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Abstract. In this paper, we investigate spacelike and timelike canal surfaces foliated by S2
1 pseudo spheres in Minkowski

3-space based on the Bishop frame. Various types of canal surfaces, including Weingarten, linear Weingarten, devel-

opable, and minimal forms, are categorized to highlight the singular points and the geometric properties of such

surfaces. Our analysis sheds light on the intrinsic properties of these surfaces and contributes to the understanding of

their behavior within the context of Minkowski geometry. Finally, we present a computational example as a practical

validation of our theoretical findings.

1. Introduction

An envelope of a one-parameter set of spheres with radius r(s) and center curve c(s) is called

a canal surface. A sphere or a certain circular cross-section of a sphere can be swept down a path

using one of the two techniques to create a canal surface. It is parameterezied by means of the

spheres that self-assemble. The following can be used to parameterize a canal surface M;

Ψ(s,θ) = c(s) + r(s)(−r′(s))T +
√

1− r′(s)2(cosθN + sinθB), (1.1)

where {T, N, B} is the Frenet frame of c(s) which is a unit speed curve parameterized by arc-lenght

s. These canal surfaces are called "tubular surfaces" in the case where the radius function r(s)
remains constant. These surfaces, which are used especially in solid and surface modeling, have

many uses, including reconstruction, robot movement planning, blending creation surfaces, and

easy visibility of long, thin objects like pipes, ropes, and live intestines. Computer-aided geometric

design (CAGD) is one of the most important applications of these surfaces. Canal and tubular
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surfaces in various spaces with different frames have been studied with a variety of conclusions

regarding their geometric properties( [2–9]).

The concept of canal surfaces in Euclidean 3-space has been expanded to Lorentz-Minkowski

space in recent years. A family of pseudo-Riemannian space forms, including pseudo hyperbolic

spheres H2
0 and lightlike cones Q2

1, can be used to form a canal surface in Minkowski 3-space E3
1.

Let r > 0 be a constant and p a fixed point. Then

M
2(ε) = {u ∈ E3

1 : 〈u− p, u− p〉 = εr2
},

S2
1(p, r) | ε = 1,

H2
0(p, r) | ε = −1,

Q2
1(p) | ε = 0.

defines the pseudo-Riemannian space forms, i.e., the hyperbolic space H2
0(p, r) the lightlike cone

Q2
1(p), and de-Sitter space S2

1(p, r). We write them simply by S2
1, H2

0, and Q2 when r = 1 the origin

is located at the center p [10].

By contrasting their qualities with those of the Frenet frame, Bishop [11] demonstrated the

existence of orthonormal frames- what he referred to as substantially parallel adapted frames-aside

from the Frenet frame. An alternative method of well-defined moving frames, even in cases where

the curve’s second derivative vanishes, is the Bishop or parallel transport of an orthonormal frame

along a curve. Bishop frames are particularly useful for computing the structural information of

DNA in biology and for directing virtual cameras in computer graphics sine each curve’s interior

is well defined. Additionally, many of the numerous works on surfaces and curves connected to

the Bishop frame are included in [12–18].

In section 2, the Bishop frame is described in the Minkowski space of spacelike and timelike

curves. In section 3, we used to the Bishop frame to generate non-null canal surfaces and present

some results. Weingarten and linear-Weingarten non-null Bishop canal surfaces in Minkowski

3-space are produced in sections 4 and 5. The singular points of the Bishop canal surfaces are

obtained in section 6. Lastly, a graph and example of a specified surface are provided.

2. Preliminaries

The Minkowski 3-space E3
1 is characterized by its natural Lorentz metric,

〈, 〉 = −du2
1 + du2

2 + du2
3

where (u1, u2, u3) is a rectangular coordinate system of E3
1. The arbitrary vector u = (u1, u2, u3) in

E3
1 can be spacelike if 〈u, u〉 > 0 or u = 0, timelike if 〈u, u〉 < 0 and lightlike (null) if 〈u, u〉 = 0,

u , 0.

