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Abstract. Standard numerical methods such as the implicit and explicit Euler and the Runge-Kutta methods have
been used to approximate solutions of continuous-time transmission dynamics of many diseases. However, their
convergence is conditional. Also, they do not always preserve the key features of the continuous-time model. Most
times, they require a small time step which may increase the computational complexities especially for a long time
horizon. In this paper we construct a nonstandard finite difference (NSFD) method to approximate the solution of a
malaria propagation model. NSFD methods do not suffer from the drawback of time step restriction and preserve the
physics of the problem under consideration. However their accuracy and rate of convergence remain a point of concern.
In the construction of the NSFD scheme that we propose, we consider weights and denominator functions that depend
not only on the time step but also iteratively on the state variables of the discrete model. This guarantees a second order
convergence as opposed to earlier NSFD schemes which were independent of weights and their denominator functions
were solely dependent of the time step. Numerical experiments confirm that the proposed scheme outperforms the

first order NSFD in terms of accuracy and rate of convergence.

1. INTRODUCTION

Standard numerical schemes such as Euler and Runge-Kutta methods fail to provide meaningful
approximations of the solutions to continuous-time models for certain step sizes, leading to numer-
ical instabilities [4,18,19,23]. Numerical instabilities occur when a numerical method generates
chaos, oscillations, or inaccurate results. In 1980 Mickens proposed Nonstandard Finite Differ-
ence (NSFD) schemes to overcome those weaknesses often encountered when standard numerical
methods are used [14,20]. Nowadays, these methods have been applied to solve mathematical

models in real-world situations to describe different phenomena and processes [2,3,5, 8,13, 21].
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Unfortunately, most of these dynamically consistent NSFD techniques are only first-order accu-
rate [11,17,25]. Owing to this, researchers have focused on improving the accuracy of NSFD
schemes, leading to the proposal of higher-order NSFD techniques (see, for example [9,10,15,16]).

The noteworthy findings that center on the high-order NSFD scheme are mentioned below. In
recent works, second-order NSFD methods that preserve positivity and local asymptotic stability
have been developed in [10]. Moreover, the second-order NSFD technique developed in [12]
preserves the positivity, local asymptotic stability, and global asymptotic stability of a general
single-species model. Such methods are said to be dynamically consistent with the corresponding
differential equations; that is, the discrete scheme enjoys the same qualitative features as the
continuous model. Newly proposed NSFD schemes are not only convergent of order two but are
also dynamically consistent with the model under study [9,10,13]. This leads to advancements in
more accurate numerical solutions of the continuous models.

In this paper, we consider the nonlinear system of differential equations for malaria transmission
dynamics which was studied in [24]. In this compartmental model, the human population is
divided into susceptible humans (S), exposed humans (E;), infected humans (I;), and recovered
humans (Ry) and the vector population is divided into susceptible mosquitoes (S;,), exposed
mosquitoes (E,,), and infected mosquitoes ().

The following is the flow diagram for the model showing the malaria transmission dynamics.
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Ficure 1. Compartmental model of malaria transmission between humans and mosquitoes
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State variables and parameters for malaria transmission are given in the following tables.

TasLE 1. Description of state variables

Variable | Description

Su(t) | Number of susceptible humans at time ¢
) | Number of exposed humans at time ¢
Number of infectious humans at time ¢
Ry(t) | Number of recovered humans at time ¢
) | Number of susceptible mosquitoes at time ¢

E,(t) | Number of exposed mosquitoes at time ¢

I,(t) | Number of infectious mosquitoes at time ¢

TasLE 2. Description of model parameters

Parameter | Description
Ay Recruitment rate of susceptible humans
Am Recruitment rate of susceptible mosquitoes
b Mosquito biting rate
B Transmission probability from infectious mosquito to human
B Transmission probability from infectious human to mosquito
Un Natural death rate of humans
Um Natural death rate of mosquitoes
oy Disease-induced death rate of humans
Om Disease-induced death rate of mosquitoes
ay Progression rate from exposed to infectious in humans
Qm Progression rate from exposed to infectious in mosquitoes
r Recovery rate of humans
) Rate of loss of immunity in humans
v Saturation constant (antibody response) in humans
Vi Saturation constant (antibody response) in mosquitoes

The propagation of malaria is described by the following non-linear differential equations based

on the flow diagram in Figure 1:

dsgt(t) = M % HnSh(t) + wRy(t),
dE(t) bBuSH(t) I (t)

i Tro) et HE(),

dly,(t)

o anEy(t) = (r + wp + o) In(t),
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dRp(t)

S = () = (e )Ry, (L1)
S, (t) bBimSm ()11 (t)
i~ Mg S
dE.(t) bBmSm ()1 (f)
T T Troudyn @B,
dl’?ift) = amEm(t) = (pim + om)In(t),

with initial conditions:
Sh(()) = 50,/ Ih<0) =Io,, Eh<0) = Eo,, Rh(o) = R,

(1.2)
Sm(O) = SOm’ EW(O) = Eoml Im(O) = Iom’

The quantities A, and A, are birth rates of humans and mosquitoes respectively. The model
takes into account the latency period, after mosquito bites at a rate b, humans and mosquitoes move
from the class of susceptible to exposed with probability f, and 8, respectively. At the end of the
latency period, the exposed humans and mosquitoes move to the infected class at the rate oy, and
ay, respectively. The population is decreased by natural death in each compartment at a rate yy, for
humans, and p;, for mosquitoes. In addition to natural death, the infected mosquitoes and humans
are reduced by induced death at a rate 0, and o), respectively. The infected humans transfer to the
recovery class at the rate 7, and after some time individuals lose immunity and become susceptible

again at a rate w. Infected mosquitoes transmit the virus to susceptible humans at a ratio of
Ln(t)

1+ vpl (t)

released by infected mosquitoes is represented by v;, € [0,1]. Likewise, v, € [0, 1] represents the

. The pace at which humans generate antibodies in response to the clash of antigens

mosquitoes’ rate of antibody production against the antigens they come into touch with from
infectious humans.

