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Abstract. In the exploration of Neutrosophic fine spaces, this article investigates and study a novel concept known as

Neutrosophic fine open sets (N f OS). After giving the fundamental concepts of Neutrosophic fine open sets (N f OS) in

topological spaces, we present the properties of these sets, the study obtained and analyzes both Neutrosophic fine

open and closed sets within the context of Neutrosophic fine spaces. The article establishes fundamental definitions,

accompanied by illustrative real time example, to provide a comprehensive understanding of the newly introduced

sets. Furthermore, the exploration extends to defining and examining key concepts such as Neutrosophic fine conti-

nuity, Neutrosophic fine irresoluteness, and Neutrosophic fine irresolute homeomorphism. This progression aims to

contribute to the broader comprehension and application of Neutrosophic fine spaces in topological contexts.

1. Historical background

Neutrosophic system was defined by Smarandache at the beginning of 20th century In various

recent papers, has laid the foundation for a whole family of new mathematical theories generalizing

both their fuzzy and classical counterparts, and have wide range of real applications for the fields

of decision making,Medicine, Applied Mathematic,Information Systems, Computer Science. F.

Smarandache modified the concepts of intuitionistic fuzzy sets and different styles of sets to

obtained neutrosophic sets (NSs for short) [13].

F. Smarandache and A. Al Shumrani obtained the concept of neutrosophic topology on the

non-general and standard interval [14,17]. Several authors was extended this principle with many

applications (see [4,5,16,19,27–30,32]). Recently, Alomari and Smarandache [26,27] introduce and

discussed the concepts of continuity in neutrosophic topology.

S. Saha [21] introduced δ-open sets in topological spaces. In 2021, Vadivel and John Sunda [4]

defined δ-open sets in a neutrosophic topological space. E. Ekici [12] introduced and discussed the
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notion of e-open sets in a general topology. Several authors was extended and studied this principle

with many Topological space [24].Seenivasan and Kamala [23] in 2014 introduced fuzzy e-open

sets in a topological space along with fuzzy e-continuity. Vadivel et al. [6] studied Neutrosophic

e-open sets in Neutrosophic topological space.

In [8] Vadivel, introduced the notions of Neutrosophic e-open sets and Neutrosophic e-

continuity. Throughout this paper, we define and study the concept of Neutrosophic e-

compactness. This concept is stronger than the notion of Neutrosophic compactness . Also

we investigate the behavior of Neutrosophic e-compactness under several types of Neutrosophic

continuous functions in addition specialized some of their basic properties. Finally, we define a

Neutrosophic locally e-compactness and give some results on it.

Definition 1.1. [1] LetZ be a non-empty set. A neutrosophic set (NS for short) R̃ is an object having the
form R̃ = {〈r,µR̃(r), σR̃(r),γR̃(r)〉 : r ∈ Z}, where γR̃(r), σR̃(r),µR̃(r), and the degree of non-membership
(namely γR̃(r) ), the degree of indeterminacy (namely σR̃(r)), and the degree of membership function (namely
µR̃(r)), of each element r ∈ Z to the set R̃.

Since our main purpose is to construct the tools for developing neutrosophic set and neutro-

sophic topology, we must introduce the Neutrosophic sets (NSs) 0N and 1N [1] inZ are introduced

as follows:

1− 0N can be defined as four types:

(1) 0N = {〈r, 0, 1, 0〉 : r ∈ Z},
(2) 0N = {〈r, 0, 0, 0〉 : r ∈ Z},
(3) 0N = {〈r, 0, 0, 1〉 : r ∈ Z},
(4) 0N = {〈r, 0, 1, 1〉 : r ∈ Z}.

2- 1N can be defined as four types:

(1) 1N = {〈r, 1, 1, 1〉 : r ∈ Z},
(2) 1N = {〈r, 1, 1, 0〉 : r ∈ Z},
(3) 1N = {〈r, 1, 0, 0〉 : r ∈ Z},
(4) 1N = {〈r, 1, 0, 1〉 : r ∈ Z}.

Definition 1.2. [1] Let {A j : j ∈ J} be a arbitrary family of NSS inZ, then

(1) Intersection and Union ∩A j,∪A j may be defined as follows:
-T1: ∩A j = 〈r, ∧

j∈J
µAj(r), ∧

j∈J
σAj(r), ∨

j∈J
γAj(r)〉

-T2: ∩A j = 〈r, ∧
j∈J
µAj(r), ∨

j∈J
σAj(r), ∨

j∈J
γAj(r)〉.

