ I, it follows that X−∪ω∈Ω f−1(Bω) ∈ I. Therefore, C = { f−1(Bω) : ω ∈ Ω} is a locally

finite open refinement ofA, by Lemma 5.2.

Now we confirm that C refines A. Let f−1(Bω) ∈ C. Since Bω ∈ B and B refines f (A), there

exists f (Aω) ∈ f (A) such that Bω ⊆ f (Aω). Consequently, f−1(Bω) ⊆ f−1( f (Aω)) = Aω, because

Aω ∈ A. Hence, X is b∗1-I-paracompact. �

Conclusion

In this paper, we have introduced and systematically studied two new concepts in ideal topo-

logical spaces: b∗-I-paracompactness and b∗1-I-paracompactness. These notions extend classical

paracompactness through the framework of b∗-I-open sets and ideal-based refinements, offering

a more nuanced understanding of covering properties in topological spaces with ideals.

Our main contributions can be summarized as follows:

(1) We established the fundamental theory of b∗-I-open sets, proving their essential properties

including:

• Closure under arbitrary unions

• Relationships with classical open and closed sets

• Characterization through b∗-I-closure and interior operators

(2) We developed comprehensive characterizations of b∗-I-paracompact and b∗1-I-

paracompact spaces, including:

• Behavior under subspaces and finite unions

• Preservation under various types of continuous mappings

• Comparison with existing notions like β-paracompactness and I-paracompactness

The supporting examples demonstrate both the generality of our concepts and their dis-

tinctions from classical cases.

(3) We proved several preservation theorems, notably:

• Conditions for preservation under continuous, open, and closed mappings

• Stability under surjective functions with compact or N-closed point inverses

• Inheritance properties for unions and intersections

(4) The theoretical framework developed here has significant implications for:

• Extending the general theory of ideal topological spaces
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• Applications in digital topology and geometric modeling

• Developing new approaches to covering properties in generalized topological settings

The results presented in this work not only advance the theoretical understanding of para-

compactness in ideal topological spaces but also suggest several promising directions for future

research. Natural extensions of this work could investigate:

• Connections with other generalized separation axioms

• Applications in computational topology and geometric analysis

• Further refinements of the b∗-I-open concept

• Relationships with other ideal-based topological properties

Our findings provide a solid foundation for continued exploration of these generalized paracom-

pactness properties and their applications across various branches of topology and its applications.
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