To the best of our knowledge, the implementation of the high-order NSFD scheme to solve
malaria propagation models has never been attempted before. In this paper, our objective is to
construct a second-order NSFD method that preserves the qualitative properties of the continuous
model (1.1). To achieve this goal, we employ non-local approximations with weights and denom-
inator functions that are not only dependent on the step size. Indeed, we prove that the proposed
second-order NSFD scheme is stable and preserves the positivity and boundedness of the solu-
tions. Moreover, we establish that the equilibrium points and the basic reproduction number of
the discrete model coincide with those of the continuous-time model. Moreover, numerical experi-
ments exhibit the impact of weights and how they affect the accuracy of the method. Furthermore,
we establish numerically the condition for weights that minimizes errors.

The structure of the paper is as follows: in Section 2, we develop a second-order NSFD (2NSFD)
method, prove the positivity and boundedness of solutions, calculate the equilibrium points,
examine the stability, and prove the order of convergence. In Section 3, we perform numerical

simulations of the model. In Section 4, we provide some concluding remarks of our work.
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2. Tue SEconp OrRDER NSFD METHOD

In this section, after constructing the NSFD method, we discuss the qualitative properties of the
discrete solution as well as the stability and convergence of the method.

2.1. Construction of the method. We follow the ideas of [10,14] to construct a second-order NSFD
scheme for the continuous model (1.1). First, we consider the continuous model (1.1) on a finite
interval [0, T] and divide the interval by a uniform mesh such that

0=<t <. ..<NT<iN=T 2.1)

where At = t" — 1 fork = 1,2,3, ..., N is the step size. Let us denote (S’;l, E’Z, IZ, R’;l, Sk, EE, )T the
intended approximation of (S, (), E;(t5), I (t5), Ry (t5), S (£5), Epn (£5), L ()T, Using the theory

of NSFD methods(see for example [18,22]), we discretize the model (1.1) as follows:

Sk — sk by Sk
h - kh = Ay — —n 7 km - ‘uhSIZ—H + a)Ri + @15’,; - ®1S];l+1,
¢1(D, SEREIE) 1+ v,k
Ek+1 _ Ek b hSka
h h = P h® (ap + yh)EI;Z+1 + (DzElz - <D2E;{Z+1/
G2(AL, SEER VY 14l
Ik+1 —Ik
h h k k—+1 k k+1
_— = ahEh—(r+yh+ah)Ih +q)3lh—q)3lh ,
¢3(At, EF, IF)
Rk+1 _ Rk
h h gk k+1 k_ k+1 2.2)
— L — T — (uy 4+ @) R DyRE — DR, (
h h h h
P4(AL IF, RY)
Sk+1 _ Sk bﬁmSk+11k
) (mAt sk n;") = A +Z Ikh ~ Sy o @Sy = @Sy,
5 s ms oy m h
EkH k. DB Sk IE
= — (vm + ) E5 4 DGEE, — DELT,
Do(BL Ty B 1) 1ot (T ) En o PeF — BBy
Ifnﬂ B Ilr(n k k+1 k k+1
gt By ) ™ (oot 7l = Bl
s ~=mrstm
where ¢;(At, SF, Ef, If, Ry, Sk ES, I8) = At+ O(A#) as At — 0 (i = 1,2,3,4,5,6,7) is the nonstan-

dard denominator function and ®; (i = 1,2,3,4,5,6,7) is a real number that plays the role of
weight. Nonstandard discretization of the right-hand side of (2.2) uses ®; € R as weights in the
discretization of the zero function. For example, 0 can be discretized as S, — S, = &4 Sz - <I>1SZ+1.
In scheme (2.2), one notices that if the denominator function ¢; depends only on the step size At,
and ®; = 0, then NSFD method (2.2) reduces to the first-order NSFD scheme:

SIIEH B 5'12 bﬁhszﬂlﬁf k+1 k

Lt = A — 2 -y SE 4 R,
(P(At) 1+ Z)hlm

E;N'-E bBSHE,

q[)(At) 1+Uhli{,1 ( h [‘lh) h
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Ik+1_1]];

S~ wE el
Rk+1_Rk

h h

Sitosh o _ WS
0 I T e
EkH _EK BB Sk I (i + ) EEFL
—_— — —  —(x ,
P(At) 1+o,lk " Hm) S
It - I, k k+1
ECER

In the NSFD scheme (2.2), the denominator function ¢; depends iteratively on the solution.

2.2. Qualitative properties of the discrete solution. We prove the positivity and boundedness of

the solutions and calculate the equilibrium points.

Positivity of solutions

Theorem 2.1. Let ®; € R, satisfy ®; > 0. Then for all values of the step size At, S¥, EX, I, Rk, Sk | EK [ TK >0

s h/ h/ h/ h/
for all values of k > 0 when
0 £0 10 RO cO 0 10
S B L Ry Sy Ey Ly 2 0.

Hence, positivity of the model (1.1) is upheld for all finite step sizes by the scheme (2.2).

Proof. For simplicity, we omit arguments of the denominator functions ¢1, 2, $3, P4, Ps5, Ps, P7.