-T1: ∪A j = 〈r, ∨
j∈J
µAj(r), ∨

j∈J
σAj(r), ∧

j∈J
γAj(r)〉

-T2: ∪A j = 〈r, ∨
j∈J
µAj(r), ∧

j∈J
σAj(r), ∧

j∈J
γAj(r)〉

Definition 1.3. Let R̃ = 〈µR̃(r), σR̃(r),γR̃(r)〉 be an NS on Z. [10] The complement of the set
R̃(C(R̃), for short) may be defined as follows:
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(1) C(R̃) = {〈r, 1− µR̃(r), 1− γR̃(r)〉 : r ∈ Z},
(2) C(R̃) = {〈r,γR̃(r), σR̃(r),µR̃(r)〉 : r ∈ Z},
(3) C(R̃) = {〈r,γR̃(r), 1− σR̃(r),µR̃(r)〉 : r ∈ Z}.

Definition 1.4. [1] Let X be a non-empty set, and GNSS H and K in the form H = {r,µH(r), σH(r),γH(r)},
K = {r,µK(r), σK(r),γK(r)}, then we may consider two possible definitions for subsets (H ⊆ K)
(H ⊆ K) may be defined as

(1) T1: H ⊆ K⇔ µH(r) ≤ µK(r), σH(r) ≤ σK(r), andγH(r) ≥ γK(r).
(2) T2: H ⊆ K⇔ µH(r) ≤ µK(r), σH(r) ≥ σK(r), andγH(r) ≥ γK(r).

Definition 1.5. [15] A neutrosophic topology (NT for short) and a non empty set Z is a family T of
neutrosophic subsets ofZ satisfying the following axioms

(1) 0N, 1N ∈ T .
(2) H1 ∩H2 ∈ T for any H1, H2 ∈ T .
(3) ∪Hi ∈ T , ∀ {Hi| j ∈ J} ⊆ T .

The pair (Z,T ) is called a neutrosophic topological space (briefly NTS).

Definition 1.6. [1] Let R̃ = {µR̃(r), σR̃(r),γR̃(r)} be a neutrosophic open sets (briefly NROs) and
B = {µB(r), σB(r),γB(r)} a neutrosophic set on a neutrosophic topological space (Z,T ). Then

(1) R̃ is called neutrosophic regular open iff R̃ = NInt(NCl(R̃)).
(2) The complement of neutrosophic regular open (NROs) is neutrosophic regular closed (briefly NRCs).

Definition 1.7. [7] Let (Z,T ) be NTs onZ and A be an Ns onZ. A set A is said to be a Neutrosophic

(1) δ-interior of A (for short, NδInt(A)) is defined by
NδInt(A) =

⋃
{K : K ⊆ A, K is a NROs ∈ Z}.

(2) δ-closure of A (for short, NδCl(A)) is defined by
NδCl(A) =

⋂
{L : A ⊆ L, L is a NRCs ∈ Z}.

Definition 1.8. [7] Let (Z,T ) be NTs onZ and A be an Ns onZ. A set A is said to be a

(1) Neutrosophic δ-open set (briefly, NδOs) if A = NδInt(A).
(2) Neutrosophic δ-pre open set (briefly, Nδ POs) if A ⊆ NInt(NδCl(A)).
(3) Neutrosophic δ-semi open set (briefly, N δ SOs) if A ⊂ NCl(NδInt(A)).
(4) Neutrosophic δ-α-open (or) a-open set (briefly, NδαOs (or) NaOs) if A ⊆ NInt(NCl(NδInt(A))).
(5) Neutrosophic e∗-open set (briefly, Ne∗Os) if A ⊆ NCl(NInt(NδCl(A))).
(6) Neutrosophic β-open set (briefly, NβOs) if A ⊆ NCl(NInt(NCl(A))).

Definition 1.9. [6] Let (Z,T ) be NTs onZ and A be an Ns onZ. A set A is said to be a

(1) Neutrosophic e-open set (briefly, NeOs) if A ⊆ NCl(NδInt(A))∪NInt(NδCl(A)),
(2) Neutrosophic e-closed set (briefly, NeOs) if A ⊇ NCl(NδInt(A))∩NInt(NδCl(A)).
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Remark 1.1. From the above definition and some types of NOS’s,we have the following diagram:

Nδ Os

�� ��

��

NOs

��

Nδsemi-open // Ne-open

��

Nδpre-openoo

Ne∗-open

��

Nβ Os

Nδ-α-open

ZZ DD

OO

Definition 1.10. [6] Let R̃ be an NS and (Z,T ) an NT where R̃ = {r,µR̃(r), σR̃(r),γR̃(r)}. Then,

(1) NCLe(R̃) =
⋂
{H : H is an NeCS inZ and R̃ ⊆ H}.

(2) NInte(R̃) =
⋃
{W : W is an NeOS inZ and W ⊆ R̃}.

It is clear that R̃ is an NeCS (NeOS) inZ iff R̃ = Cle(R̃)(R̃ = Inte(R̃)) .

Definition 1.11. [26] Let (Z, Γ) be a neutrosophic topological space and xr,t,s be a neutrosophic point in
Z. A neutrosophic set S ofZ is called a neutrosophic neighbourhood if there exists a neutrosophic open set
xr,t,s inZ such that pε ∈ xr,t,s ≤ S.

