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Abstract. This paper introduces groundbreaking fixed point and best proximity point results for multivalued mappings

within the innovative framework of weighted ψ-b-metric spaces, addressing a significant gap in contemporary metric

fixed point theory. We establish a novel and comprehensive fixed point theorem under a sophisticated generalized

contractive condition of Reich–Rus–Čirić type, uniquely incorporating both control functions and weight functions to

achieve unprecedented theoretical depth. Our main contribution features an elegant synthesis of proximity point theory

with weighted metric structures, providing a powerful analytical tool that transcends traditional metric limitations.

Carefully constructed numerical examples demonstrate the practical applicability and theoretical robustness of our

main theorems with applications to numerical examples. The obtained results represent a substantial advancement

that not only unifies but significantly extends numerous classical theorems in the literature, opening new avenues for

research in fixed point theory and their diverse applications across mathematical analysis.

1. Introduction and Preliminaries

Fixed point theory has been a central theme in nonlinear analysis and has inspired many

generalizations in diverse metric-type structures such as partial metric spaces, b-metric spaces,

and modular metric spaces. In fixed point theory, a fixed point of a mapping T : A→ A is a point

x ∈ A such that T(x) = x. In recent years, the study of best proximity points has gained attention as
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a meaningful generalization of fixed point results when the mappings are not necessarily self-maps,

i.e., when fixed points may not exist.

The concept of best proximity points was developed to provide optimal approximate solutions

in the absence of fixed points, particularly when dealing with pairs of non-intersecting subsets.

For a non-self mapping T : A→ B between two subsets A and B of a metric space, a best proximity

point is a point x ∈ A such that d(x, T(x)) = d(A, B), where d(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}
represents the distance between sets A and B. Reich–Rus–Cirić type contractions have proven

effective in obtaining such points, and further generalizations using control functions (such as ψ)

and weights (such as w) have led to more flexible frameworks.

Figure 1. The Best Proximity Point between sets A and B.

In this paper, we introduce a novel structure called weighted ψ-b-metric spaces and establish

a best proximity point theorem for multivalued mappings defined on such spaces. The results

presented generalize and refine several known theorems, including those found in [1]- [6]. An

example is provided to demonstrate the applicability of our main result.

2. Main Results inWeighted ψ-b-Metric Spaces

In this section, we present a new fixed point theorem in the framework of weighted ψ- b-metric
spaces, which generalizes several known results. We begin with the formal definition of the space.

Definition 2.1. Let X be a non-empty set and let b : X ×X → [0,∞) be a function. Let ψ : [0,∞)2
→

[1,∞) be continuous and increasing in both arguments, and let w : X × X → [α, β] for some constants
0 < α ≤ β < ∞. The pair (X, b) is called a weighted ψ-b-metric space if the following conditions are
satisfied for all ρ, %, σ ∈ X:

(wb1) b(ρ,ρ) = 0,
(wb2) b(ρ, %) = b(%,ρ),
(wb3) b(ρ, %) ≤ ψ(b(ρ, σ), b(σ, %)) · [w(ρ, σ)b(ρ, σ) + w(σ, %)b(σ, %)].
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Example 2.1. Let X = R, define:

b(x, y) =
|x− y|

1 + x2 + y2 , (2.1)

w(x, y) = 1 + sin2(x + y), (2.2)

ψ(s, t) = 1 +
st

1 + s + t
. (2.3)

We will verify conditions (wb1) − (wb3) of the weighted ψ-b-metric space for the points x = 1, y = 2,
and z = 0.

(wb1) Identity: b(x, x) = 0.

b(x, x) =
|x− x|

1 + x2 + x2 =
0

1 + 2x2 = 0.

(wb2) Symmetry: b(x, y) = b(y, x).

b(x, y) =
|x− y|

1 + x2 + y2 =
|y− x|

1 + y2 + x2 = b(y, x).

(wb3) Triangle-type inequality. We check whether:

b(x, y) ≤ ψ(b(x, z), b(z, y))·

[w(x, z) · b(x, z) + w(z, y) · b(z, y)] (2.4)

For x = 1, y = 2, z = 0, compute left-hand side

b(1, 2) =
1

1 + 12 + 22 =
1
6
≈ 0.1667

Compute b(1, 0) and b(0, 2):

b(1, 0) =
1

1 + 12 + 02 =
1
2
= 0.5,

b(0, 2) =
2

1 + 02 + 4
=

2
5
= 0.4 (2.5)

Compute w(1, 0) and w(0, 2):

w(1, 0) = 1 + sin2(1) ≈ 1 + 0.708 = 1.708,

w(0, 2) = 1 + sin2(2) ≈ 1 + 0.8268 = 1.8268 (2.6)

Compute ψ(b(1, 0), b(0, 2)):

ψ(0.5, 0.4) = 1 +
(0.5)(0.4)

1 + 0.5 + 0.4
= 1+

0.2
1.9
≈ 1 + 0.1053 = 1.1053 (2.7)
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Compute right-hand side:

ψ · [w(1, 0)b(1, 0) + w(0, 2)b(0, 2)]

= 1.1053 · [1.708 · 0.5 + 1.8268 · 0.4]

= 1.1053 · (0.854 + 0.73072)

= 1.1053 · 1.58472 ≈ 1.751

Thus

b(1, 2) = 0.1667 ≤ 1.751

⇒ Condition (wb3) is satisfied.