We rewrite the scheme (2.2) in the explicit form

(SE+ 1) (A + RE + ®186)) (14 v, )

Sk+1 _ ,
h 1+ ouly, + Q1(bBully,) + P (un + P1) (1 + vy,
e _ B0 + 0o (BBiSIE, + P2EL(1+0u))
h 1+ oIl + d2(1 4 oply,) [ + i + P2
[ — I§ + 3 (ayE}y + @sl})
" 1+ @3((r + up + op) + P3)
k Kk (7k K
pirt Ryt alAL T Ry, + PaRy) (2.4)
h 1+ Pa(AL 5, RE) (uy + @ + D4)
g (S, + 5 (Am + 5SE)) (1 + 0lk)
" 1+ 0l + 5 (bBlk + (1+ 0wl¥) (i + P5))”
ERH (1+ 0nlf) (EL,) + @6 (bBmSkIF + (1 + vlf ) DGEL,)
1

1+ 0l + P6(1 4 0nlf ) (@m + tim + Do)



Int. J. Anal. Appl. (2025), 23:231 7

ei1 D+ or(anEy, + ®7I5)

h 14 ¢7(pm + om+ ®7)

Since all parameters in the system (2.4) are positive, it is clear that if

k pk 1k pk ck rk 1k
Sy Ex I, Ry, Sk Eny Iy = 0
then
k+1 pk+1 7k+1 pk+1 ck+1 pk+1 gk+1
S ETL I, R, SEFL L L 2 0

holds unconditionally for all state variables. This concludes the proof.

Boundedness of solutions

Theorem 2.2. The solution (S';l, EI}‘[,I’Z,R’};, Sk Ex, I%) € R, of the scheme (2.2) is bounded.

Proof. Let us suppose that V’ﬁ = SZ + E’;l + Ilﬁ + RZ and VK = Sk + EK, +I¥, then from (2.2) we

have
VR _ K
B = Ay VET = oIf 4 @V - @y VA,
¢1(At, Ih)
(2.5)
v - vk k1 ok k k1
—— = Ay = UV, —ol O,V — PV T,
Ga(ArT,) T T OS2 =S
From (2.5), we have
e _ VE(1+ ¢191) D1 B pro41}
" T+d1(pn+®1)  1+P1(un+P1) 1+ ¢r(pn+P1) 2.6)
1 _ V(14 ¢a®2) P2 Am _ ¢101},
C 1+ Gt P2) L+ o+ P2) 1+ P1(pm + P2)
From the first equation of (2.6), we have
v Vil + o) Py
BTl (1) 1+ Gr(pn + P1)
1@ [+ ae)ViT 1A 1A
1+ P1(pn+ 1) [T+ Pi(un+P1) T+ +P1) | 1+ Qr(pn+ 1)
B [ 1+ ¢ ]2 . 1A [ Ltodr 1]
T+or(un+®) | " 1+ @u(un+®1) [T+ d1(un + 1) 2.7)

IA

Lt |77 P14An k[ 1+ 1P ]j
S[1+<P1(Hh+q’1)] Vh+1+¢1(yh+q>1)z‘ 14 ¢1(up + 1)

k+1 - (—”4’1‘1’1 )kH
_ [ 1+ 1Py Vo D1y 1+¢1(pn+1)
a )

14 1 (un + P1 BT+ (g + D) 1_1;;5)—;%1)

j=0
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Ask — oo,

lim Vf < A, (2.8)
k—o0 Un

Am

In the same way, for the second equation of (2.6) we have V¥, — L as k — oo. This completes the

m

proof.

Equilibrium points

The disease-free equilibrium [6] of the continuous model (1.1) is given by

A A
EO = (_h/ 0/ 0/ 0/ _m/ 0/ 0)/ (2.9)
Un

m

and the unique Endemic Equilibrium E* exists if and only if Ry > 1 where

Ro = \/ D00 B Ao Pon A , (2.10)
tn(an =+ ) (v + o =+ i) thn (Om + i) (@ + pim)
with
E' = (S}, E LRy, Sy B T, (2.11)
and
_ Ap+ wR} e (r+0n + pn) Iy & T
iy " a O it e’
Sn = bﬁmlg\m - B=g +vbf$izlh+ y = a"f’?i ‘
Ty + Hm i)\ T Hon 7T Om

Now we need to show that the equilibrium points of the discrete model (2.2) are the same as

those of the continuous model. To find the steady-state solutions of the NSFD scheme (2.2), we set
k+1 _ ck pk+1 _ pk qk+1 _ 7k pk+1 _ pk ck+1 _ ck pk+1 _ rk k+1 _ 1k

Sh = Sh, Eh = Eh' Ih = Ih, Rh = Rh' Sy =S, E, " =E,,and [,;/" = I},. The Scheme (2.2)

becomes

bBySKIL, bp,SkIE,
- — I Sf+wRE =0, — 2 — (a4 up)EF =0,
- LnSy, " T ol (an + un)E,
ahElﬁ - (1’ + up + Gh)I}; =0, ﬂlﬁ - (/flh + a))R];l =0, o)
bBu Sk Ik bBn Sk Ik '
= SE =0, — (@ + ), = 0,

From (2.12), it is easy to notice that the set of equilibria of (1.1) and (2.2) are identical.
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2.3. Stability of the scheme. To determine the stability of the scheme (2.2), we can rewrite the
scheme (2.4) in another form. The first equation in the scheme (2.4) can take the form

