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FIXED POINT THEOREMS FOR CIRIC’S AND GENERALIZED

CONTRACTIONS IN b-METRIC SPACES

MUHAMMAD SARWAR∗ AND MUJEEB UR RAHMAN

Abstract. In this article we obtained b-metric variant of common fixed point

results for Ciric’s and generalized contractions. We have also proved some fixed
point results for rational contractive type conditions in the context of b-metric

space. A particular example is also given in the support of our established

result regarding Ciric’s type contraction.

1. Introduction

Fixed point theory is one of the most important topic in the development of non
linear analysis. In this area, the first important and significant result was proved by
Banach in 1922 for contraction mapping in complete metric space. A comprehensive
literature and generalization of the Banach’s contraction theorem can be found in [7]
and [11]. Some problems particularly the problem of the convergence of measurable
functions with respect to measure leads Czerwik (see [5],[6]) to the generalization
of metric space and introduce the concept of b-metric space After Czerwik([5], [6])
many papers have been published containing fixed point results on b-metric spaces
for single value and multivalued functions(see[1], [2], [10]).

In this paper we proved b-metric variant of fixed point results for Ciric’s and
generalized contraction. We also studied some results involving rational contractive
type condition.

Through out the paper R+ will represent the set of non negative real numbers.

2. Preliminaries

Definition 1. [8]. Let X be a non-empty set and let d : X×X → R+ be a function
satisfying the conditions,
d1) d(x, y) = 0 ⇔ x = y;
d2) d(x, y) = d(y, x);
d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X. Then d it is called metric on X,

and the pair (X, d) is called metric space.

Definition 2. [6]. Let X be a non empty set, let k ≥ 1 be a real number then a
mapping b : X×X → R+ is called b-metric if ∀ x, y, z ∈ X, the following conditions
are satisfied:
b1) b(x, y) = 0 ⇔ x = y;
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b2) b(x, y) = b(y, x);
b3) b(x, y) ≤ k[b(x, z) + b(z, y)]. And the pair (X, b) is called b-metric space.

It is clear from the definition of b-metric that every metric space is b-metric for
k = 1, but the converse is not true as clear from the following example.

Example 2.1. [2]. Let X = {0, 1, 2}. Defined b : X ×X → R+ as follows
b(0, 0) = b(1, 1) = b(2, 2) = 0, b(1, 2) = b(2, 1) = b(0, 1) = b(1, 0) = 1, b(2, 0) =
b(0, 2) = m ≥ 2 for k = m

2 where m ≥ 2
the function defined above is a b-metric space but not a metric for m > 2.

For more examples of b-metric space (see [2], [10]).
In our main work we will use the following definitions which can be found in [2]

and [10].

Definition 3. A sequence {xn} in b-metric space (X, b) is called Cauchy sequence
if for ε > 0 there exist a positive integer N such that for m,n ≥ N we have
b(xm, xn) < ε.

Definition 4. A sequence {xn} is called convergent in b-metric space (X, b) if for
ε > 0 and n ≥ N we have b(xn, x) < ε where x is called the limit point of the
sequence {xn}.

Definition 5. A b-metric space (X, b) is said to be complete if every Cauchy
sequence in X converge to a point of X.

Definition 6. [4]. Let (X, d) be a metric space, a self mapping T : X → X is
called generalized contraction if and only for all x, y ∈ X, there exist c1, c2, c3, c4
such that sup{c1 + c2 + c3 + 2c4} < 1 and

d(Tx, Ty) ≤ c1.d(x, y) + c2.d(x, Tx) + c3.d(y, Ty) + c4.[d(x, Ty) + d(y, Tx)]

Definition 7. [11]. Let (X, d) be a metric space, a self mapping T : X → X is
called Ciric’s type contraction if and only if for all x, y ∈ X, there exist h < 1 and,

d(Tx, Ty) ≤ h.max

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
Definition 8. [4]. Let (X, d) be a metric space, a self mapping T : X → X is
called quasi contraction if and only if for all x, y ∈ X, there exist h < 1 and,

d(Tx, Ty) ≤ h.max

{
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty) + d(y, Tx)

}
Remark.

• In [4] the author shown by an example that every quasi contraction need
not to be generalized contraction in metric spaces.

Theorem 2.1. [10]. Let (X, b) be a complete b- metric space with k ≥ 1 and let
T : X → X be a contraction with α ∈ [0, 1) and kα < 1 then T has a unique fixed
point in X.