Definition 1.12. Let (X,T1), (Y,T2) be two NTSs, and let f : X −→ Y be a function, then

(1) If Ã = {µÃ(A), σÃ(A),γÃ(A)} be a neutrosophic sets (briefly Ns) inY then the preimage of Ã under
f , denoted by f−1(Ã) is a Ns in X defined by f−1(Ã) = { f−1(µÃ(A)), f−1(σÃ(A)), f−1(γÃ(A))}.

(2) If B̃ = {µB̃(B), σB̃(B),γB̃(B)} be a neutrosophic sets (briefly Ns) in X then the image of B̃ under f ,
denoted by f (B̃) is a Ns inY defined by f (B̃) = { f (µB̃(B)), f (σB̃(B)), f (γB̃(B))}.

Definition 1.13. [20] Let N(Z) be the set of all neutrosophic sets over Z. A NP xr,t,s ∈ N(Z) is said to
be quasi-coincident with a NS B ∈ N(Z) or xr,t,s ∈ N(Z) quasi-coincides with a NS B ∈ N(Z), denoted
by xr,t,sqB, iff r > µÃc(x) or t < σÃc(x) or s < γÃc(x), i.e., r > γÃ(x) or t < 1N − σÃ(x) or s < µÃ(x).

A NS B is said to be quasi-coincident with a NS A at x ∈ Z or B quasi-coincides with A at x ∈ Z,
denoted by BqA at x, iff µB̃(x) > µÃc(x) or σB̃(x) < σB̃c(x) or γB̃(x) < γÃc(x). Now B quasi-coincides
with A or B is quasi-coincident with A, denoted by BqA, iff A quasi-coincides with A at some point x ∈ Z.
Thus B quasi-coincides with A or B is quasi-coincident with A iff there exists an element x ∈ Z such that
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µB̃(x) > µÃc(x) or σB̃(x) < σÃc(x) or γB̃(x) < γÃc(x), i.e., γB̃(x) > γÃ(x) or σB̃(x) < 1N − σÃ(x) or
γB̃(x) < µÃ(x). If the NP xr,t,s is not quasi-coincident with a NS B, we shall denote it by xr,t,sq̂B.

A NS N is called ε-nbd of xr,t,s if there exists an NOS Q inN(Z) such that xr,t,s ∈ Q ≤ N.
Similarly if the NS B is not quasi-coincident with the NS A, we shall denote it by Bq̂A. The set of all the

points in Z, at which BqA, will be denoted by BfA, i.e., BfA = {x ∈ Z : BqA}at x.

Definition 1.14. [11] Let (Z, Γ) be a NTS. A collection {Hυ : υ ∈ Λ} of neutrosophic closed sets (NCs) ofZ
is said to have the finite intersection property (briefly, FIP) if every finite sub-collection {Hυ j : j = 1, 2, ..., n}
of {Hυ : υ ∈ Λ} satisfies the condition

⋂k
j=1 Hυ j , 0, where Λ is the index set.

Definition 1.15. [11] Let (Z, Γ) be a NTS and S ∈ N(Z). A collection G = {Hυ : υ ∈ Λ} of neutrosophic
open sets ofZ is said a neutrosophic open cover (briefly, NOC) of S if S ⊆ ∨υ∈ΛHυ. Then said G covers S.
In general, G is said to be an NOC ofZ if S = ∨υ∈ΛHυ.

Let G be a NOC of the NS S and G
′

⊆ G. Then G
′

is said a neutrosophic open subcover (briefly, NOSC)
of G if G

′

covers S. A NOC of S is said to be finite (resp. countable) if it consists of a finite (resp. countable)
number of neutrosophic open sets.

Definition 1.16. [11] A neutrosophic set S in an NTS (Z, Γ) is called to be a neutrosophic compact
(N-compact, for short) set if every NOC of S has a finite NOSC. In particular, the space Z is said to be a
neutrosophic compact space if every NOC ofZ has a finite NOSC.

2. Neutrosophic e-compactness

Definition 2.1. A neutrosophic topology (Z, Γ) (NT, for short) is said to be neutrosophic locally-compact
(briefly, N-L-compact) if for every NP xr,t,s ∈ N(Z) there is a N-nbd S of xr,t,s such that xr,t,s ∈ S and S is a
neutrosophic-compact relative toZ.

Definition 2.2. Let (Z, Γ) be a NTS onZ and xr,t,s a NP inZ. A NS S is called ε-e-nbd (εeq-nbd) of xr,t,s

if there exists a NeOS Q ∈ Z such that xr,t,s ∈ Q ≤ S (xr,t,sqQ ≤ S).

Definition 2.3. A neutrosophic topology (Z, Γ) (NT, for short) is said a Nδ S-compact(resp. NδP-compact,
Nδ-α-compact, Ne∗-compact, Nβ-compact) iff every family of Nδ SOs (resp. NδPOs, Nδ δ-αOs, Ne∗Os,
NβOs) cover ofZ has a finite subcover.