Similarly, a parameterized curveγ(s) : I ⊂ R −→ E3
1 where s is pseudo arclength parameter is called

a spacelike curve if
〈
γ′(s),γ′(s)

〉
> 0, timelike if

〈
γ′(s),γ′(s)

〉
< 0 and lightlike if

〈
γ′(s),γ′(s)

〉
= 0

or γ′(s) for all s ∈ I. The two vectors u = (u1, u2, u3), v = (v1, v2, v3) ∈ E3
1 are orthogonal if and
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only if 〈u, v〉 = 0. Also, for any u, v ∈ E3
1, Lorentzian vector product of u and v is defined by

u× v =

∣∣∣∣∣∣∣∣∣∣
−e1 e2 e3

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣∣∣ .
The norm of a vector u ∈ E3

1 is given by ‖u‖ =
√
| 〈u, u〉 |.

Let γ(s) : I −→ E3
1 be a space curve with a Bishop frame {T, N1, N2} consisting of the tangent

vector T, the principal normal vector N1 and the binormal vector N2, respectively.

We have three cases:

• If γ is a spacelike curve with a spacelike N1, then the Bishop frame of γ = γ(s) is expressed

as follows: 
T
′

(s)
N
′

1(s)
N
′

2(s)

 =


0 κ1(s) κ2(s)
−κ1(s) 0 0

κ2(s) 0 0




T(s)
N1(s)
N2(s)

 , (2.1)

where

〈T, T〉 = 1, 〈N1, N1〉 = 1, 〈N2, N2〉 = −1,

and the relation matrix between Serret-Frenet and Bishop frames is given by
T(s)
N1(s)
N2(s)

 =


1 0 0

0 coshϕ sinhϕ

0 sinhϕ coshϕ




T(s)
N(s)
B(s)

 , (2.2)

where the Bishop curvatures are defined by

κ1 = κ coshϕ ,κ2 = κ sinhϕ, ϕ = tanh−1
(
κ2
κ1

)
; κ1 , 0,

κ =
√
|κ2

1 − κ
2
2|.

 (2.3)

• If γ is a spacelike curve with a spacelike N2, then the Bishop frame of γ = γ(s) is expressed

as follows: 
T
′

(s)
N
′

1(s)
N
′

2(s)

 =


0 κ1(s) κ2(s)
κ1(s) 0 0

−κ2(s) 0 0




T(s)
N1(s)
N2(s)

 , (2.4)

where

〈T, T〉 = 1, 〈N1, N1〉 = −1, 〈N2, N2〉 = 1,

and the relation matrix between Serret-Frenet and Bishop frames is given by
T(s)
N1(s)
N2(s)

 =


1 0 0

0 coshϕ sinhϕ

0 sinhϕ coshϕ




T(s)
N(s)
B(s)

 , (2.5)
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where the Bishop curvatures are defined by κ1 = κ coshϕ ,κ2 = κ sinhϕ, ϕ = tanh−1
(
κ2
κ1

)
; κ1 , 0,

κ =
√
|κ2

1 − κ
2
2|.

(2.6)

• If γ is a timelike curve, then the Bishop frame of γ = γ(s) is expressed as follows:
T
′

(s)
N
′

1(s)
N
′

2(s)

 =


0 κ1(s) κ2(s)
κ1(s) 0 0

κ2(s) 0 0




T(s)
N1(s)
N2(s)

 , (2.7)

where

〈T, T〉 = −1, 〈N1, N1〉 = 1, 〈N2, N2〉 = 1,

and the relation matrix between Serret-Frenet and Bishop frames is given by
T(s)
N1(s)
N2(s)

 =


1 0 0

0 cosϕ − sinϕ

0 sinϕ cosϕ




T(s)
N(s)
B(s)

 , (2.8)

where the Bishop curvatures are defined by κ1 = κ cosϕ ,κ2 = κ sinϕ, ϕ = tan−1
(
κ2
κ1

)
; κ1 , 0,

κ =
√
κ2

1 + κ2
2.

(2.9)

[12].

3. Characterization of Bishop canal surfaces in E3
1

In E3
1, a canal surface M is defined as the envelope of a family of pseudospheres S2

1 centered along

a space curve c(s) and guided by the frame {T, N1, N2}. The surface can then be parameterized by:

M = Ψ(s,θ) = c(s) + m1(s,θ)T + m2(s,θ)N1 + m3(s,θ)N2, (3.1)

where m1, m2, and m3 are differentiable functions of s and θ. Moreover, if M is foliated by

pseudospheres S2
1, it is classified as a surface of type M+. This class can be further divided into

two types: if the spine curve c(s) is spacelike, then M+ is said to be of type M1
+; whereas if c(s) is

timelike, it is considered of type M2
+. Additionally, the surface M1

+ is subdivided into M11
+ and

M12
+ , which are referred to as Bishop canal surfaces.
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3.1. Bishop canal surface M11
+ . We consider M as a canal surface generated by the motion of

pseudospheres S2
1 along a spacelike center curve c(s) belonging to the surface type M11