Definition 9. [3]. Let (X, d) be a metric space a mapping T : X → X is called
weak contraction if there exist constants α ∈ (0, 1) and some β ≥ 0 such that

(1) d(Tx, Ty) ≤ α.d(x, y) + β.d(y, Tx)

for all x, y ∈ X.
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Due to the symmetry of distance the weak contraction clearly include the fol-
lowing

(2) d(Tx, Ty) ≤ α.d(x, y) + β.d(x, Ty)

for all x, y ∈ X.
Therefore to check the weak contraction of the mapping, we have to check both

(1) and (2).
Remarks.

• It is clear that every contraction in metric space is necessarily weak con-
traction but the converse is not always true(see[3]).
• Unlike metric space every mapping satisfying the contractive condition in
b-metric space need not to be weak contraction necessarily(see[10]).

On the other hand Khan[9] proved the following fixed point result for complete
metric spaces.

Theorem 2.2. Let (X, d) be a complete metric space and T be a self mapping on
X satisfying the following condition

d(Tx, Ty) ≤ µ.d(x, Tx).d(x, Ty) + d(y, Ty).d(y, Tx)

d(x, Ty) + d(y, Tx)

∀ x, y ∈ X and µ ∈ [0, 1), then T has a unique fixed point.

3. Main Results

Lemma 1. Let (X, b) be a b-metric space and {xn} be a sequence in b-metric space
such that

(3) b(xn, xn+1) ≤ α.b(xn−1, xn)

for n = 1, 2, 3, ... and 0 ≤ αk < 1, α ∈ [0, 1), and k is defined in b-metric space
then {xn} is a Cauchy sequence in X.

Proof. Let n,m ∈ N and m > n we have

b(xn, xm) ≤ k[b(xn, xn+1) + b(xn+1, xn+2)..................]

≤ kb(xn, xn+1) + k2[b(xn+1, xn+2) + b(xn+2, xn+3)..........]

≤ kb(xn, xn+1) + k2b(xn+1, xn+2) + k3b(xn+2, xn+3)..........................

Now using (3) we have

b(xn, xm) ≤ kαnb(x0, x1) + k2αn+1b(x0, x1) + k3αn+2b(x0, x1) + ............

≤ (1 + kα+ (kα)2 + ........)kαnb(x0, x1)

≤ kαn
(

1

1− kα

)
b(x0, x1).

Since kα < 1 therefore taking limit m,n→∞ we have

lim
m,n→∞

b(xn, xm) = 0.

Hence {xn} is a Cauchy sequence in b-metric space X. �

The next theorem is about to hold a unique fixed point for generalized contraction
in complete b-metric space.
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Theorem 3.1. Let (X, b) be a complete b-metric space with coefficient k ≥ 1 and
T be a self mapping T : X → X satisfying the condition

(4) b(Tx, Ty) ≤ α.b(x, y) + β.b(x, Tx) + γ.b(y, Ty) + µ.[b(x, Ty) + b(y, Tx)]

∀ x, y ∈ X, where α, β, γ, µ ≥ 0, with

(5) kα+ kβ + γ + (k2 + k)µ < 1

then T has a unique fixed point.

Proof. Let x0 be arbitrary in X we define a sequence {xn} in X by the rule

x0, x1 = Tx0, x2 = Tx1, ........, xn+1 = Txn,

consider

b(xn, xn+1) = b(Txn−1, Txn)

by using condition (4) we have

b(xn, xn+1) ≤ α.b(xn−1, xn)+β.b(xn−1, xn)+γ.b(xn, xn+1)+µ.[b(xn−1, xn+1)+b(xn, xn)]

≤ α.b(xn−1, xn) + β.b(xn−1, xn) + γ.b(xn, xn+1) + µ.k[b(xn−1, xn) + b(xn, xn+1]

So

b(xn, xn+1) ≤ (α+ β + kµ)

(1− (γ + kµ))
b(xn−1, xn)

≤ λb(xn−1, xn)

where

λ =
α+ β + kµ

1− (γ + kµ)

From (5) it is clear that λ < 1/k.
Now from Lemma 1 we can say that {xn} is a Cauchy sequence in complete

b-metric space, so there exist u ∈ X such that limn→∞ xn = u. Now we have to
show that u is the fixed point of T for this consider,

b(Tu, Txn) ≤ α.b(u, xn) + β.b(u, Tu) + γ.b(xn, Txn) + µ.[b(u, Txn) + b(xn, Tu)]

≤ α.b(u, xn) + β.b(u, Tu) + γ.b(xn, xn+1) + µ.[b(u, xn+1) + b(xn, Tu)].