Definition 2.4. Let (Z, Γ) be a NTS and S ∈ N(Z). A collection G = {Hυ : υ ∈ Λ} of neutrosophic
e-open sets ofZ is said a neutrosophic e-open cover (briefly, NeOC) of S if S ⊆ ∨υ∈ΛHυ. Then said G covers
S. In general, G is said to be an NEOC ofZ if S = ∨υ∈ΛHυ.

Let G be a NeOC of the NS S and G
′

⊆ G. Then G
′

is said a neutrosophic e-open subcover (briefly,
NeOSC) of G if G

′

covers S.
A NOC of S is said to be finite (resp. countable) if it consists of a finite (resp. countable) number of

neutrosophic e-open sets.
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Definition 2.5. A neutrosophic topology (Z, Γ) is called neutrosophic e-compact (briefly, Ne-compact) iff
every NeOSs cover of Z has a finite subcover. Also (Z, Γ) is called Ne-compact relative to Z iff every
NeOSs cover ofZ has a finite subcover.

Example 2.1. Consider the NTS (Z, Γ), whereZ = {x, y},

Hn =

〈
z,

(
x
n

n+1
, y

n+1
n+2

)
,
(

x
1

n+2
, y

1
n+3

)
,
(

x
1

n+3
, y

1
n+2

)〉
,

and Γ = {0, 1} ∪ {Hn : n ∈ N}. Note that
⋃

n∈N Hn is a open cover for Z,but this cover has no finite
subcover. Consider

H1 =

〈
z,

(
x

0.5 , y
0.6

)
,
(

x
0.25 , y

0.3

)
,
(

x
0.4 , y

0.35

)〉
H2 =

〈
z,

(
x

0.75 , y
0.6

)
,
(

x
0.2 , y

0.25

)
,
(

x
0.4 , y

0.35

)〉
H3 =

〈
z,

(
x

0.8 , y
0.75

)
,
(

x
0.2 , y

0.16

)
,
(

x
0.2 , y

0.25

)〉
and observe that H1 ∪ H2 ∪ H3. So, for any finite sub-collection {Hnj : j ∈

Λ, where Λ is a finite subset of N},
⋃

nj ∈ ΛHnj = Hw = 1N, where w = max{nj : ni ∈ Λ}.Therefore
NTS (Z, Γ) is not compact.

From the above definitions of compactness the relations in the following diagram is clear,

Remark 2.1. From the above definition and some types of NOS’s,we have the following diagram:

Nβ-compact

��

N-semi compact

$$

Ne-compactoo // N -pre compact

zz

Ne∗-compact

OO

Nδ-α-compact

Theorem 2.1. A neutrosophic topology (Z, Γ) is Ne-compact iff every family H = {Hυ : υ ∈ Λ},where
Hυ = {r,µHυ(r), σHυ(r),γHυ(r)} υ ∈ Λ of NeCS inZ having the FIP, we have

∧
υ∈Λ Hυ , 0N.

Proof. Let {r,µHυ(r), σHυ(r),γHυ(r)} : υ ∈ Λ be a family of NeCS in Z which satisfies the finite

intersection property (FIP). To show that
∧
υ∈Λ{r,µHυ(r)

, σHυ(r),γHυ(r) : υ ∈ Λ} , 0N, now let
∧
υ∈Λ{r,µHυ(r), σHυ(r),γHυ(r) : υ ∈ Λ} , 0N. Then we have∨

{r,µHυ(r), σHυ(r),γHυ(r) : υ ∈ Λ} = 1N. Then{r,µHυ(r), σHυ(r),γHυ(r)} : υ ∈ Λ is a NeOS cover

of Z. Since Z is Ne-compact, there exist a finite subfamily {� r,µHυ(r), σHυ(r),γHυ(r) �: υ =

1, 2, ..., n} such that
∨n
υ=1 Hυ = 1N and so

∧n
υ=1 Hυ = 0N which is a contradiction with the FIP of

the family. Hence
∧n
υ=1 Hυ , 0N.
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Conversely, let H = {Hυ : υ ∈ Λ} be a NeOSs cover ofZ, and suppose thatZ is not Ne-compact.

Then there is no finite subfamily of H cover ofZ. Now,
∨n
υ=1 Hυ , 1N implies

∧n
υ=1 Hυ , 0N. Since

the family H = {Hυ : υ ∈ Λ} satisfies the FIP. Therefore
∧n
υ=1 Hυ , 0N so that

∧n
υ=1 Hυ , 1 which is

a contradiction and thenZ is a Ne-compact. �

Theorem 2.2. Let S is a Ns of a neutrosophic topology (Z, Γ) is Ne-compact relative toZ iff every family
Q = {Qυ : υ ∈ Λ}, where Qυ = {r,µQυ(r), σQυ(r),γQυ(r) : υ ∈ Λ} of Ns inZ having the finite intersection
property (FIP) such that

∧n
υ=1 QυqS, then we have

∧
Qυ∈Q NCle(Qυ)∧ S , 0N.