bByS, L b Sy
gt S+ 1 (Ah +wRy = THIE — iy Sf+ 1SE+ T + yhs’,;)
heoT bt '
1+¢1(1f}7m+uh+®1)
By rearranging and factoring out Sk, we have
k b, I, x  bBuSKIY, k
i 5 [1 + ¢ (1+vh1§1 + thn + q)l)] + 1 (Ah + @R}, = 1+v:1£; = HnS),
h o bB. Ik 4
1+¢1(1fﬁ+yh+®1)
which reduces to
fi(SERE 1)
SZ-i—l — Si(l + (Pl h h b;nlk , (213)
1+ ¢1(At, SF,RE, I (1 o Tt q>1)
where
SyREI) = A P15} I Sk + wRk 2.14
JRETEY = Apy— ——— — + wRE, .
fl( D m) h 1+Uh117<n Hnoy, h ( )
By applying the same reasoning to the remaining equations of the scheme (2.4), we obtain
k pk 1k
EF1 = 5 4 g f2(Sy, Ejy In)
h h 1+ ¢a(At, SEES 16 ) (ay + iy + @2)
k Tk
s f(E 1)
L " 1+ Pa(At,EX ) (r + pp + 0y + P3)
k Rk
R RE 4 fu(I}, R})
h h 1+ (AL 16, RE) (1 + @ + @4)
(2.15)
f5(Sho Iy
k k h
Skl = Sk + s T p
1+ ¢)5(At1 Smrh)(ﬁ + Hm + q>5)
k gk 1k
EF1 = EE 4 o fol5m Ew )
" " T 4 (At Sk B IE) (an + i + D)
fr(E5 I}

Ik+1 :Ik + ” ,
h it 1+ @7 (A EX, I (i + o + ©7)

where
bB1Sy I
Sk, Ef, I — 2 — (o + ),
fo( w by m) 1_‘_0}1151 (ap + ) h
HELE) = aEf = (r+ wy + op)I,

fully R) = 7l = (i + )Ry,
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bBmSh I
k 1k _ k
f5(Sy Iy) = valk — WSy, (2.16)
bBmSh I
k ¢k 1k _ k
fG(SmIEmth) = 1+UmI£ (am“‘!lm)Em
fr(EgIy) = amEy = (tim + o)1},

Theorem 2.3. The NSFD scheme (2.2) is elementary st

able.

Proof. Assuming that Ej is the equilibrium point of (2.2), then from (2.15), the Jacobian matrix of

(2.2) evaluated at Ejj is

Ay 0 0 Ay 0 0 Ayl
A Apm 0 0 0 0 Ay
0 Ap Az 0 0 0 0
JP(E))={0 0 Ag Ay 0 0 0], (2.17)
0 0 As3 0 Ass O 0
0 0 A63 0 A65 A66 0
(0 0 0 0 0 Ap Ay
where
IR (SERNIEY A (SREDL) s
(Plla%(Eg) (Pl 1 ,;leh (EO)
An=1+ 0 , A= 0 ,
1+¢1(1+Z?’f +yh—|—CI>1) 1+¢1(1+Z?’f +yh—|—CI>1)
9 Sk,Rk,Ikm . afZ(SkrE 1151) *
o L () o2 (Ey)
Ay = ; , 1‘\21:1+¢(0(+ D)
1+ (28 4y + @) 2T
2f2(SENIN) /e dfa(SKENIK)
e . T E)
n=1+ , 27 = - ,
1+ oy + pp + D2) 1+ do(an + pn + P2) (2.18)
If(EpLY) s IfBELL) e
3= (E5) a5 (Ep)
A — ’ A =
32 1+¢3(1’—|—yh—|—0h—|—q}3) 3 1+¢3(7’+[Jh+0h+q>3)
Ifa(IERE) f(LRY)
D1 (Ey) s (Ep)
Aus — : ) Ay =1+ ,
B 1+ G+ @ + @) “ 1+ da(un + @ + @)
af (Slffn Ik,) * Slr(n Ik *
(PS 5(9[k . (Eo) ¢)5f5(ask h) (Eo)
Asz = . , Ass =1+ . ,
1+¢5(1+;]’h]k+ym+q>5) 1+¢5(1+hh]k+[um+®5)
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fo(SEERIE) sk, X Ik
¢6Th(Eo) ¢6%(E*)
Aez = , Aes = ,
14 ¢e(m + pm + Peo) 1+qb6(am+ym+d>6)
folSE BRI
o (Ey) gy o) ()
Ao =1+ , Az = ,
1+q>6(am+pm+<b6) 14 ¢7(pm + om + D7)
o7 2o ()
A7z =1+

1+ ¢7([Jm +om+ CI)7) .
Now we have to find partial derivatives of the system (2.16) with respect to each state variable as

follows
Nl Ryle) Wil RGN
osk 1ol TV ORK ’
2f1(Sy, RE, I}, _ (bBuSE I, o — (1 + vulh,) (bB1SE)
oIk, (1 + v,I%,)2 ’
of2(Sk, EX, 1) bl of2(Sk, EX, I}
= , = —(an + un),
ask 1+ Uhlﬁ1 8E];l
Ifa(S} Ep L) (1+0uly) (bB1SE) — (0PuSyLy)vn)
oIk, B (14 v,lk,)2 '
Ifs(Ey, Ij) Ifs(Ep ) Ifall}, RE)
- 7 - + + 7 =T, .
OEF - e (r -t +0n) e ' (2.19)
(I}, RY) : ) Ifs(Ski 1) (bBmIiSE ) om — (1 + vml}) (bBwSyy,)
— ‘uh _|_ ) , = ’
~ORE oIy (14 vnlf)?
Ofs(Sy, Iy) _ bBuly —y dfe(Sk, E5, IF) — (et i)
Jsk, 1+o,k " JE, nenn
afé(sk E’,;, II;;) _ (bﬁmS’,‘n)(l + vm[’;ﬁ) - (b,BmIZS’,‘n)vm
oIk (1 +vnlf)? '
Ife(Sh En 1Y) bBmly If(EX, 1) of7(Ef, 1)
k - Kk’ K = _(Hm+(7m)/ Eer—— = Q.
ask, 14 vl oIk ask,

Moving forward, we analyze the stability of the scheme (2.2) at the disease-free equilibrium (DFE),
Eg = (A" 0,0,0, 2= 0, O) The entries of the Jacobian matrix (2.17) are:

! tim
b1(At, 52,0,0) ¢1(At, 3£,0,0)0
A =1- A =
1+¢1(At Ay 00)(yh+CI>1) 1+¢1(At A 00)(yh+CI>1)
b A
| @(At,%,o,m% o ¢2(At £,0,0) (c + i)
17 - - 2 22 pu— _—
1+ 1 (At, 52,0,0) (, + ©1) 14 g2(At, 22,0, 0)(ay + pp + P2)

(2.20)
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Ay bBLA
) (AL, 5,0,0) L M $3(A10,0)a,
27 - Y] 32 = ,
1+ ¢2(At, 5 21,0,0) (o, + up + P2) 1+ ¢3(At,0,0)(r + pp, + o + P3)
hn = 1 — ¢3(At,0,0)(r+ i+ op) A P4 (AtL,0,0)r
33 1+¢3(At,0,0)(1’+#h+Gh+q>3), 8 1+¢4(At,0,0)(yh+a)+cp4)’
b mAm
1 Pa(AL,0,0)(u, + ) A ¢5(At,0, M)ﬁ#—m
44 — - , 53 =
1+ ¢4(At,0,0)(pn + @ + Py) 1+ s(At0,2 )(ym+<1>5)
s(B,0, 52 i d6(At, 0, Am ,0) L
Ass =1— Agz = ,
1+ ¢s(At, 0 )(ym—|—©5) 1+ ¢e(At,0, W,o)(am+ym+q>6)
A Ps(AL,0, ﬁ”bO)(ym + ) A ¢7(At,0,0)ay,
66 — 1 — 76 — s
1+ ¢6(At, 0,3 An 2,0) (Qm + pm + )’ 14 ¢7(At,0,0)(pm + om + D7)
At,0,0
Ay =1— ¢7( )(#m+‘7m)

1+ ¢7(At, 0, 0) (Hm +o, + @7) '
It is clear that all the eigenvalues of the Jacobian matrix (2.17) satisfy |J” (Ej) — All < 1. This shows
that the DFE is locally asymptotically stable. This completes the proof.

Corollary 2.1. If ;,i = 1,...,7, are real numbers satisfying

O e 1) e P (2 e )
2 2 2 2 (221)
¢52$, q,GZM, q,ﬂw,

then the equilibrium point Ej, of (2.2) is locally asymptotically stable.
Proof. See [12], Theorem 2.1.

Computation of the basic reproduction number (R)

We compute the basic reproduction number for the NSFD scheme (2.2) using the next-generation
matrix technique [1]. After reordering the equations of the scheme (2.2), the Jacobian matrix
evaluated at the DFE is

Ay 0 0 Ay
0 Ag¢ Aez 0
Az 0 Az O
M=|0 A 0 A»n O
0 0 0 Ay A O
0 0 As3 O 0 Ass O
0 0 Agi O 0 0 Ay

Where entries of the matrix (2. 22) are defined in (2.20). This matrix has the form

oS O O
o O O O

(2.22)

S O O O O
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F+T 0
| (2.23)
A C
where
00 0 Ay An 0 0 0
00 A 0 0 A 0 0
r— 63 T= 66 (2.24)
00 0 ©0 Az 0 Az 0
00 O 0 0 A 0 Ay

The matrices F and T are non-negative and irreducible. We now compute the basic reproduction

number Ry,. The inverse of (I - T), where I is the identity matrix, is

1
Ay 0 0 0
0 = 0 0
a-n"'=|  a 066 1, (2.25)
(1—A22) (1—A33) 1-As3
(1-Ags) (1-Az7) 1-Az7
So,
Ax7Aze Ay
0 (Aéé)(l_A77) O 1_A77
AgszAzp 0 Ass 0
F(I-T) ! = | (1-42)(1-4%) 1-Ass (2.26)
0 0 0 0
0 0 0 0

The nonzero eigenvalues of F(I-T)™! are

1= AesAznAxrAze Ay = AeA27
’ (1-A2)(1-As)(1-Ae) (1= A7)’ (1-As)(1-Azy)

By simplifying arguments inside A;, we find it depends on the step size, and this can be proven

numerically that for any given step size, A; is always smaller than A,. From (2.20), the numerator

of A, is
¢2¢3¢6¢7hﬁz%ahbﬁz%am
[1+ 6 (m + pim + P6)|[1 + p3(r 4 un + o5 + @3)][1 + P2y + pn + P3)][1 + 7 (i + o + 7))

(2.27)

and the denominator is

P2p3pep7(n + un) (r + i + on) (tm + @) (tom + o)

14+ d6(am + pim + Do) [1 + P3(r + iy + oy + P3)][1 + P2y + pp + ©3)][1 + P (pm + om + ?;72)5]3;
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By dividing the numerator and the denominator, we have

b2 B AnttmPmAm

Ay = = RD. 2.29
\/#h(ah+#h)(7+0h+#h)um(0m+Hm)(am+ym) 0 @29

We note that Ry = ROD , which means that the NSFD (2.2) preserves the basic reproduction number

of the continuous model.

2.4. Convergence of the NSFD scheme. By employing the technique in [14], we now show that
the NSFD scheme (2.2) is convergent of order 2.

Theorem 2.4. The NSFD scheme (2.2) is accurate of order 2 with global error O(At?) for all
(S, EX, If, Ry, Sk, Ex,, 1Y) € R and f; #0, fori =1,2,3,4,5,6,7 given in (2.14 and 2.16).

Proof. For the solution components (Sy(t), Ej,(t), I, (t), Ry (t), Sm(t), En (), I (t)), using Taylor series
expansion in the neighborhood of t = tX, we have the following;

At?
Sp(t) = Sp(t + At) = S, () + AtS (1) + TS,’{(t") +0(AP),

AF?