+ . We

then describe the parameterization of the canal surface M11
+ using the Bishop frame {T, N1, N2}

associated with the curve c(s):

Ψ(s,θ) − c(s) = m1(s,θ)T + m2(s,θ)N1 + m3(s,θ)N2. (3.2)

By taking the derivative of the preceding equation with respect to s, we obtain

Ψs(s,θ) = (1 + m1s −m2κ1 + m3κ2)T + (m1κ1 + m2s)N1 + (m1κ2 + m3s)N2. (3.3)

From equation ‖Ψ(s,θ) − c(s)‖ = r2, we get

m2
1 + m2

2 −m2
3 = r2,

then

m1m1s + m2m2s −m3m3s = rr′.

Given the fact that 〈Ψ(s,θ)− c(s),Ψs〉 = 0 and from the previous equations, we can conclude that
m1 = −rr′,
m2 = ∓r

√

1− r′2 coshθ,

m2 = ∓r
√

1− r′2 sinhθ.

, (3.4)

then the equation of the canal surface can be expressed as

M11
+ = Ψ(s,θ) = c(s) − rr′T + r

√

1− r′2 (coshθN1 + sinhθN2) . (3.5)

According to Eq.(3.5), it is reasonable to consider that −r′(s) = cosϕ, where ϕ is a smooth function

depending on s, i.e., ϕ = ϕ(s). Consequently, the canal surface M11
+ takes the following form:

Ψ(s,θ) = c(s) + r cosϕT + r sinϕ (coshθN1 + sinhθN2) . (3.6)

Through differentiation with respect to s, we get

Ψs(s,θ) = Ψ1
s (s,θ)T +Ψ2

s (s,θ)N1 +Ψ
3
s (s,θ)N2, (3.7)

where 
Ψ1

s (s,θ) = sin2 ϕ− rr′′ + r sinϕw1,

Ψ2
s (s,θ) = r′ (sinϕ coshθ− rκ1 − rϕ′ coshθ) ,

Ψ3
s (s,θ) = r′ (sinϕ sinhθ− rκ2 − rϕ′ sinhθ) ,

w1 = κ2 sinhθ− κ1 coshθ.

Also,

Ψθ(s,θ) = Ψ1
θ(s,θ)T +Ψ2

θ(s,θ)N1 +Ψ
3
θ(s,θ)N2, (3.8)

where 
Ψ1
θ(s,θ) = 0,

Ψ2
θ(s,θ) = r sinϕ sinhθ,

Ψ3
θ
(s,θ) = r sinϕ coshθ.
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The component functions of the first fundamental form (I) are given by:

g11 = 〈Ψs,Ψs〉 = = r2
(
sin2 ϕ w2

1 + r′2(κ2
1 − κ

2
2) + ϕ′2 − 2ϕ′w1

)
− 2r(r′′ − sinϕ w1) + sin2 ϕ,

g12 = 〈Ψs,Ψθ〉 =r2r′ sinϕw2, where w2 = κ2 coshθ− κ1 sinhθ,

g22 = 〈Ψθ,Ψθ〉 = − r2 sin2 ϕ.

The unit normal vector field U of M11
+ is given by

U(s,θ) =
Ψs ×Ψθ

‖Ψs ×Ψθ‖
= cosϕT + sinϕ coshθN1 + sinϕ sinhθN2

Applying differentiation to s, we get

Us = U1
s T(s) + U2

s N1(s) + U3
s N2(s),

where 
U1

s = −r′′ + sinϕw1,

U2
s = −r′ (κ1 + ϕ′ coshθ) ,

U3
s = −r′ (κ2 + ϕ′ sinhθ) .

And

Uθ(s,θ) = U2
θ(s,θ)N1 + U3

θ(s,θ)N2, (3.9)

where 
U1
θ(s,θ) = 0,

U2
θ(s,θ) = sinϕ sinhθ,

U3
θ
(s,θ) = sinϕ coshθ.