Taking limit n→∞ we have

b(Tu, u) ≤ α.b(u, u) + β.b(u, Tu) + γ.b(u, u) + µ.[b(u, u) + b(u, Tu)]

≤ (β + µ).b(Tu, u)

the above inequality is possible only if b(Tu, u) = 0 ⇒ Tu = u.
Hence u is the fixed point of T .

Uniqueness. Let u 6= v be two fixed points of T then

b(u, v) = b(Tu, Tv) ≤ α.b(u, v) + β.b(u, Tu) + γ.b(v, Tv) + µ.[b(u, Tv) + b(v, Tu)]

= (α+ 2µ).b(u, v)

since u, v are fixed points of T so finally we get using (5) the above inequality is
possible only if b(u, v) = 0 ⇒ u = v.
Hence fixed point of T is unique in X. �

Theorem 3.1 yields the following corollaries.
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Corollary 3.1. Let (X, b) be a complete b-metric space with coefficient k ≥ 1 and
T be a self mapping T : X → X satisfying the condition

b(Tx, Ty) ≤ α.b(x, y) + β.b(x, Tx) + γ.b(y, Ty)

∀ x, y ∈ X, where α, β, γ ≥ 0 with kα+kβ+γ < 1, then T has a unique fixed point.

Proof. Putting µ = 0 in Theorem(3.1) we get the required result easily. �

Corollary 3.2. Let (X, b) be a complete b-metric space with coefficient k ≥ 1 and
T be a self mapping T : X → X satisfying the condition

b(Tx, Ty) ≤ α.b(x, y) + β.b(x, Tx)

∀ x, y ∈ X, where α, β ≥ 0 with kα+ kβ < 1, then T has a unique fixed point.

Proof. By putting µ = γ = 0 in Theorem(3.1) we get the required result. �

Corollary 3.3. Let (X, b) be a complete b-metric space with coefficient k ≥ 1 and
T be a self mapping T : X → X satisfying the condition

b(Tx, Ty) ≤ α.b(x, y)

∀ x, y ∈ X, where α ≥ 0 with kα < 1 then T has a unique fixed point.

Proof. By putting β = γ = µ = 0 in Theorem(3.1) we get the require result. �

Remark.

• Corollary (3.3) is the result of [10].

Now we present the modified form of Khan’s Theorem[9] in the context of b-metric
spaces.

Theorem 3.2. Let (X, b) be a complete b-metric space with coefficient k ≥ 1 and
T be a self mapping T : X → X satisfying the condition

(6) b(Tx, Ty) ≤ β.b(x, y) + µ.
b(x, Tx).b(x, Ty) + b(y, Ty).b(y, Tx)

b(x, Ty) + b(y, Tx)

∀ x, y ∈ X and β, µ ≥ 0, b(x, Ty) + b(y, Tx) 6= 0 with k(β + µ) < 1, then T has a
unique fixed point.

Proof. Let x0 be arbitrary in X, we define a sequence {xn} by the rule,

x0, x1 = Tx0, x2 = Tx1, ........., xn+1 = Txn for all n ∈ N

Now to show that {xn} is a Cauchy sequence in X then consider,

b(xn, xn+1) = b(Txn−1, Txn)

From equation (6) we have

b(xn, xn+1)

≤ β.b(xn−1, xn) + µ.
b(xn−1, Txn−1).b(xn−1, Txn) + b(xn, Txn).b(xn, Txn−1)

b(xn−1, Txn) + b(xn, Txn−1)

≤ β.b(xn−1, xn) + µ.
b(xn−1, xn).b(xn−1, xn+1) + b(xn, xn+1).b(xn, xn)

b(xn−1, xn+1) + b(xn, xn)

≤ (β + µ). b(xn−1, xn).
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Since β + µ < 1
k , therefore by Lemma 1 {xn} is a Cauchy sequence in complete

b-metric space X, so there must exist u ∈ X such that limn→∞ xn = u.
Now to show that u is the fixed point of T for this consider,

b(Txn, Tu) ≤ β.b(xn, u) + µ.
b(xn, Txn).b(xn, Tu) + b(u, Tu).b(u, Txn)

b(xn, Tu) + b(u, Txn)

≤ β.b(xn, u) + µ.
b(xn, xn+1).b(xn, Tu) + b(u, Tu).b(u, xn+1)

b(xn, Tu) + b(u, xn+1)

taking limit n→∞ we have,

β.b(xn, u) + µ.
b(xn, xn+1).b(xn, Tu) + b(u, Tu).b(u, xn+1)

b(xn, Tu) + b(u, xn+1)
→ 0.