En (1) = Eu(t* + At) = B, (1) + AtE () + TE;l'(t") +0(AP),

4 Atz 124
L(FT) = L(tF + At) = L,(#%) + At () + -1 () + 0(Ar),
2
Rp(#41) = Ry(t* + At) = Ry () + ARy (£) + %R;;(tk) +0(AP), 230
At? '
S (1Y) = Sy (4 At) = S, (H) + AtS, (1) + TS;,;(tk) +0(at%),

At
En(t) = E (8 4+ At) = E, () + AtEL (1) + T19;,;(#‘) +0(A8),

At?
Lu(FFD) = Lo (£ + At) = L, (%) + At () + 71,;;(#‘) +0(AB).

By making use of (2.14) and (2.16) and letting g1(At, S}, R}, I%), g2(At, SK,Ef, 1Y), g3(At,Ef, IF),

g4(At, IZ'RI;)’ g5(At, Sk, Iﬁ), g6(At, Sk, E’fn,llfl), g7(At, EX, I¢ ) to be the right-hand side of the system
(2.13) and (2.15). From (2.13), it is easy to notice that

g1(0,S;, R} IE) = SF (2.31)

Furthermore, by considering the first derivative of (2.13), we have

bﬁllﬁz dp ) bB Ifn
8g1(At,5],;,RZ/II;§z) [1+¢1(1+;h11;'l +Mh+q>l)j| Q_Ai‘fl _(Plfla_Ai(l-‘rZhIfn +‘Uh+q)1) (2 32)

JAt 2
[1 +¢1 (—bﬁhlﬁl + un + q)l)]

1+U;,I§,
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d
Remark 2.1. Since ¢(At) = At + O(At?), then 8_2‘ =1+ O(At). By neglecting the higher orders of
ald 9P
AL then we have TV 1.

By the Remark 2.1, the equation (2.32) reduces to

91(0, S5, Ry, It

dNAt

Moreover, by taking the second derivative of equation (2.32), we have

= f1(SE,RE, 1Y) (2.33)

2 op1\? ( bpyIE,

1+o,IE,
= , 2.34
IN? D* (2.34)
bBulY, . .
where D =1+ ¢ Tt ok + up + P1|. Using Remark 2.1, the equation (2.34) reduces to
Unly
k pk 7k
78100, 5y, Ry ) _[Zdr 22 i +wp + @1 )| fi (2.35)
A2 AR 14 v,l5, e '

From the first equation of (2.15), we obtain the following by considering the first and second
derivatives:

(0, S}, Ef IN) = Ej,

dg2(0, Sk, EX, IK)

7 h/ hl m k k k
IAt = (S By L) (2.36)
9%82(0, Sk, EX 1K) [92¢h,
= -2 ) .
IR a2t @) fo

From the second equation of (2.15), we obtain the following by considering the first and second
derivatives:

(0, E5, IF) = I,

9g3(0, EX, IF)

7 h/ k k
oar - BED), (2.37)
Pgs(0,EfI}) [P

AL ey —2(T—|—Hh—|—(7h+q>3) f3.

From the third equation of (2.15), we obtain the following by considering the first and second
derivatives:

84(0,I}, RF) = R,

94(0, I, RY)

— k pk
—anr = Sl Ry), (2.38)
9%84(0, I, RF) _ 2,
N IAL?

—2(up+w+ D4)| fa
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From the fourth equation of (2.15), we obtain the following by considering the first and second
derivatives:
g5(0/ Sﬁwlg) = Sﬁﬂ

8g5(0, Sk ,Ik)

aAtm == (S ), (2.39)
9%85(0, S5, IF)  [52¢s bBmlf

AT = [ Af 2 (1 Foull + Um + %]] fs.

From the fifth equation of (2.15), we obtain the following by considering the first and second
derivatives:
86(0, S5, EX IF) = E,

ms iy

k tk 7k
986 (0, Sk, EX,, IF) _ st B

IAL = J6\Oms Epr i) (2.40)
9g6(0, Sk, EX, IF) 1924

ar = aA¢;2_2(“m+“m+®6) Jo

From the sixth equation, we obtain the following by considering the first and second derivatives:

g7(0, 5, I,) = I,

dg7(0,EL, 1)
d%¢7(0,EK, IF) *py
8 aAtzm m/_ [aAin —Z(ym—i—am—}—@ﬂ]f%

Combining (2.31) through to (2.41) with Taylor theorem, we have the following;:

AP [ bl
s’,;+1:s’,;+Atf1+—[ (Pl—z( P +#h+®1)]f1+O(NB)r

2 | dAF? 1 —|—Uh1£1
A2 [PPa
By =Byt Ath+ = [aA(iz' =2 (e + i+ P2) | o+ O(AF),
A2 [Pos
k1 _ gk 3
I = [+ Aty + > [(Mtz —2(r+up+o,+03)| 5+ O(AP),
A2 [ 9?
Ry =Ry + Atfy + —— aTqi; =2+ @+ <I>4)]f4 +0(AF), (2.42)
AR [ bk
Sk+1 — Sk At - _2 h @ O At?) ’
m m+ f5+ 2 _aAtZ 1+Umlll§+tum+ 5 f5+ ( )
INA L0
it = B+ tf+ 5| 250 -2 (i + @0)| i+ O(P),
N
= bt 282200 Ol