The component functions of the second fundamental form (II) are expressed as:
L = −〈Ψs, Us〉 = −r

(
ϕ′2 + r′2

(
κ2

1 − κ
2
2

)
− 2ϕ′w1 + sin2 ϕ w2

1

)
+ (r′′ − sinϕ w1) ,

M = −〈Ψθ, Us〉 = −rr′ sinϕ w2,

N = −〈Ψθ, Uθ〉 = r sin2 ϕ.

Hence, the component functions of the third fundamental form (III) are expressed as:
e11 = 〈Us, Us〉 = ϕ′2 + r′2

(
κ2

1 − κ
2
2

)
− 2ϕ′w1 + sin2 ϕ w2

1,

e12 = 〈Uθ, Us〉 = r′ sinϕ w2,

e22 = 〈Uθ, Uθ〉 = − sin2 ϕ.

We denote the first, second, and third fundamental forms by I, II, and III, respectively.

Lemma 3.1. The fundamental forms I, II, and III of the Bishop canal surface M11
+ satisfy the following

relations:

L =
g11 + ρ1

−r
, M =

g12

−r
, N =

g22

−r
,

e11 =
L−Q1

−r
, e12 =

M
−r

, e22 =
N
−r

,
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where

Q1 = r′′ − sinϕ w1, ρ1 = rQ1 − sin2 ϕ.

From Lemma 3.1, the Gaussian and mean curvatures of M11
+ are given by respectively:

κG =
LN −M2

g11g22 − g2
12

=
Q1

rρ1
,

κM =
g11N − 2g12M + g22L

2(g11g22 − g2
12)

=
−2ρ1 − sin2 ϕ

2rρ1
.

3.2. Bishop canal surface M12
+ . Based on the definition of M12

+ , we can calculate and obtain,

M12
+ = Ψ(s,θ) = c(s) + µ1(s,θ)T + µ2(s,θ)N1 + µ3(s,θ)N2. (3.10)

µ1 = −rr′,
µ2 = ∓r

√

1− r′2 sinhθ,

µ2 = ∓r
√

1− r′2 coshθ.

(3.11)

Then, the equation of the canal surface can be expressed as:

M12
+ = Ψ(s,θ) = c(s) − rr′T + r

√

1− r′2 (sinhθN1 + coshθN2) . (3.12)

Based on Eq. (3.12), we may consider the assumption −r′(s) = cosϕ, where ϕ is a smooth function

depending on the arc-length parameter s, that is, ϕ = ϕ(s). Under this assumption, the canal

surface M12
+ is expressed as:

Ψ(s,θ) = c(s) + r cosϕT + r sinϕ (coshθN1 + sinhθN2) . (3.13)

By calculations similar to those of M11
+ , we obtain the following:

g11 =r2
(
sin2 ϕ w2

2 − r′2(κ2
1 − κ

2
2) + ϕ′2 + 2ϕ′w2

)
− 2r(r′′ + sinϕ w2) + sin2 ϕ,

g12 = − r2r′ sinϕw1,

g22 = − r2 sin2 ϕ.

The unit normal vector field U of M12
+ is given by

U(s,θ) =
Ψs ×Ψθ

‖Ψs ×Ψθ‖
= cosϕT + sinϕ sinhθN1 + sinϕ coshθN2


L = −r

(
ϕ′2 − r′2

(
κ2

1 − κ
2
2

)
+ 2ϕ′w2 + sin2 ϕ w2

2

)
+ (r′′ + sinϕ w2) ,

M = rr′ sinϕ w1,

N = r sin2 ϕ.
e11 = ϕ′2 − r′2

(
κ2

1 − κ
2
2

)
+ 2ϕ′w2 + sin2 ϕ w2

2,

e12 = −r′ sinϕ w1,

e22 = − sin2 ϕ.
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Lemma 3.2. The fundamental forms I, II, and III corresponding to the Bishop canal surface M12
+ are

expressed as follows:

L =
g11 + ρ2

−r
, M =

g12

−r
, N =

g22

−r
,

e11 =
L−Q2

−r
, e12 =

M
−r

, e22 =
N
−r

,

where

Q2 = r′′ + sinϕ w2, ρ2 = rQ2 − sin2 ϕ.

From Lemma 3.2, the curvatures of M12
+ are given by, respectively:

κG =
Q2

rρ2
, κM =

−2ρ2 − sin2 ϕ

2rρ2
.