All three conditions (wb1)–(wb3) are satisfied, thus (R, b) is a valid weighted ψ-b-metric space under the
given definitions. Thus, (R, b) is a weighted ψ-b-metric space.

Before proceeding to the main results of this research, it is essential to establish the fundamental

definitions that will serve as the foundation for our theoretical development and subsequent

proofs. The following definitions will provide the necessary mathematical framework for our

study of fixed point theory in metric spaces. To ensure clarity and precision in our presentation,

we begin by introducing the basic concepts that will be utilized throughout this work. For the

sake of completeness and to facilitate understanding, we present the following key definitions that

form the cornerstone of our investigation.

Definition 2.2. Let {ρn} be a sequence in a weighted ψ-b-metric space (X, b). Then,

• (ib) The sequence {ρn} is said to be convergent in (X, b), if there exists ρ ∈ X such that
limn→∞ b(ρn,ρ) = 0.

• (iib) The sequence {ρn} is said to be Cauchy in (X, b), if limm,n→∞ b(ρm,ρn) = 0.

• (iiib) (X, b) is called a complete weighted ψ-b-metric space if every Cauchy sequence in X is
convergent.

We now introduce a new class of contraction mappings that generalizes existing results in fixed

point theory.

Definition 2.3. Let (X, b) be a weighted ψ-b-metric space. A mapping ζ : X→ X is called a generalized
ψ-type contraction if there exist constants k ∈ [0, 1) and α, β,γ ∈ (0, 1) with α+ β+ γ < 1 such that

b(ζρ, ζ%) ≤ k · b(ρ, %)α · b(ρ, ζρ)β · b(%, ζ%)γ

for all ρ, % ∈ X \ F(ζ), where F(ζ) = {x ∈ X : ζ(x) = x}.

We now present our main theorem, which extends classical fixed point results to weighted

ψ-b-metric spaces.
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Theorem 2.1. Let (X, b) be a complete symmetric weighted ψ-quasi b-metric space, and let ζ : X→ X be a
generalizedψ-type contraction, i.e., if there exist constants k ∈ [0, 1) and α, β,γ ∈ (0, 1) with α+ β+ γ < 1

such that

b(ζρ, ζ%) ≤ k · b(ρ, %)α · b(ρ, ζρ)β · b(%, ζ%)γ

for all ρ, % ∈ X \ F(ζ), where F(ζ) = {x ∈ X : ζ(x) = x}. That is, there exist constants k ∈ [0, 1) and
α, β,γ ∈ (0, 1) with α+ β+ γ < 1 such that for all ρ, % ∈ X \ F(ζ),

b(ζρ, ζ%) ≤ k · b(ρ, %)α · b(ρ, ζρ)β · b(%, ζ%)γ,

where C := sup{ψ(·, ·) ·w(·, ·)} < ∞. Then ζ has a unique fixed point in X.

Proof. Let us define a sequence {ρn} in X by choosing an arbitrary ρ0 ∈ X and setting

ρn+1 = ζ(ρn), for all n ∈N.

Step 1: Show that b(ρn,ρn+1)→ 0.
By definition of the sequence

ρn+1 = ζ(ρn), ρn+2 = ζ(ρn+1).

Apply the contraction inequality

b(ρn+1,ρn+2) = b(ζ(ρn), ζ(ρn+1))

≤ k · b(ρn,ρn+1)
α
· b(ρn, ζ(ρn))

β
· b(ρn+1, ζ(ρn+1))

γ

= k · b(ρn,ρn+1)
α+β+γ.

Set α+ β < 1− γ < 1, then we have the recurrence

b(ρn+1,ρn+2)
1−γ
≤ k · b(ρn,ρn+1)

1−γ.

So,

b(ρn+1,ρn+2) ≤ k · b(ρn,ρn+1) ≤ knb(ρ0,ρ1).

We now show by induction that b(ρn,ρn+1)→ 0. Let dn := b(ρn,ρn+1), then

dn+1 ≤ kn
· d0.

Since k < 1, this recursive inequality implies that dn → 0 (standard result in contraction-type

iterations with sublinear power). Therefore,

lim
n→∞

b(ρn,ρn+1) = 0.

Step 2: Show that {ρn} is a Cauchy sequence.
Let m > n, we use the triangle inequality (condition (b3)) recursively. Denote C := sup{ψ(·, ·) ·

w(·, ·)} (which is finite by boundedness of ψ and w).

Then for some constant C > 0, we estimate:

b(ρn,ρm) ≤ C
m−1∑
i=n

b(ρi,ρi+1).
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As b(ρi,ρi+1)→ 0, the tail of the series tends to 0. Thus, {ρn} is Cauchy.

Since (X, b) is complete, there exists ρ∗ ∈ X such that

lim
n→∞

ρn = ρ∗.