Hence, from (2.30) and (2.42), we have the local truncation error given by
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SiTl =5, (#1) = O(AP), EFT —Ey (1) = 0(AP),
I -, (1) = O(AF),  RiFT =Ry (#11) = 0(AP), o1
SEH —Su(fH) = O(AFP),  EET —En (1) = 0(AFP), '
I — L, () = O(AP).
By examining the largest possible error for all time steps, we have the global error given by
k+1 _ o (fk+1Y] 2 k+1 _ p (1| — 2
Orggﬁsh Su(t )| O(At), Org(ngEh Ej(t )| O(At),
max |Iz+1 ~ L] = o(aP), max |R;‘ZJrl — Ry ()| = O(ar?),
o T (2.44)
k+1 _ k+14] 2 k+1 _ k+14] 2
022)1§1|5m S (¢ )| O(At), Orgi)iJEm E(t )' O(At),
k+1 _ 7 (k1] 2
max |Im L (t )| O(AF).
This completes the proof.
Remark 2.2. It is important to note that ¢;, fori = 1,--- ,7 satisfy (2.46) for
(Sk,EK,I¥,RE Sk EF,I%) € R, and f; # 0 given in (2.14) and (2.16).
P ¢1(0,55, R IF) bByIk d J J
h2 i = pl(Sl}(llR]}(l’Ifn)Iz( ‘Bh mk +yh+®1 —|—l}(+i;f_4+i;f_‘7’
It 1+ ol ds; IR} fr  dIf fi
*¢2(0, Sy, EX, I, ) dfr I i dfa f7
= po(SLEE ) =2 (o + pp+ @2) + = + =+ =,
OAL2 pZ( h ~h M) ( hT Ui 2) aE];l 95’;1 f2 91,7; f2
3*¢3(0, EZ/ Il;i) dfs  dfs fr
———" " = pa(EN I =2 @3) + = + ===,
IAP pa(Ej 1) = 2 (r g+ on + 3)+al,§+aE’,;f3
Papa(0, T4, RY) o fif
"W k ok 4 4/3
- I¥, RFy =2 ) —_ = 2.45
IAL Pl Ry) =2 (pp + @+ 4)+aR,ﬁ 7 (2.45)
2ds(0, Sk, IF) bBmlk d d
¢—2mh — pS(Skmllz):z mhk+[-lm+q)5 _{_Li_{_i}“:’jé,
It 1+ olf asy,  IIf f5
e (0, Sk, E,, IF) ofe e fs e f
— sk Ek Ky =2 d 2k L2l )5 TIe)3
TN oS B 1) =2 (G i +@6) 50+ S0t ot 0
Pep7 (0, Ep 1) 7 . 9f7 fe
— Ef,IE) =2 P _— 4 =
The function ¢; can be selected using the techniques in [14,18] such that:
1—e Pidt .
=, ifp;#0
Gi(At,pr) =1 P ’ (2.46)
At, if p; =0,

The denominator function (2.46) also satisfies the following properties: ¢;(At, p;) = At2 + O(At®)

as At — 0 and ¢;(At, p;) > 0 for all At > 0, p; > 0[10].
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Corollary 2.2. Since weight ensures stability and convergence of the scheme, therefore, choice of
weight is determined by the stability of the method. By letting (S%,E), I}, R), S5, 7, I,)T to be
the initial solutions of the scheme (2.2) with right-hand side f;,i = 1,...,7, and assuming that the

second argument of the step by step update function is subject to the Lipschitz condition, then we

have:
|[£:(X) = £:(Y)|| < LPIX = YII, for all {X,Y} € R”, (2.47)
— (ck ¢k 7k k ¢k k 1k \T — (ck Ek 7k Rk ck k 1k \T
where X = (S Ef ¥ ,RE Sk E I YTand Y = (Sk,EF,IF Rk Sk EX 1% )T. The NSFD

(2.15) step by step update in the scheme provides f; such that:

f1(S) R
k ok 7k [ _DBulh
1+¢1(At,Sh,Rh,Im) m—o—yh+®1
i m
fZ(SIZ'EIZrlﬁz)
T+ (ALS) Ef I ) (i +P2)
f3(EEIF)
13 (ALERIF) (r+ 40, +P3)
! 1+¢4(At,lﬁ,R;‘)(yh+w+¢4) :
f5(h 1)
bpm Ik
k 1k h
1+¢5(At’s"”lh)(1+vmlz
oSk Ex L)
1+(P6 (AtlsntElr(n/IZ) (am+,um +CI>6)
f7(E]r(n/I]r(n)
l+¢7(AtrEern/I£1)(y”1+am+q>7) ’

+Hm+(1>5)

By obtaining the partial derivatives of (2.48) and substituting DFE, we have the following Jacobian

matrix:

20 0 & o0 o0 &
0 % 0 0 0 0 %
0 £ % 0 0 0 0
Js={0 0 S gL 0 0 0 (2.49)
0 0 % 0 £ 0 0
0 0 % 0 0 F o0
0 0 0 0 0 £ &

entries in the Jacobian matrix (2.49) are in the system (2.19). One can notice that from the Jacobian
matrix (2.49) all eigenvalues are negative. This shows that all perturbations around the DFE decay
exponentially over time. Moving forward, to obtain the Lipschitz constant LP, we calculate the

maximum row sum of the Jacobian matrix (2.49) which is given by

7
|]ij|} (2.50)
—1

D
LY = ”]fi”max row sum — max(

]
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Remark 2.3. The Lipschitz constant determines the convergence and stability properties. A smaller

Lipschitz constant shows that the scheme converges close to the true solution.

3. NUMERICAL SIMULATIONS

This section showcases the advantages of the second-order NSFD (2NSFD) method and
provides numerical evidence to back-up the theoretical assertions from the preceding section.
We use the data and parameter values provided in Table 3 below (see [23]). By using parameter
values in the Table 3 and substituting them into the Jacobian matrix (2.49), the maximum row
sum (2.50) is LP = 0.39. In our simulations, we use the denominator function given by (2.46) and
t € [0,300]. As for the weight, we choose ®; = 0 fori = 1,...,7 from Theorem 2.3 since it satisfies
both positivity and stability of the NSFD scheme (2.2).