3.3. Bishop canal surface M2
+. We can compute and derive, using the concept of timelike M2

+

M2
+ = Ψ(s,θ) = c(s) + ν1(s,θ)T + ν2(s,θ)N1 + ν3(s,θ)N2. (3.14)

ν1 = rr′,
ν2 = ∓r

√
1 + r′2 cosθ,

ν2 = ∓r
√

1 + r′2 sinθ.

(3.15)

Then, the equation of the canal surface can be expressed as:

M2
+ = Ψ(s,θ) = c(s) + rr′T + r

√
1 + r′2 (cosθN1 + sinθN2) . (3.16)

From Eq.(3.16), we can assume that r′(s) = tanϕ and ϕ ∈
(
−π
2 , π2

)
. Then, the canal surface M2

+ can

be written as:

Ψ(s,θ) = c(s) + r tanϕT + r secϕ (cosθN1 + sinθN2) . (3.17)

g11 =r2
(
− sec2 ϕ w2

3 + r′2(κ2
1 + κ2

2) −ϕ
′2 sec2 ϕ− 2ϕ′ secϕ w3

)
− 2r(r′′ + secϕ w3) − sec2 ϕ,

g12 =r2r′ secϕ w4, where w3 = κ1 cosθ+ κ2 sinθ, w4 = κ2 cosθ− κ1 sinθ

g22 =r2 sec2 ϕ.

The unit normal vector field U of M2
+ is given by

U(s,θ) =
Ψs ×Ψθ

‖Ψs ×Ψθ‖
= tanϕT + secϕ cosθN1 + secϕ sinθN2


L = −r

(
−ϕ′2 sec2 ϕ+ r′2

(
κ2

1 + κ2
2

)
− 2ϕ′ secϕ w3 − sec2 ϕ w2

3

)
+ (r′′ + secϕ w3) ,

M = −rr′ secϕ w4,

N = −r sec2 ϕ.
e11 = −ϕ′2 sec2 ϕ+ r′2

(
κ2

1 + κ2
2

)
− 2ϕ′ secϕ w3 − sec2 ϕ w2

3,

e12 = r′ secϕ w4,

e22 = sec2 ϕ.
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Lemma 3.3. The Bishop canal surface M2
+ possesses the fundamental forms I, II, and III, which satisfy the

following relations:

L =
g11 + ρ3

−r
, M =

g12

−r
, N =

g22

−r
,

e11 =
L−Q3

−r
, e12 =

M
−r

, e22 =
N
−r

,

where

Q3 = r′′ + secϕ w3, ρ3 = rQ3 + sec2 ϕ.

From Lemma 3.3, the curvatures of M2
+ are given by, respectively:

κG =
Q3

rρ3
, κM =

sec2 ϕ− 2ρ3

2rρ3
.

Proposition 3.1. The curvatures κG and κM of the Bishop canal surfaces
{
M11

+ , M12
+ , M2

+

}
can be repre-

sented by

κM = −
1
2

(
κGr +

1
r

)
.

4. Weingarten canal surfaces in E3
1

In this section, we investigate (u, v)-Weingarten canal surfaces (W-CS) in the Minkowski 3-space

E3
1 based on the Bishop frame. We introduce key definitions and derive conditions under which

these surfaces satisfy Weingarten relations. Special attention is given to the cases of surfaces of

revolution and tube surfaces.

Definition 4.1. Let (u, v) be a pair of distinct curvature functions, selected from κG and κM, associated with
a canal surface M. If the surface M satisfies the conditionΦ(u, v) = 0, then it is called an (u, v)-(W-CS).
Here,Φ represents the Jacobi function given byΦ = uv− vu [3].

Definition 4.2. Let (u, v) be two distinct curvature functions selected from κG and κM of a canal surface
M. If the surface satisfies a linear equation of the form au+ bv = c, then it is called an (u, v)-linear (W-CS),
where (a, b, c) ∈ R and (a, b, c) , (0, 0, 0) [19].