Proof. Suppose S = {r,µS(r), σS(r),γS(r)} not to be Ne-compact relative to space Z, so that there

exists a NOS cover K of Z such that K has no finite subcover H . Hence
∨

wυ∈H wυ(r) � S(r),
for some r ∈ S, (i.e. µS(r) �

∨
wυ∈H µwυ , σS �

∧
wυ∈H σwυ and γS �

∧
wυ∈H γwυ . Therefore∨

wυ∈H wυ(r) � S(r) ≥ 0N and so that H = {wυ : wυ ∈ K} has the (FIP) and
∧

wυ∈H wυ(r)qS, (now,

suppose wυ = {r,µwυ(r), σwυ(r),γwυ(r)}, then
∧

wυ = {r,∧µwυ(r),∨σwυ(r),∨γwυ(r)} and for the

reason that µS(r)�
∨
µwυ(r), hence

∧
wυ∈H wυ(r)qS. By assumption

∧
wυ∈H NCle(wυ)∧ S , 0N and

then
∧

wυ∈H wυ ∧ S , 0N. Hence for some r ∈ S
∧

wυ∈H wυ � 0N this implies
∨

wυ∈H wυ � 1N, which

is a contradiction. Then S is Ne-compact relative toZ.

Conversely, suppose that there exists a family Q of NS having the FIP such that
∧n
υ=1 QυqS

and
∧

Qυ∈Q NCle(Qυ) ∧ S = 0N. Hence for each r ∈ S, (
∧

Qυ∈Q NCle(Qυ)(r)) = 0N and then

(
∨

Qυ∈Q NCle(Qυ))(r) = 1N. Then K = {NCle(Qυ) : Qυ ∈ Q} is an NeOS cover of S. Since S is a Ne-

compact toZ, hence there exists a finite subcover, now we say {NCle(Q1), NCle(Q2), ..., NCle(Qn)}

s.t
∨n
υ=1 NCle(Qυ)(r) ≥ S(r) for each r ∈ S. Then

∧n
υ=1 NCle(Qυ)(r) ≤ S(r) for each r ∈ S, (i.e.,

µNCle(Qυ) ≤ µS, σNCle(Qυ) ≥ σ(S) and γNCle(Qυ) ≥ γ(S)) therefore
∧n
υ=1 NCle(Qυ)q̂S(r), a contradic-

tion. Then we got the result. �

Theorem 2.3. Every NeCS of a Ne-compact space (Z, Γ) is Ne-compact relative toZ.

Proof. Let Q = {r,µQυ(r), σQυ(r),γQυ(r) : υ ∈ Λ} be a family of NS having the finite intersection

property (FIP) and Sq
∧

Qυ∈Q0
holds for each finite sub-collection Q0 of Q and a NeCS S. Consider

Q∗ = S
∨

Q. For each finite sub-collection Q∗0 of Q, if S < Q∗0, hence
∧

Qυ∈Q∗0
Qυ , 0N. Now if

S ∈ Q∗0 and since Sq
∧

Qυ such that Qυ ∈ Q∗0 and Qυ < S, which implies
∧

Qυ∈Q∗0
Qυ , 0N . Since

Q∗ is a family of NS having the FIP. Hence Z is Ne-compact, then
∧

Qυ∈Q∗ Qυ , 0N therefore∧
Qυ∈Q∗ Cle(Qυ) , 0N, this implies

∧
Qυ∈Q Cle(Qυ)

∧
S =

∧
Qυ∈Q Cle(Qυ)

∧
Cl(S) , 0N . Then by

Theorem 2.2, S is a Ne-compact. �

Theorem 2.4. If L is a neutrosophic e-closed crisp set in Z and S is an Ne-compact relative to Z, then
S∨ L is a Ne-compact relative toZ .

Proof. Let S = {r,µS(r), σS(r),S (r) : υ ∈ Λ} and L = {r,µL(r), σL(r),γL(r) : υ ∈ Λ}. Let Q =

{Qυ : υ ∈ Λ}, where Qυ = {r,µQυ(r), σQυ(r),γQυ(r) : υ ∈ Λ} is a NeOS cover of S ∧ L, i.e., S ∧ L ≤∨
Qυ∈Q Qυ . Which implies that (µS ∧ µL)(r) ≤

∨
Qυ∈Q µ(Qυ)(r), (σS ∨ σL)(r) ≤

∨
Qυ∈Q σ(Qυ)(r) and

(γS ∨ γL)(r) ≥
∨

Qυ∈Q γ(Qυ)(r), for every r ∈ S ∧ L. Since L = {r,γL(r), σL(r),µL(r) : υ ∈ Λ} is
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a neutrosophic e-open crisp set in Z and L ∨ (
∨