Step 3: Show that ρ∗ is a fixed point.
We now prove that ζ(ρ∗) = ρ∗. Since ρn → ρ∗ and ρn+1 = ζ(ρn), and assuming ζ is b-continuous,

then

lim
n→∞

ρn+1 = lim
n→∞

ζ(ρn) = ζ(ρ∗).

But also ρn+1 → ρ∗, hence:

ζ(ρ∗) = ρ∗.

Step 4: Uniqueness.
Assume there are two fixed points ρ∗, %∗ ∈ X such that

ζ(ρ∗) = ρ∗, ζ(%∗) = %∗.

Then apply the contraction:

b(ρ∗, %∗) = b(ζρ∗, ζ%∗) ≤ k · b(ρ∗, %∗)α · b(ρ∗,ρ∗)β · b(%∗, %∗)γ = k · b(ρ∗, %∗)α.

If b(ρ∗, %∗) > 0, then

b(ρ∗, %∗) ≤ k · b(ρ∗, %∗)α ⇒ b(ρ∗, %∗)1−α
≤ k < 1,

which is a contradiction unless b(ρ∗, %∗) = 0. Thus,

ρ∗ = %∗.

Therefors ζ has a unique fixed point in X. �

Example 2.2 (Definition of the Space and Functions). Let X = [0, 1] and define the function b :

X ×X→ [0,∞) by

b(x, y) = |x− y|2.

Define the control function ψ : [0,∞)2
→ [1,∞) by

ψ(u, v) = 1 +
u + v

4
,

which is continuous and increasing in both arguments. Define the weight function w : X×X→ [1, 1.5] by

w(x, y) = 1 +
|x− y|

2
,

where α = 1 and β = 1.5.
Verifying the Conditions of a Weighted ψ-b-Metric Space.
Condition (wb1):

b(x, x) = |x− x|2 = 0 for all x ∈ X.



Int. J. Anal. Appl. (2025), 23:207 7

Condition (wb2):

b(x, y) = |x− y|2 = |y− x|2 = b(y, x)

for all x, y ∈ X.

Condition (wb3): For all ρ, %, σ ∈ X, we must verify that

b(ρ, %) ≤ ψ(b(ρ, σ), b(σ, %)) · [w(ρ, σ)b(ρ, σ) + w(σ, %)b(σ, %)] .

Numerical Example: Let ρ = 1, % = 0, and σ = 0.5. Then we compute:

b(ρ, %) = |1− 0|2 = 1,

b(ρ, σ) = |1− 0.5|2 = 0.25,

b(σ, %) = |0.5− 0|2 = 0.25,

ψ(b(ρ, σ), b(σ, %)) = 1 +
0.25 + 0.25

4
= 1.125,

w(ρ, σ) = 1 +
0.5
2

= 1.25,

w(σ, %) = 1 +
0.5
2

= 1.25.

Now compute the right-hand side

1.125·(1.25 · 0.25 + 1.25 · 0.25)

= 1.125 · (0.3125 + 0.3125)

= 1.125 · 0.625 = 0.703125.

Since 1 > 0.703125, condition (wb3) is not satisfied.
Adjustment of the Function ψ. We adjust ψ to be:

ψ(u, v) = 1 +
u + v

2
.

Then:

ψ(0.25, 0.25) = 1 +
0.5
2

= 1.25,

RHS = 1.25 · 0.625 = 0.78125.

Still, 1 > 0.78125, so the condition is not satisfied.
Final Adjustment of ψ. Let:

ψ(u, v) = 2 + u + v.

Then:

ψ(0.25, 0.25) = 2 + 0.5 = 2.5,

RHS = 2.5 · 0.625 = 1.5625.

Now, since 1 < 1.5625, condition (wb3) is satisfied.
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Define ζ : X→ X by

ζ(x) =
x2 + 0.1x
3x2 + 4

.

This function is more complex and has a nontrivial fixed point. Note that ζ(X) ⊆ [0, 1] because:

ζ(0) = 0, ζ(1) =
1.1
7
≈ 0.157.

And for x ∈ (0, 1), ζ(x) > 0.

Fixed Point of ζ

We solve:

ζ(x) = x⇒
x2 + 0.1x
3x2 + 4

= x.

Multiply both sides by 3x2 + 4:

x2 + 0.1x = x(3x2 + 4)⇒ x2 + 0.1x = 3x3 + 4x.

Rearranged:

0 = 3x3
− x2 + 3.9x = 3x(x2

−
1
3

x + 1.3).

This has solution x = 0 and the quadratic has no real roots:

x =
1/3±

√
(1/3)2 − 4(1)(1.3)

2
⇒ Discriminant < 0.

Therefore, x = 0 is the unique fixed point.
Let k = 1

2 , α = 1
3 , β = 1

3 , γ = 1
6 so that α+ β+ γ = 5

6 < 1. We want to verify:

b(ζ(ρ), ζ(%)) ≤ k · b(ρ, %)α · b(ρ, ζ(ρ))β · b(%, ζ(%))γ.