Lemma 4.1. Partial derivatives of the Gaussian curvature κG and the mean curvature κM of the canal
surface M11

+ are as follows

κGs =
σ1

r2ρ2
1

, κGθ =
sin3 ϕ w2

rρ2
1

,

κMs =
σ2

2r2ρ2
1

, κMθ = −
sin3 ϕ w2

2ρ2
1

,

where,

σ1 = sin2 ϕ(−2rr′w2
1 − rr′′′ − r sinϕ w′1 + r′ sinϕ w1 + r′r′′) − 4rr′r′′2 + 5rr′r′′ sinϕ w1,
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σ2 = sin2 ϕ(2r2r′w2
1 + r2r′′′ + r2 sinϕ w′1 + 2rr′ sinϕ w1 − 2rr′r′′ + r′ sin2 ϕ)

+ 4r2r′r′′2 − 5r2r′r′′ sin2 ϕ w1

Theorem 4.1. The spacelike canal surface M11
+ , with respect to the Bishop frame, satisfies the (κG,κM)-

Weingarten condition if and only if it represents either a tubular surface or a surface generated by revolution.

Proof. A (κG,κM)-(W-CS) M11
+ satisfies Jacobi equation κMsκGθ −κMθκGs = 0, and form Proposition

3.1, we get (
κGr′ −

r′

r2

)
κGθ = 0.

If κGθ = 0, then

sin2 ϕ(κ2 coshθ− κ1 sinhθ) = 0,

and for sinϕ , 0, we have κ2 coshθ − κ1 sinhθ = 0 then κ = 0, which means M11
+ is a surface of

revolution.

On the other side, if κGθ , 0, then

r′
(
κG −

1
r2

)
= 0,

this implies that r′ = 0, indicating that r is constant and consequently M11
+ represents a tubular

surface. �

We suppose that M11
+ is a surface generated by revolution (i.e.,κ1 = κ2 = 0). Then, by applying

Lemma 3.1, we obtain:

ρ1 = rr′′ − 1 + r′2, Q1 = r′′,

κG =
r′′

r(rr′′ − 1 + r′2)
,

κM =
2rr′′ − 1 + r′2

−2r(rr′′ − 1 + r′2)
.

Therefore, the expressions for the partial derivatives of κG and κM can be written as follows:
κGs =

1
r2

((
rr′′

rr′′−1+r′2

)′
−

2r′r′′
rr′′−1+r′2

)
,

κMs =
−1
2

(
1
r

( rr′′

rr′′ − 1 + r′2
+ 1

))′
,

κGθ = κMθ = 0.

(4.1)

From Eq. (4.1), the Jacobi equation turns into an identity.

On the other hand, if M11
+ is a tube surface (which mean r′ = cosϕ = 0 i.e., ϕ = nπ

2 , n is an odd

number). From Lemma 3.1, we get
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

ρ1 = −rw1 − 1, Q1 = −w1,

κG = w1
r(rw1+1) , κM = 2rw1+1

2r(rw1+1) ,

κGs =
−w′1

r(rw1 + 1)2 , κGθ =
−w′2

r(rw1 + 1)2 ,

κMs =
−w′1

2(rw1 + 1)2 , κMθ =
−w′2

2(rw1 + 1)2 .

(4.2)

From Eq. (4.2), the Jacobi equation is satisfied everywhere.

Lemma 4.2. Partial derivatives of κG and κM of the canal surface M12
+ are as follows,

κGs =
σ3

r2ρ2
2

, κGθ =
sin3 ϕ w1

rρ2
2

,

κMs =
σ4

2r2ρ2
2

, κMθ = −
sin3 ϕ w1

2ρ2
2

,

where,

σ3 = sin2 ϕ(−2rr′w2
2 − rr′′′ − r sinϕ w′2 + r′ sinϕ w2 + r′r′′) − 4rr′r′′2 − 5rr′r′′ sinϕ w2,

σ4 = sin2 ϕ(2r2r′w2
2 + r2r′′′ + r sinϕ w′2 − 2r′ sinϕ w2 − 2rr′r′′ + r′ sin2 ϕ)

+ 4r2r′r′′2 + 5r2r′r′′ sin2 ϕ w2.

Theorem 4.2. The spacelike canal surface M12
+ , described using the Bishop frame, satisfies the (κG,κM)-

Weingarten condition if and only if it corresponds to either a tubular surface or one formed by revolution.

Proof. A (κG,κM)-(W-CS) M12
+ satisfies Jacobi equation κMsκGθ −κMθκGs = 0, and form Proposition

3.1, we get (
κGr′ −

r′

r2

)
κGθ = 0.

If κGθ = 0, then

sin2 ϕ(κ2 sinhθ− κ1 coshθ) = 0,

and for sinϕ , 0, we have κ2 coshθ − κ1 sinhθ = 0 then κ = 0, which means M12
+ is a surface of

revolution.