Qυ∈Q Qυ) = 〈r,
∨

Qυ∈Q µ(Qυ) ∨ γL,
∧

Qυ∈Q σ(Qυ) ∨

σL,
∧

Qυ∈Q γ(Qυ) ∨µL〉, then L∨Q is a NeOS cover of S, (since S ≤ L∨ (S∧ L), hence µS ≤ γL ∨ (µS ∧

µL) ≤ σL ∨ (
∨

Qυ∈Q µ(Qυ) , σS ≥ (σS ∨ σL) ∧ σB and γS ≥ (γS ∨ γL) ∧ µB, then σS ≥ (σS ∨ σL)∧ σB =

(σS ∨ σL)∨ σB ≤
∨

Qυ∈Q σ(Qυ) ∨ µL =
∨

Qυ∈Q(Qυ ∧ µL). By assumption S is a Ne-compact relative to

Z, this implies there exists a finite subcover of S, this mean there exists Qυ, (υ = 1, 2, ..., n) such

that S ≤
∨n
υ Qυ ∨ L. Since S is a neutrosophic e-open crisp set, hence S ∧ L ≤

∨n
υ Qυ. Therefore

S∧ L is an Ne-compact relative toZ. �

Theorem 2.5. Let {Qυ : υ = 1, 2, ..., n} be a finite family of Ne-compact subsets of neutrosophic topological
space (Z, Γ), then

∨n
υ Qυ is Ne-compact relative toZ.

Proof. Let V = {Vl : l ∈ L} , where Vl = {r,µVl(r), σVl(r),γVl(r) : υ ∈ Λ} be a NeOS cover of
∨n
υ Qυ,

this implies V is a NeOS cover of Qυ, for any (υ = 1, 2, ..., n). Hence for any (υ = 1, 2, ..., n), there

exists a finite subset Lυ of L such that Qυ ≤
∨

L∈Lυ ∨VL. Then,
∨n
υ=1 Qυ ≤

∨
L∈Lυ ∨VL, where

∨n
υ=1 Lυ

is a finite subset of L. which implies that
∨n
υ=1 Qυ is Ne-compact relative toZ. �

3. Neutrosophic e-compactness and functions

Definition 3.1. [4] Let (Z, Γ1) , (R, Γ2) be two neutrosophic topological spaces’s (NTSs). A map and g :

Z −→ R is called neutrosophic (resp. δ, δS, δP, e, β and e∗) open map(briefly, NO(resp. NδO,NδSO,NδPO,
NeO, NβO and Nse∗O)) if the image of each Nsos in (Z, Γ1) is a Nos (resp.NOs,NδSOs,NδPOs, NeOs,
NβOs and Ne∗Os) in (R, Γ2).

Remark 3.1. From the above definition and some types of NOS’s,we have the following diagram:

Nδ-map

�� ��

��

N-map

��

Nδsemi-map // Ne-map

��

Nδpre-mapoo

Ne∗-map

��

Nβ map

Nδ-α-map

ZZ DD

OO
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Definition 3.2. Let (Z, Γ1) , (R, Γ2) be two neutrosophic topological spaces’s (NTSs) and g : Z −→ R a
function. Then g is called,

(1) Neutrosophic continuous [6] (briefly, N-conts.) if and only if the preimage of every NOS in R is a
NOS inZ.

(2) Neutrosophic e-continuous [6] (briefly, Ne-conts.) if and only if the preimage of every NOS in R is
a NeOS inZ.

(3) Neutrosophic e-irresolute [6] (briefly, Ne-irrl.) if and only if the preimage of every NeOS in R is a
NeOS inZ.

(4) Neutrosophic open [25] (resp. e -open) (briefly, NO (resp. NeO)) if and only if the image of every
NOS in R is a NeOS (resp. NeOS) in inZ.

Definition 3.3. Let (Z, Γ1) , (R, Γ2) be two neutrosophic topological spaces’s (NTSs) and g : Z −→ R a
function. Then g is said to be,

(1) Pre-Neutrosophic e-open (briefly, pre-NeO) if and only if the image of every NeOS in R is a NeOS
inZ.

(2) Neutrosophic e∗-irresolute (briefly, Ne∗-irrl.) if and only if the preimage of every NeOS in R is a
NeOS inZ.

Remark 3.2. From the above definitions none of these implications is reversible in the following two
diagrams:

(1) Ne∗-irrl. function //

��

N-Conts. function

��

Ne-irrl. function // Ne-Conts. function

(2) pre-NeO function // Ne-Conts. function N-Conts. functionoo

Theorem 3.1. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs) and g : Z −→ R is a
Ne-irresolute surjection function. If (Z, Γ1) is Ne-compact, then (R, Γ2) is Ne-compact.