TasLE 3. Value of parameters for numerical results

S,(0) =700 | E,(0) =400 | I,(0) =250 | R,(0) = 100
Sw(0) =90 | E,(0) =40 | I,(0) =20
Ay=017 | Ap=17 B, =0.1 B =03
iy = 0.0001 | gy = 0.010 | 0, = 0.2x107* | g, = 0.05
ap =02 | ay=033 r=0012 | @=0.0011
=05 | v, =001 b =001

SoeEsme
53552'>

CowEsme
3335555
Number of Mosquitoes

.

50

0
0 50 100

150 150
Time(Days) Time (Days)

Ficure 2. Solution profiles generated by first-order NSFD (2.3) (left) and second-
order NSFD (2.2)(right) schemes for At = 11.

Figure 2 shows that the second-order NSFD scheme for humans preserves the positivity, bound-
edness, and stability of the solutions for large step sizes. This validates Theorem 2.1 and Theorem
2.3. The same is observed for the first-order NSFD method.

Due to the unavailability of the exact solution, we employ the double-mesh principle [7] to

estimate the error Epy; as follows.

Epm = ISy(ar) (fend) = Spy(at) (fend )l 4 [Enar) (fend) = Eyat) (fend )l 4+ - 4 Wn(ar) (fend) = Ly st (Fend )1,
(3.1)
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where teng = 300. The convergence rate is approximated by

Epm(At) )

Rate =1 _—
ate = log, (EDM(At/Z)

(3.2)

TasLE 4. Errors and convergence rates

At | 2NSFD Errors | Rate | INSFED errors | Rate
22 5.60 x 107! - 1.03 x 10° -
2! 1.69x10°!1 |1.7311| 5.31x107! |0.9615
20 457%x1072 |1.8829 | 2.69x10~' | 0.9808
271 | 1.17x107%2 | 19712 | 135x107' |0.9901
272 | 290x1073 |2.0085| 6.80x1072 | 0.9950
273 | 717x107* | 20152 | 3.40x1072 |0.9975
274 | 1.78x10™* |2.0114| 1.70x1072 | 0.9988
27° | 442x107° |2.0068 | 852x107% |0.9994
276 | 1.10x107° |2.0037 | 4.26x107% |0.9997
277 | 275x107® |2.0019 | 2.13x107% |0.9999
278 | 6.88x1077 20010 | 1.07x1073 |0.9999
279 | 1.72x1077 |2.0006 | 5.33x107* |1.0004
27101 430x107% [2.0000| 2.66x107* |0.9992

Despite both the INSFD and the 2NSFD schemes being dynamically consistent with the
continuous-time model, Table 4 confirms that the 2NSFD method is more accurate than the 1INSFD
method. The errors are computed using the equation (3.1) and the convergence rate using (3.2).
This fact is further highlighted in Figure 3 where the error vectors estimated via the double-mesh

principle are plotted using 200 and 400 subintervals.

0
Time (1) Time (1)

Ficure 3. The errors versus time for 2NSFD and 1NSFD. (Left: Susceptible humans,
Right: Infected humans).

Since weights (®;) are presumed to be non-negative, one wonders whether any positive number
can be used to compute the errors. We use different positive values of ® which satisfy condition
(2.21) in Table 5 to address this.
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It turns out that ® affects errors in the sense that the error increases with the value of ®. We
notice that the choice of weight (® = 0) satisfies the stability condition, and it is the optimal value
to minimize the errors of the NSFD scheme(2.2).

TasLE 5. Double-mesh errors, and convergence rate with different ® values for 2NSFD

At | Error(® = 0) | Rate | Error(® =0.2) | Rate | Error(® = 0.5) | Rate
22 5.60E01 - 8.16E-01 - 9.41E-01 -
2! 1.69E-01 1.7311 3.02E-01 1.4355 3.97E-01 1.2452
20 4.57E-02 1.8829 9.65E-02 1.6445 1.45E-01 1.4515
271 1.17E-02 1.9712 2.77E-02 1.8025 4.63E-02 1.6478
272 2.90E-03 2.0085 7.40E-03 1.9010 1.33E-02 1.7971
273 7.17E-04 2.0152 1.91E-03 1.9531 3.59E-03 1.8915
274 1.78Ee-04 | 2.0114 4.85E-04 1.9781 9.33E-04 1.9443
25 4.42E-05 2.0068 1.22E-04 1.9896 2.38E-04 1.9719
276 1.10E-05 2.0037 3.07E-05 1.9950 6.01E-05 1.9859
277 2.75E-06 2.0019 7.68E-06 1.9975 1.51E-05 1.9929
278 6.88E-07 2.0010 1.92E-06 1.9988 3.78E-06 1.9965
279 1.72E-07 2.0006 4.80E-07 1.9994 9.47E-07 1.9982
2-10 4.30E-08 2.0000 1.20E-07 1.9995 2.37E-07 1.9992

Remark 3.1. Itis worth noting that the value of the weight guarantees the stability of the underlying
NSFD scheme. The weight must be a non-negative real number. In Table 5, the optimum weight is
® = 0. This is simply a coincidence. In other situation the optimum weight can be strictly positive
(see for example [14]).

4. CONCLUSION

We developed a NSFD scheme for a malaria propagation model. The scheme comprises
weights and denominator functions that depend, not only on the step-size, but also iteratively
on the state variables. We showed that the constructed scheme is dynmanically consistent with
the continuous-time model in that it preserves the positivity, boundedness and stability of the
solution. Additionally, the equilibrium points and the basic reproduction number of the proposed
discrete model coincide with those of the continuous one. Moreover we proved that the scheme
is second-order convergent. Furthermore, we determined numerically the optimal weight for the

scheme (for the minimal error).
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