On the other side, if κGθ , 0, then

r′
(
κG −

1
r2

)
= 0,

this yields r′ = 0, implying that r is constant and hence M12
+ represents a tubular surface. �

Suppose that M12
+ is generated by revolution (that is, κ1 = κ2 = 0). Then, by applying Lemma

3.2, we obtain:
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ρ2 = rr′′ − 1 + r′2, Q2 = r′′,

κG =
r′′

r(rr′′ − 1 + r′2)
,

κM =
2rr′′ − 1 + r′2

−2r(rr′′ − 1 + r′2)
.

Thus, the partial derivatives of κG and κM are given by
κGs =

1
r2

((
rr′′

rr′′−1+r′2

)′
−

2r′r′′
rr′′−1+r′2

)
,

κMs =
−1
2

(
1
r

( rr′′

rr′′ − 1 + r′2
+ 1

))′
,

κGθ = κMθ = 0.

(4.3)

Based on Eq.(4.3), the Jacobi equation simplifies to an identity.

Alternatively, if M12
+ represents a tubular surface (i.e., when r′ = cosϕ = 0, which occurs for

ϕ = nπ
2 with odd n), then from Lemma 3.2, we obtain:

ρ2 = −rw2 − 1, Q2 = w2,

κG = w2
r(rw2−1) , κM = −2rw2+1

2r(rw2−1) ,

κGs =
w′2

r(rw2 − 1)2 , κGθ =
w′1

r(rw2 − 1)2 ,

κMs =
w′2

2(rw2 − 1)2 , κMθ =
w′1

2(rw2 − 1)2 .

(4.4)

From Eq. (4.4), the Jacobi equation is satisfied everywhere.

Lemma 4.3. Partial derivatives of κG and κM of the canal surface M2
+ are as follows,

κGs =
σ5

r2ρ2
3

, κGθ =
sec3 ϕ w4

rρ2
3

,

κMs =
σ6

2r2ρ2
3

, κMθ = −
sec3 ϕ w4

2ρ2
3

,

where,

σ5 = sec2 ϕ(−2rr′w2
3 + rr′′′ + r secϕ w′3 − r′ secϕ w3 − r′r′′) − 4rr′r′′2 − 5rr′r′′ secϕ w3,

σ6 = sec2 ϕ(2r2r′w2
3 − r2r′′′ − r2 secϕ w′3 − 2rr′ secϕ w3 − 2rr′r′′ + r′ sec2 ϕ)

+ 4r2r′r′′2 + 5r2r′r′′ sec2 ϕ w2.

Theorem 4.3. A spacelike canal surface M2
+, described in the context of the Bishop frame, satisfies the

(κG,κM)-Weingarten condition if and only if it is either a tube or a surface generated by revolution.

Proof. A (κG,κM)-(W-CS) M2
+ satisfies Jacobin equationκMsκGθ −κMθκGs = 0, and form Proposition

3.1, we get
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(
κGr′ −

r′

r2

)
κGθ = 0.

If κGθ = 0, then

sin2 ϕ(κ2 cosθ− κ1 sinθ) = 0,

and for sinϕ , 0, we have κ2 cosθ− κ1 sinθ = 0 then κ1 = κ2 = 0, which means M2
+ is a surface

of revolution.

On the other side, if κGθ , 0, then

r′
(
κG −

1
r2

)
= 0,

this results in r′ = 0, indicating that r remains constant, and thus M2
+ is a tubular surface. �

Assume that M2
+ is a surface generated by revolution (i.e., κ1 = κ2 = 0). Then, based on Lemma

3.2, we obtain:

ρ3 = rr′′ + 1 + r′2, Q3 = r′′,

κG =
r′′

r(rr′′ + 1 + r′2)
,

κM = −
2rr′′ + 1 + r′2

2r(rr′′ + 1 + r′2)
.

Thus, the partial derivatives of κG and κM are given by
κGs =

(
rr′′

r(rr′′+1+r′2)

)′
,

κMs =

(
−

2rr′′ + 1 + r′2

2r(rr′′ + 1 + r′2)

)′
,

κGθ = κMθ = 0.

(4.5)

According to Eq.(7.1), the Jacobi equation simplifies to an identity.