Proof. Let Q = {Qυ : υ ∈ Λ} , where Qυ = {r,µQυ(r), σQυ(r),γQυ(r) : υ ∈ Λ}, be a NeOS cover of

R. Hence from the Ne-irrl. of g, which implies that S = {g−1(Qυ) : υ ∈ Λ} is a NeOS cover of Z.

Since (Z, Γ1) is Ne-compact, then there exist {Qυ : υ = 1, 2, ..., n} such that
∨n
υ=1 g−1(Qυ) = 1N.

Hence g(
∨n
υ=1 g−1(Qυ)) =

∨n
υ=1 gg−1(Qυ) =

∨n
υ=1 Qυ = g(1N) = 1N. This implies that (R, Γ2) is

Ne-compact. �

Corollary 3.1. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is
Ne-conts. function. surjection andZ is a Nβ-compact then R is a N-compact.

Proof. From Remark 2.1 since every Nβ-compact is Ne-compact, then the proof is obvious. �
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Theorem 3.2. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is
Ne-conts. function. surjection andZ is a Ne-compact then R is a N-compact.

Proof. The proof is similar pattern to Theorem 3.1. �

Corollary 3.2. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is
Ne-conts. function. If S is a Ne-compact relative to (Z, Γ1), therefore g(S) is a Ne-compact in (R, Γ2).

Proof. From Remark 3.2 the proof is obvious. �

Corollary 3.3. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is
Ne-irrl. function. If S is a Ne-compact relative to (Z, Γ1), therefore g(S) is a Ne-compact in (R, Γ2).

Proof. Let {〈r,µQυ(r), σQυ(r),γQυ(r)〉 : υ ∈ Λ} be any neutrosophic e-open cover of g(S). Therefore

g(S) ⊆
⋃(
{〈r,µQυ(r), σQυ(r),γQυ(r)〉 : υ ∈ Λ}

)
.

From the above relation

S ⊆ g−1
(⋃
{〈r,µQυ(r), σQυ(r),γQυ(r)〉 : υ ∈ Λ}

)
,

follows that

S ⊆
⋃
{g−1(〈r,µQυ(r), σQυ(r),γQυ(r))〉 : υ ∈ Λ},

so {g−1(〈r,µQυ(r), σQυ(r),γQυ(r)〉) : υ ∈ Λ} is a neutrosophic e-open cover of S. Since S is neu-

trosophic e-compact, there exists a finite subcover {g−1(〈r,µQυ(r), σQυ(r),γQυ(r)〉) : υ = 1, 2, ..., n}.
Then

S ⊆
⋃
{g−1(〈r,µQυ(r), σQυ(r),γQυ(r))〉 : υ = 1, 2, ..., n}.

Then

g(S) ⊆ g
(⋃
{g−1(〈r,µQυ(r), σQυ(r),γQυ(r))〉 : υ = 1, 2, ..., n}

)
=

⋃
{g(g−1

〈r,µQυ(r), σQυ(r),γQυ(r))〉 : υ = 1, 2, ..., n}

=
⋃
{(〈r,µQυ(r), σQυ(r),γQυ(r))〉 : υ = 1, 2, ..., n}.

so g(S) is neutrosophic e-compact.

�

Theorem 3.3. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R a
pre-NeO bijective function. If (R, Γ2) is Ne-compact, this implies (Z, Γ1) is Ne-compact too.

Proof. Let Q = {Qυ : υ ∈ Λ}, where Qυ = {r,µQυ(r), σQυ(r),γQυ(r) : υ ∈ Λ}, be a NeOSs cover ofZ.

Since g is pre-NeO function, hence {g(Qυ) : υ ∈ Λ} is a NOS’s cover ofZ. Since R is Ne-compact,

therefore there exist a finite subfamily {g(Qυ) : υ = 1, 2, ..., n} such that
∨n
υ=1 g(Qυ) = 1N . Since g

is bijection function, we obtain 1 = g−1(1) = g−1(
∨n
υ=1 g(Qυ) = g−1g(

∨n
υ=1(Qυ) =

∨n
υ=1 Qυ. Then

(Z, Γ1) is Ne-compact. �
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Corollary 3.4. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is a
pre-NeO bijective function. If H is a Ne-compact relative to (R, Γ2), hence g−1(H) is a Ne-compact relative
to (R, Γ2).

Proof. The proof is obvious. �

Theorem 3.4. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is a
NeO bijective function. If H is a Ne-compact relative to (R, Γ2), hence g−1(H) is a Ne-compact relative to
(R, Γ2).

Proof. Let {Qυ : υ ∈ Λ}, where Qυ = {r,µQυ(r), σQυ(r),γQυ(r) : υ ∈ Λ}, be a NeOSs cover ofZ. Since

g is pre-NeO function, hence {g(Qυ) : υ ∈ Λ} is a NOS’s cover of g−1(H). Hence {g(Qυ) : υ ∈ Λ}

is a NeOS cover of H. Since H is a Ne-compact relative to (R, Γ2), there is a finite subset υ0 of Λ

such that {g(Qυ) : υ ∈ Λ0} is a NeOS cover of H. Since, g is bijection function, g−1(g(Qυ)) = Qυ is

a NOS, thus {Qυ : υ ∈ Λ0} is a cover of g−1(H). Then g−1(H) is a N-compact relation to (Z, Γ1). �

4. Neutrosophic locally e-compactness

Definition 4.1. For any NTS (Z, Γ) is called neutrosophic locally e-compact (briefly, NLe-compact) if for
each NP xr,t,s ∈ Z there is a ε-nbd S of xr,t,s such that S(xr,t,s) = 1N and S is a Ne-compact relative toZ.