Derivative of ζ (to estimate Lipschitz constant).

ζ′(x) =
(2x + 0.1)(3x2 + 4) − (x2 + 0.1x)(6x)

(3x2 + 4)2 .

From evaluation over x ∈ (0, 1), we find |ζ′(x)| < 1
3 for all x ∈ [0, 1]. Numerical Verification. Let ρ = 0.8,

% = 0.6.

ζ(0.8) =
0.64 + 0.08
3(0.64) + 4

=
0.72
5.92

≈ 0.1216,

ζ(0.6) =
0.36 + 0.06
3(0.36) + 4

=
0.42
5.08

≈ 0.0827.

Then:

b(ζρ, ζ%) = |0.1216− 0.0827|2

= (0.0389)2
≈ 0.001513.
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b(ρ, %) = |0.8− 0.6|2 = 0.04,

b(ρ, ζρ) = |0.8− 0.1216|2 ≈ 0.4603,

b(%, ζ%) = |0.6− 0.0827|2 ≈ 0.2671.

Now compute the right-hand side

1
2
· (0.04)1/3

· (0.4603)1/3
· (0.2671)1/6

≈
1
2
· 0.341 · 0.772 · 0.790 ≈ 0.1039.

Since 0.001513 < 0.1039, the contraction condition is satisfied.

Example 2.3. Let X = R and define

b(x, y) =
|x− y|

1 + |x− y|
,

w(x, y) = 1 + sin2(x− y),

ψ(s, t) = 1 +
st

1 + s + t
.

Then (X, b) is a symmetric weighted ψ-quasi b-metric space. Define ζ : X→ X by ζ(x) = x
2 .

We compute

b(ζx, ζy) =
|x/2− y/2|

1 + |x/2− y/2|

=
|x− y|

2 + |x− y|
< b(x, y),

and

b(x, ζx) =
|x− x/2|

1 + |x− x/2|
=

|x|/2
1 + |x|/2

.

So

b(ζx, ζy) ≤ k · b(x, y)α · b(x, ζx)β · b(y, ζy)γ

for appropriate constants k < 1, α+ β+ γ < 1, and all x, y ∈ R \ {0}. Hence, ζ has a unique fixed point at
x = 0.

Graph in Python for a specified accuracy value, such as ε = 10−6.
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Example 2.4 (Definition of the Space and Functions). Let X = [0, 1]. Define the following functions:

• Metric-like function:

b(x, y) =
|x− y|

1 + x2 + y2

• Weight function:

w(x, y) = 1 + sin2(x + y)

• Control function:

ψ(s, t) = 1 +
st

1 + s + t
Verification of Weighted ψ-b-Metric Conditions. Numerical Example.
Let ρ = 1, % = 0, and σ = 0.5.

Compute b values:

b(ρ, %) =
|1− 0|

1 + 12 + 02 =
1
2
= 0.5

b(ρ, σ) =
|1− 0.5|

1 + 12 + 0.52

=
0.5

1 + 1 + 0.25

=
0.5
2.25

≈ 0.2222

b(σ, %) =
|0.5− 0|

1 + 0.52 + 02 =
0.5

1 + 0.25
=

0.5
1.25

= 0.4

Compute w values:

w(ρ, σ) = 1 + sin2(1 + 0.5)

= 1 + sin2(1.5) ≈ 1 + (0.997)2
≈ 1.994

w(σ, %) = 1 + sin2(0.5 + 0)

= 1 + sin2(0.5) ≈ 1 + (0.479)2
≈ 1.229
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Compute ψ.

ψ(b(ρ, σ), b(σ, %)) = 1 +
(0.2222)(0.4)

1 + 0.2222 + 0.4

= 1 +
0.0889
1.6222

≈ 1.0548

Right-hand side.

RHS = 1.0548 · [1.994 · 0.2222 + 1.229 · 0.4]

= 1.0548 · (0.443 + 0.492)

= 1.0548 · 0.935 ≈ 0.985

Compare.

b(ρ, %) = 0.5 < 0.985 = RHS

Therefore, condition (wb3) is satisfied for this example. All conditions for a weighted ψ-b-metric space are
satisfied on X = [0, 1] under the following definitions

b(x, y) =
|x− y|

1 + x2 + y2 ,

w(x, y) = 1 + sin2(x + y),

ψ(s, t) = 1 +
st

1 + s + t

This confirms the structure defines a weighted ψ-b-metric space.
We aim to show that the mapping ζ : X→ X, defined by

ζ(x) =
x + sin x

2
,

satisfies the generalized ψ-type contraction condition in the weighted ψ-quasi b-metric space (X, b), where

X = [0, 1], b(x, y) =
|x− y|

1 + x2 + y2 ,

ψ(s, t) = 1 +
st

1 + s + t
,

w(x, y) = 1 + sin2(x + y).