Hence

b(u, Tu) = 0 ⇒ Tu = u

Thus u is the fixed point of T .
Uniqueness. Let u, v are two distinct fixed points of T , for u 6= v consider,

b(u, v) = b(Tu, Tv) ≤ β.b(u, v) + µ.
b(u, Tu).b(u, Tv) + b(v, Tv).b(v, Tu)

b(u, Tv) + b(v, Tu)

since u, v are fixed points of T we get

b(u, v) = b(Tu, Tv) ≤ β.b(u, v) + µ.
b(u, u).b(u, v) + b(v, v).b(v, u)

b(u, v) + b(v, u)
= β.b(u, v)

using the restriction in the theorem the above inequality is possible only if,

b(u, v) = 0 ⇒ u = v.

Therefore fixed point of T is unique. This complete the proof of the theorem.
Remark.

• In order to hold Khan’s theorem in b-metric space we made no restriction.

�

Theorem 3.3. Let (X, b) be a complete b-metric space with coefficient k ≥ 1 and
T be a self mapping T : X → X satisfying the condition

(7) b(Tx, Ty) ≤ α. b(x, y) + β.
b(y, Ty)[1 + b(x, Tx)]

1 + b(x, y)
+ γ.

b(y, Ty) + b(y, Tx)

1 + b(y, Ty).b(y, Tx)

∀ x, y ∈ X, where α, β, γ ≥ 0 and kα+ β + γ < 1
Then T has a unique fixed point.

Proof. Let x0 be arbitrary in X, we define a sequence {xn} by the rule,

x0, x1 = Tx0, x2 = Tx1, ........., xn+1 = Txn for all n ∈ N

Now to show that {xn} is a Cauchy sequence in X then consider,

b(xn, xn+1) = b(Txn−1, Txn)
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From equation (7) we have

b(xn, xn+1)

≤ α. b(xn−1, xn) + β.
b(xn, xn+1)[1 + b(xn−1, xn)]

1 + b(xn−1, xn)
+ γ.

b(xn, xn+1) + b(xn, xn)

1 + b(xn, xn+1).b(xn, xn)

≤ α. b(xn−1, xn) + β.
b(xn, xn+1)[1 + b(xn−1, xn)]

1 + b(xn−1, xn)
+ γ. b(xn, xn+1)

Therefore

b(xn, xn+1) ≤ α

1− (β + γ)
. b(xn−1, xn)

= h. b(xn−1, xn)

where h = α
1−(β+γ) with h < 1

k , because kα+ β + γ < 1

similarly we have

b(xn, xn+1) ≤ h2. b(xn−2, xn−1)

continuing the same process we get

b(xn, xn+1) ≤ hn. b(x0, x1)

since 0 ≤ h < 1 so hn → 0 as n→∞ , which shows that {xn} is a Cauchy sequence
in complete b-metric space so there exist z ∈ X such that xn → z as n→∞
Now to show that z is the fixed point of T for this consider,
(8)

b(Txn, T z) ≤ α. b(xn, z) + β.
b(z, Tz)[1 + b(xn, Txn)]

1 + b(xn, z))
+ γ.

b(z, Tz) + b(z, Txn)

1 + b(z, Tz).b(z, Txn)

From the construction it is clear that Txn = xn+1 and also {xn} is a Cauchy
sequence converges to z. Therefore taking limit n→∞ equation (8) become

b(z, Tz) ≤ (β + γ)b(z, Tz)

which is possible only if b(z, Tz) = 0, thus Tz = z.
Hence z is the fixed point of T .

Uniqueness. Suppose that T has two fixed points z and w for z 6= w Consider,

b(z, w) = b(Tz, Tw) ≤ α. b(z, w)+β.
b(w, Tw)[1 + b(z, Tz)]

1 + b(z, w)
+γ.

b(w, Tw) + b(w, Tz)

1 + b(w.Tw).b(w, Tz)

So the above inequality become

b(z, w) ≤ (α+ γ). b(z, w)

the above inequality is possible only if b(z, w) = 0 ⇒ z = w. Hence fixed point
of T is unique. �

Our next theorem is about b-metric variant of Ciric’s type contraction.