Remark 4.1. From above Definition and Definition 2.1 it clear that,

(1) Every Ne-compact is NLe-compact, but the converse not need to be true, in general.
(2) Every NLe-compact is NL-compact but the converse not need to be true, as you see in the following

example.

Example 4.1. Suppose (Z, Γ) be an infinite neutrosophic discrete topological space, thenZ is NLe-compact
but not Ne-compact.

Example 4.2. Let Λ = [0N, 1N] and Qυ = {r,µQυ(r), σQυ(r),γQυ(r) : υ ∈ Λ}, where Qυ(r) = 1
4 , ∀r ∈ Λ

and µQυ(r) = 0N, ∀r ∈ Λ. Then the family Ψ = {0N, 1N, Q} is a NT on Λ. It is easily to check that (Λ, Ψ)

is NL-compact but not NLe-compact.

Theorem 4.1. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is a
NO surjection function. If g is Ne-cont. and (Z, Γ1) is a NLe-compact, hence (R, Γ2) is a NLe-compact.

Proof. Let r ∈ R, r ∈ g(zr,t,s) for some NP zr,t,s ∈ Z. Since Z is a NLe-compact, there is a

ε-nbd Q = {z,µQ(z), σQ(z),γQ(z)} such that Q(z) = 1N is a N-compact relative to Z. Since

g is NO function, g(Q) is a ε-nbd of r with (g(Q))(r) = 〈r, g(µQ(r)), g(σQ(r), g(γQ(r))〉 =

〈z,∨µQ(z),∧σQ(z),∧γQ(z)〉 = 〈z, 1N, 0N>〉 = 1N. Moreover, since g is Ne-cont., hence by Corollary

3.4 g(Q) is a Ne-compact relative to R. Then R is a NLe-compact. �

Proposition 4.1. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is a
NO surjection function. Now if g is N-cont. and (Z, Γ1) is a NLe-compact, hence (R, Γ2) is a NLe-compact.
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Proof. The proof is obvious from Remark 4.1. �

Proposition 4.2. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is
a NO surjection function. If g is N-irrl. and (Z, Γ1) is a NLe-compact, hence (R, Γ2) is a NLe-compact.

Proof. The proof is obvious from Remark 4.1. �

Theorem 4.2. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is a
NeO bijection function. Now if g is Ne∗-irrl. and (Z, Γ1) is a NLe-compact, hence (R, Γ2) is a NLe-compact.

Proof. Let z ∈ Z, g(z) = r. Since R is a NLe-compact, there is an ε-nbd Q = {z,µQ(z), σQ(z),γQ(z)}
of g(z) such that Q(g(x)) = {z,µQ(g(z)), σQ

(g(z)),γQ(g(z))} = 1N and Q is a Ne-compact relative to R. By Theorem 4.1, g−1(Q) is a

NL-compact relative to Z. Since g is Ne∗-irrl., g−1(Q) is a ε-nbd of z and (g−1(Q))(z) =

〈z, g−1(µQ)(z), g−1(σQ)(z), g−1(γQ)(z)〉 = 1N. Then for z ∈ Z, there is an ε-nbd g−1(Q) of z
such that g−1(Q)(z) = 1N and g−1(Q) is a N-compact relative toZ. So thatZ is a NL-compact. �

Theorem 4.3. Let (Z, Γ1), (R, Γ2) be two neutrosophic topological spaces’s (NTSs). If g : Z −→ R is a
NeO bijection function. If g is Ne-irrl. and (Z, Γ1) is a NLe-compact, hence (R, Γ2) is a NLe-compact.

Proof. By using Proposition 4.2, the proof is similar to Theorem 4.2 �

5. Conclusion

The concepts of e-open sets, e-continuity, e-compactness and related studies in topological

spaces are due to many authors. This present paper contains the next steps of intuitionistic fuzzy

e-open sets, intuitionistic fuzzy e∗-open sets, intuitionistic fuzzy α-δ-open sets, intuitionistic fuzzy

e-continuity and intuitionistic fuzzy e-compactness in intuitionistic fuzzy topological spaces are

studied. After giving the fundamental concepts of neutrosophic sets and neutrosophic topolog-

ical spaces, we present neutrosophic e-compactness sets and neutrosophic e-irresolute and other

results related topological concepts. Several preservation characterizations and some properties

concerning neutrosophic locally e-compactness have been studded and obtained.
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