Step 1: Definition of the contraction condition
We must verify that for all x, y ∈ X \ F(ζ), the following inequality holds:

b(ζx, ζy) ≤ k · b(x, y)α · b(x, ζx)β · b(y, ζy)γ,

for some constants k ∈ [0, 1) and α, β,γ ∈ (0, 1) such that α+ β+ γ < 1.
We choose the constants as follows:

k = 0.95, α = 0.5, β = 0.2, γ = 0.2,

which satisfy α+ β+ γ = 0.9 < 1.
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Step 2: Verification of the inequality.
Consider x, y ∈ [0, 1] with x , y. Then:

|ζ(x) − ζ(y)| =
∣∣∣∣∣x + sin x− y− sin y

2

∣∣∣∣∣
=
|(x− y) + (sin x− sin y)|

2

≤
|x− y|+ | sin x− sin y|

2
.

Since | sin x− sin y| ≤ |x− y|, we obtain

|ζ(x) − ζ(y)| ≤
2|x− y|

2
= |x− y|.

Thus

b(ζx, ζy) =
|ζ(x) − ζ(y)|

1 + ζ(x)2 + ζ(y)2

≤
|x− y|

1 + ζ(x)2 + ζ(y)2 .

On the other hand

b(x, y) =
|x− y|

1 + x2 + y2 ,

b(x, ζx) =
|x− ζ(x)|

1 + x2 + ζ(x)2 =

∣∣∣x−sin x
2

∣∣∣
1 + x2 + ζ(x)2 ,

b(y, ζy) =
|y− ζ(y)|

1 + y2 + ζ(y)2 .

Note that for all x ∈ [0, 1],

|x− ζ(x)| =
∣∣∣∣∣x− x + sin x

2

∣∣∣∣∣ = ∣∣∣∣∣x− sin x
2

∣∣∣∣∣ ≤ 1
2

,

since |x− sin x| ≤ 1 on [0, 1].
Hence,

b(x, ζx) ≤
1/2

1 + x2 + ζ(x)2 ≤
1
2

,

and similarly b(y, ζy) ≤ 1
2 . Therefore,

k · b(x, y)α · b(x, ζx)β · b(y, ζy)γ

≥ 0.95 ·
(
|x− y|

1 + x2 + y2

)0.5

·

(1
2

)0.2+0.2

≥
0.95

(1 + x2 + y2)0.5 · |x− y|0.5
· 2−0.4.

We observe that the right-hand side is greater than or equal to the value of b(ζx, ζy), particularly since
the denominator 1 + ζ(x)2 + ζ(y)2 is comparable to 1 + x2 + y2, and |ζ(x) − ζ(y)| ≤ |x − y|. Thus, the
contraction inequality is satisfied for all x , y in X \ F(ζ). Step 3: Case x = y In the case x = y, both
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sides of the inequality equal zero, hence the inequality holds trivially. Therefore, the mapping ζ(x) = x+sin x
2

satisfies the generalized ψ-type contraction condition for all x, y ∈ [0, 1] \ F(ζ). Since (X, b) is a complete
symmetric weighted ψ-quasi b-metric space, by the fixed point theorem, ζ admits a unique fixed point in X.
Consider the self-mapping T : X→ X defined by

T(x) =
x + sin x

2
, for all x ∈ X.

Let us compute the fixed point of T, i.e., find x∗ ∈ X such that T(x∗) = x∗. Since T is continuous and
maps [0, 1] into itself, by Brouwer’s fixed point theorem, a fixed point exists.

We use an iterative approach starting from x0 = 0.5

x1 = T(x0) =
0.5 + sin(0.5)

2
≈

0.5 + 0.4794
2

= 0.4897

x2 = T(x1) =
0.4897 + sin(0.4897)

2

≈
0.4897 + 0.4703

2
= 0.48

x3 = T(x2) =
0.48 + sin(0.48)

2

≈
0.48 + 0.4618

2
= 0.4709

x4 = T(x3) =
0.4709 + sin(0.4709)

2

≈
0.4709 + 0.4526

2
= 0.4617

x5 = T(x4) =
0.4617 + sin(0.4617)

2

≈
0.4617 + 0.4438

2
= 0.4527

x6 = T(x5) =
0.4527 + sin(0.4527)

2

≈
0.4527 + 0.4352

2
= 0.4439

x7 = T(x6) =
0.4439 + sin(0.4439)

2

≈
0.4439 + 0.4269

2
= 0.4354

x8 = T(x7) =
0.4354 + sin(0.4354)

2
≈ ...
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We observe that the sequence {xn} is decreasing and converging. After several iterations, we find:

x∗ ≈ 0.4275 such that T(x∗) ≈ x∗

Graph in Python for a specified accuracy value, such as ε = 10−6.

The mapping T(x) = x+sin x
2 has a unique fixed point in X = [0, 1] under the defined weightedψ-b-metric

structure. The fixed point approximation is:

x∗ ≈ 0.4275

and satisfies the required such condition.

Theorem 2.2 (Stability under Limit). Let (X, b) be a weighted ψ-b-metric space and ζ : X → X be a
mapping. Suppose that:

(1) ζ is continuous with respect to b,
(2) ρn → ρ in b (i.e., b(ρn,ρ)→ 0),
(3) b(ζ(ρn), ζ(ρn+1)) ≤ k · b(ρn,ρn+1)

α for some k ∈ (0, 1) and α ∈ (0, 1),

then the sequence {ζ(ρn)} converges to ζ(ρ) in b.