Theorem 3.4. Let (X, b) be a complete b-metric space with coefficient k ≥ 1 and
T be a self mapping T : X → X satisfying the condition

(9) b(Tx, Ty) ≤ h.max

{
b(x, y), b(x, Tx), b(y, Ty),

1

2k
[b(x, Ty) + b(y, Tx)]

}
∀ x, y ∈ X, where h ∈ [0, 1) and kh < 1
Then T has a unique fixed point.
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Proof. Let x0 be arbitrary in X we define a sequence {xn} in X by the rule

x0, x1 = Tx0, x2 = Tx1, ........, xn+1 = Txn.

Consider
b(xn, xn+1) = b(Txn−1, Txn)

using (11) we have
b(xn, xn+1)

≤ h.max

{
b(xn−1, xn), b(xn−1, Txn−1), b(xn, Txn),

1

2k
[b(xn−1, Txn)+b(xn, Txn−1)]

}
= h.max

{
b(xn−1, xn), b(xn−1, xn), b(xn, xn+1),

1

2k
[b(xn−1, xn+1) + b(xn, xn)]

}
≤ h.max

{
b(xn−1, xn), b(xn−1, xn), b(xn, xn+1),

1

2
[b(xn−1, xn) + b(xn, xn+1)]

}
(10) = h.max

{
b(xn−1, xn), b(xn, xn+1),

1

2
[b(xn−1, xn) + b(xn, xn+1)]

}
If

b(xn−1, xn) < b(xn, xn+1).

Then

b(xn−1, xn) <
1

2
[b(xn−1, xn) + b(xn, xn+1)] < b(xn, xn+1).

So (10) implies that
b(xn, xn+1 ≤ h.b(xn, xn+1)

which is impossible since h < 1 for the same reason we also ignored the term
b(xn, xn+1) thus (10) become

b(xn, xn+1) ≤ h.b(xn−1, xn).

By use of Lemma(1) we get that {xn} is a Cauchy sequence in complete b-metric
space X so there exist u ∈ X such that limn→∞ xn = u, now we have to show that
u is the fixed point of T for this consider

b(Tu, Txn) ≤ h.max

{
b(u, xn), b(u, Tu), b(xn, Txn),

1

2k
[b(u, Txn) + b(xn, Tu)]

}
≤ h.max

{
b(u, xn), b(u, Tu), b(xn, xn+1),

1

2k
[b(u, xn+1) + b(xn, Tu)]

}
.

Taking limit n→∞ we have

b(Tu, u) ≤ h.max

{
b(u, Tu),

1

2k
b(u, Tu)

}
≤ h.b(Tu, u)

the above inequality is possible only if b(Tu, u) = 0 ⇒ Tu = u.
Hence u is the fixed point of T .

Uniqueness. Let u 6= v be two fixed points of T then

b(u, v) = b(Tu, Tv) ≤ h.max

{
b(u, v), b(u, Tu), b(v, Tv),

1

2k
[b(u, Tv) + b(v, Tu)]

}
since u, v are the fixed points of T so finally we have

b(u, v) ≤ h.b(u, v)
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the above inequality is possible only if b(u, v) = 0 ⇒ u = v.
Therefore fixed point of T in X is unique. �

The above theorem produce the following corollary for k = 1.

Corollary 3.4. Let (X, b) be a complete metric space with coefficient and T be a
self mapping T : X → X satisfying the condition

(11) b(Tx, Ty) ≤ h.max

{
b(x, y), b(x, Tx), b(y, Ty),

1

2
[b(x, Ty) + b(y, Tx)]

}
for all x, y ∈ X, where h ∈ [0, 1), then T has a unique fixed point.

Remark. Corollary 3.4 is the result of B. E. Rohades [11].

Example 3.1. Let X = [0, 1] and b(x, y) = |x− y|2 be a b-metric with coefficient
k = 2 ∀ x, y ∈ X, we define the mapping T by

Tx =
2

3
if x ∈ [0, 1) and T1 = 0

then T satisfy all the conditions of the Theorem(3.4) for h ∈ [ 49 ,
1
2 ) having x = 2

3 is
its unique fixed point in X.
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