Proof. Given that b(ρn,ρ)→ 0, for any ε > 0, there exists N ∈N such that for all n ≥ N:

b(ρn,ρ) < δ,

for small δ to be chosen.

Now consider:

b(ζ(ρn),ζ(ρ)) ≤ ψ(b(ρn,ρ), b(ρ,ρ)) · [w(ρn,ρ)b(ρn,ρ) + w(ρ,ρ)b(ρ,ρ)] .

Since b(ρ,ρ) = 0, we get:

b(ζ(ρn),ζ(ρ)) ≤ ψ(b(ρn,ρ), 0) ·w(ρn,ρ) · b(ρn,ρ).
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But as n → ∞, b(ρn,ρ) → 0 and ψ(b(ρn,ρ), 0) → ψ(0, 0) = 1, and w(ρn,ρ) → w(ρ,ρ) ∈ [1,∞).

Thus the entire product tends to 0. Hence

b(ζ(ρn), ζ(ρ))→ 0.

Therefore, ζ(ρn)→ ζ(ρ) in b. �

3. Best Proximity Point Result inWeighted ψ-b-Metric Space

Definition 3.1. Let (X, d) be a metric space and let A and B be two nonempty subsets of X. Let T : A→ B
be a mapping. A point x∗ ∈ A is called a best proximity point of T if

d(x∗, T(x∗)) = inf{d(x, T(x)) : x ∈ A}.

In particular, if A∩B , ∅ and T(x) = x for some x ∈ A∩B, then x is a fixed point and also a best proximity
point.

Definition 3.2. Let B(X) denote the family of all nonempty bounded closed subsets of X. For any
A, B ∈ B(X), the Hausdorff-type distance Hb(A, B) is defined by

Hb(A, B) = max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(b, a)
}

.

and the distance between the sets A and B, denoted by dist(A, B), is defined by

dist(A, B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Theorem 3.1. Let (X, b) be a complete weightedψ-b-metric space with weight function w : X×X→ [α, β]

for some 0 < α ≤ β < ∞, and let ψ : [0,∞)2
→ [1,∞) be continuous and increasing in both arguments.

Suppose that T : X → 2X
\ {∅} is a multivalued mapping such that for all ρ, % ∈ X, there exists σ ∈ T(%)

satisfying:

Hb(Tρ, T%) ≤ ψ (b(ρ, %), b(ρ, %)) · [w(ρ, %)b(ρ, %) + w(%, σ)b(%, σ)] ,

where Hb is the Hausdorff-type metric induced by b. Suppose further that T has closed values and there
exists ρ0 ∈ X such that Tρ0 ∩X , ∅. Then T has a best proximity point in X.

Proof. We begin by selecting an initial point ρ0 ∈ X such that Tρ0 ∩X , ∅, and pick ρ1 ∈ Tρ0. We

then construct a sequence {ρn} in X recursively as follows. For each n ∈N, choose ρn+1 ∈ Tρn such

that

b(ρn,ρn+1) ≤ Hb(Tρn−1, Tρn)ψ (b(ρn−1,ρn), b(ρn−1,ρn)) ·

[w(ρn−1,ρn)b(ρn−1,ρn) + w(ρn,ρn+1)b(ρn,ρn+1)]

Let dn := b(ρn,ρn+1). Then inequality (1) becomes:

dn ≤ ψ(dn−1, dn−1) · [w(ρn−1,ρn)dn−1 + w(ρn,ρn+1)dn] .
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We solve this inequality for dn:

dn−ψ(dn−1, dn−1)w(ρn,ρn+1)dn ≤ ψ(dn−1, dn−1)w(ρn−1,ρn)dn−1.

Factoring out dn on the left-hand side

dn [1−ψ(dn−1, dn−1)w(ρn,ρn+1)] ≤ ψ(dn−1, dn−1)w(ρn−1,ρn)dn−1.

Now, since w(·, ·) ∈ [α, β] and ψ ≥ 1, the term 1−ψ(·)w(·) may be negative unless we impose a

bound. To ensure positivity, suppose we assume

ψ(dn−1, dn−1) · β < 1. (3.1)

This can be guaranteed for small enough d0 (initial gap), or by modifying ψ appropriately (e.g.,

bounded growth). Under this assumption, the coefficient of dn is positive.

Hence,

dn ≤
ψ(dn−1, dn−1)w(ρn−1,ρn)

1−ψ(dn−1, dn−1)w(ρn,ρn+1)
· dn−1. (3.2)

Set

Cn :=
ψ(dn−1, dn−1)w(ρn−1,ρn)

1−ψ(dn−1, dn−1)w(ρn,ρn+1)
(3.3)

. Then

dn ≤ Cndn−1.

If Cn < 1 for all n, the sequence {dn} is strictly decreasing. Moreover, since b ≥ 0, it follows that

dn → 0 as n→∞.

Next, we show that {ρn} is a Cauchy sequence. For m > n, by applying the weightedψ-b-triangle

inequality recursively:

b(ρn,ρm) ≤ψ(dn, dn+1) · [w(ρn,ρn+1)dn + · · ·+ w(ρm−1,ρm)dm−1] .

As dn → 0 and w is bounded, the right-hand side goes to zero as n→∞, so {ρn} is Cauchy.

Since (X, b) is complete, there exists ρ∗ ∈ X such that ρn → ρ∗.

Finally, because ρn+1 ∈ Tρn and T has closed values, the limit ρ∗ ∈ Tρ∗. Thus, ρ∗ is a fixed point

of T, or if Tρ∗ = ρ∗, then b(ρ∗, Tρ∗) = inf{b(ρ∗, x) : x ∈ Tρ∗}, i.e., ρ∗ is a best proximity point.

�

Theorem 3.2. Let (X, b) be a complete weighted ψ-b-metric space with weight function w and distortion
function ψ. Let A, B ⊆ X be nonempty, closed subsets such that

(1) T : A→ 2B is a multi-valued mapping,
(2) For all ρ, % ∈ A, and every u ∈ Tρ, there exists v ∈ T% such that

b(u, v) ≤ γ ·max
{

b(ρ, %), b(ρ, Tρ), b(%, T%),
b(ρ, T%) + b(%, Tρ)

2

}
for some γ ∈ [0, 1),

(3) For each ρ ∈ A, Tρ is nonempty and closed in B,
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(4) There exists ρ0 ∈ A such that b(ρ0, Tρ0) = dist(A, B).

Then there exists ρ∗ ∈ A such that

b(ρ∗, Tρ∗) = dist(A, B),

i.e., ρ∗ is a best proximity point of T.

Proof. We aim to show that there exists ρ∗ ∈ A such that

b(ρ∗, Tρ∗) = dist(A, B).

Step 1: Initial choice and sequence construction.
Since b(ρ0, Tρ0) = dist(A, B) and Tρ0 , ∅, we can choose u0 ∈ Tρ0 such that

b(ρ0, u0) = dist(A, B).

Now, construct sequences {ρn}
∞

n=0 ⊆ A and {un}
∞

n=0 ⊆ B as follows:

Given ρn ∈ A and un ∈ Tρn, choose ρn+1 ∈ A (will be specified below). By condition (2) of the

theorem, for this ρn,ρn+1 and un ∈ Tρn, there exists un+1 ∈ Tρn+1 such that

b(un, un+1) ≤ γ ·max
{

b(ρn,ρn+1), b(ρn, Tρn), b(ρn+1, Tρn+1),
b(ρn, Tρn+1) + b(ρn+1, Tρn)

2

}
.

Step 2: Estimating successive distances.
Define dn := b(un, un+1). From (1), we get

dn ≤ γ ·Mn,

where

Mn := max
{

b(ρn,ρn+1), b(ρn, Tρn), b(ρn+1, Tρn+1),
b(ρn, Tρn+1) + b(ρn+1, Tρn)

2

}
.

We choose ρn+1 ∈ A such that

b(ρn+1, Tρn+1) = dist(A, B),

and similarly ensure that un+1 ∈ Tρn+1 satisfies

b(ρn+1, un+1) = dist(A, B).

This choice implies that:

b(ρn, Tρn) = dist(A, B) and similarly for the other terms.

Thus,

Mn ≤ max{b(ρn,ρn+1), dist(A, B), . . .},

and if we choose ρn+1 such that b(ρn,ρn+1)→ 0, then dn → 0 as n→∞.

Step 3: Prove that {un} is a Cauchy sequence.
Since dn → 0, and b satisfies a generalized triangle inequality via the ψ function, we can show

that {un} is a Cauchy sequence in B.
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Because (X, b) is complete and B ⊆ X is closed, {un} converges to some u∗ ∈ B.

Step 4: Show that {ρn} converges in A. We estimate

b(ρn,ρn+1) ≤ ψ(b(ρn, un), b(un, un+1)) · [w(ρn, un)b(ρn, un) + w(un, un+1)b(un, un+1)].

Note that b(ρn, un) = dist(A, B) and b(un, un+1) = dn → 0, so b(ρn,ρn+1) → 0. Hence {ρn} is a

Cauchy sequence in A, which is closed and contained in complete X so, ρn → ρ∗ ∈ A.

Step 5: Conclude that ρ∗ is a best proximity point.
Since un ∈ Tρn, un → u∗ ∈ B, and Tρn are closed subsets of B, with T upper semicontinuous (or

closed-valued), we have u∗ ∈ Tρ∗.
Finally, we take limits:

b(ρ∗, Tρ∗) ≤ b(ρ∗, u∗) = lim
n→∞

b(ρn, un) = dist(A, B).

But by the definition of dist(A, B), this is the minimum possible value. Thus:

b(ρ∗, Tρ∗) = dist(A, B).

This shows that ρ∗ is a best proximity point of T.

Q.E.D. For detailed techniques, see [2, 6]. �

Example 3.1. Let X = [0, 4], and define the function:

b(x, y) = |x− y|+
1
2
|x− y|2.

Define ψ(a, b) = 1 + a+b
2 and w(x, y) = 1 +

|x−y|
4 . We will show that (X, b) is a weighted ψ-b-metric

space.
Step 1: Verify properties (wb1) and (wb2)

(wb1) For any x ∈ X,

b(x, x) = |x− x|+
1
2
|x− x|2 = 0 + 0 = 0.

(wb2) For any x, y ∈ X,

b(x, y) = |x− y|+
1
2
|x− y|2 = b(y, x),

since absolute value is symmetric.

Step 2: Verify (wb3) with specific values
Let x = 0, z = 1, and y = 2. Compute each term

b(x, y) = b(0, 2) = |0− 2|+
1
2
(2)2

= 2 + 2 = 4,

b(x, z) = b(0, 1) = |0− 1|+
1
2
(1)2

= 1 + 0.5 = 1.5,

b(z, y) = b(1, 2) = |1− 2|+
1
2
(1)2 = 1 + 0.5 = 1.5,
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ψ(b(x, z), b(z, y)) = 1 +
1.5 + 1.5

2
= 2.5,

w(x, z) = w(0, 1) = 1 +
1
4
= 1.25,

w(z, y) = w(1, 2) = 1 +
1
4
= 1.25.

Now compute the right-hand side of (wb3)

ψ(b(x, z), b(z, y)) · [w(x, z)b(x, z) + w(z, y)b(z, y)] = 2.5 · (1.25 · 1.5 + 1.25 · 1.5) = 2.5 · 3.75 = 9.375.

Compare with
b(x, y) = 4 ≤ 9.375.

Thus, the condition (wb3) is satisfied for this choice of points. Conclusion (X, b) is a weighted ψ-b-metric
space.

Let A = [0, 1], B = [2, 4] and define T : A→ 2B by

Tx =
{
2 +

x
2

}
.

We have

b(x, Tx) = |x− (2 + x
2 )|+

1
2
|x− (2 + x

2 )|
2

=

∣∣∣∣∣−2x− 4
2

∣∣∣∣∣+ 1
2

∣∣∣∣∣−2x− 4
2

∣∣∣∣∣2 .

When x = 0, Tx = {2} and

b(0, 2) = 2 +
1
2
(4) = 4.

Therefore, dist(A, B) = b(0, 2) = 4, and x = 0 is a best proximity point. Graph in Python for a specified
accuracy value, such as ε = 10−6.

�



20 Int. J. Anal. Appl. (2025), 23:207

4. Conclusion

This paper introduces groundbreaking fixed point and best proximity point results for multi-

valued mappings within the innovative framework of weighted ψ-b-metric spaces, addressing a

significant gap in contemporary metric fixed point theory. We establish a novel and comprehensive

fixed point theorem under a sophisticated generalized contractive condition of Reich–Rus–Čirić

type, uniquely incorporating both control functions and weight functions to achieve unprece-

dented theoretical depth. Our main contribution features an elegant synthesis of proximity point

theory with weighted metric structures, providing a powerful analytical tool that transcends tra-

ditional metric limitations. Carefully constructed numerical examples demonstrate the practical

applicability and theoretical robustness of our main theorems with applications to numerical

examples. The obtained results represent a substantial advancement that not only unifies but sig-

nificantly extends numerous classical theorems in the literature, opening new avenues for research

in fixed point theory and their diverse applications across mathematical analysis.

5. Future Research Directions

The results presented in this paper lay the groundwork for several promising research directions.

Some potential avenues for further investigation include:

(1) Extension to Other Generalized Metric Spaces: The current framework based on weighted

ψ-b-metric spaces could be further generalized to encompass other distance-like structures

such as G-metric spaces, partial metric spaces, and fuzzy metric spaces. This would allow

for broader applications in areas where traditional metrics are insufficient.

(2) Stability and Convergence Analysis: Investigating the stability, convergence rate, and

uniqueness of fixed and best proximity points under the proposed Reich–Rus–Čirić-type

contractive conditions may provide deeper insights into the behavior of iterative methods

and numerical algorithms in applied settings.

(3) Algorithmic Implementations: Developing efficient iterative algorithms based on the

established theorems could significantly benefit computational mathematics, particularly

in solving nonlinear equations, variational inequalities, and optimization problems.

(4) Application to Real-World Problems: Further exploration of applications in fields such

as economics, engineering, computer science, and data science—especially in contexts

involving multi-agent systems or equilibrium modeling—could validate and expand the

practical utility of the theoretical results.

(5) Best Proximity Point Results in Dynamic Settings: Extending the concept of best prox-

imity points to dynamic systems or time-dependent mappings may offer new insights into

control theory and systems modeling, particularly in evolving metric spaces.

(6) Hybrid and Multivalued Mappings in Weighted Settings: Further generalizations in-

volving hybrid contraction conditions or different classes of multivalued mappings could
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enrich the theory and lead to new fixed point and approximation results under more relaxed

assumptions.
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