Conversely, if M2
+ is a tubular surface (i.e., when r′ = cosϕ = 0, which occurs for ϕ = nπ

2 with

odd n), then from Lemma 3.3, we have:

ρ2 = rw3 + 1, Q2 = w3,

κG = w3
r(rw3+1) , κM = −2rw3−1

2r(rw3+1) ,

κGs =
w′3

r(rw3 + 1)2 , κGθ =
w′4

r(rw3 + 1)2 ,

κMs =
w′3

2(rw3 + 1)2 , κMθ = −
w′4

2(rw3 + 1)2 .

(4.6)

From Eq. (4.6), the Jacobi equation is satisfied everywhere.
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5. linearWeingarten canal surfaces in E3
1

This section explores (u, v)-linear (W-CS) in E3
1 defined via the Bishop frame. These surfaces

satisfy a linear relation between their curvatures and are classified based on their geometric

properties, such as being developable, minimal, tubes, or surfaces of revolution.

Theorem 5.1. The spacelike canal surfaces M11
+ and M12

+ , expressed with respect to the Bishop frame in
E3

1, are developable if and only if they take the form of either a circular cylinder or a circular cone.

Proof. The spacelike canal surface M11
+ is developable if and only if its Gaussian curvature κG

vanishes. Based on Lemma 3.1, we obtain:

Q1 = r′′ − sinϕ w1 = 0,

this implies that r′′ = 0 and κ1 = κ2 = 0, that is, κ = 0.

Hence, the radius function takes the form r(s) = as + b, where a and b are constants satisfying

a , ±1. If this condition fails, we obtain sinϕ = 0, which leads to a contradiction. Therefore, the

surface M11
+ corresponds to a circular cylinder when a = 0, and becomes a circular cone when

b , 0 and a , ±1. �

Theorem 5.2. A timelike canal surface M2
+, defined relative to the Bishop frame in E3

1, is developable if
and only if it is either a circular cylinder or a circular cone.

Proof. It’s similar to Theorem 5.1. �

Theorem 5.3. The spacelike canal surfaces M11
+ and M12

+ , with respect to the Bishop frame in E3
1, are

minimal if and only if they are catenoids.

Proof. The spacelike canal surface M11
+ is considered minimal if and only if its mean curvature κM

vanishes. From Lemma 3.1, it follows that:

−2ρ1 − sin2 ϕ = 0,

2rr′′ + 2r sinϕ w1 + 2 sin2 ϕ− sin2 ϕ = 0,

2rr′′ + sin2 ϕ = 0 and 2r sinϕ w1 = 0.

Since r , 0 and sinϕ , 0, we have

w1 = κ2 sinhθ− κ1 coshθ = 0,

which leads to κ = 0, and therefore M11
+ must be a surface of revolution. �

Theorem 5.4. A timelike canal surface M2
+, described with respect to the Bishop frame in E3

1, is minimal
if and only if it corresponds to a catenoid.

Proof. It’s similar to Theorem 5.3. �

We now examine the classical (u, v)-linear (W-CS). Without loss of generality, we may set c = 1

in the relation au + bv = c.
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Theorem 5.5. The spacelike canal surface M11
+ (or M12

+ ) satisfies the (κG,κM)-linear Weingarten condition
if and only if it belongs to one of the following types:

(i) A tubular surface with radius r = − b
a ,

(ii) A surface of revolution of the form:

Ψ(s,θ) = (r sinϕ coshθ, r sinϕ sinhθ, r cosϕ θ) ,

where

s = c2 ∓

∫ √
r2 + br− a

r2 + br− a− c1
dr.

Proof. If a surface satisfies the (κG,κM)-linear Weingarten condition, then it must fulfill the relation

aκG + bκM = 1,

where a, b ∈ R and (a, b) , (0, 0). Then,

κM =
1− aκG

b
,

= −
1
2

(
κGr +

1
r

)
.

From Lemma 3.1, κG

(
2ar− br2

)
= b + 2r, we get(
2ar− br2

)
(r′′ − sinϕ w1)

r
(
rr′′ − r sinϕ w1 − sin2 ϕ

) = b + 2r,

this leads to  2κ2 sinϕ
(
r2 + br− a

)
− 2κ1 sinϕ

(
r2 + br− a

)
= 0,

−2r′′
(
r2 + br− a

)
+

(
1− r′2

)
(b + 2r) = 0.

(5.1)

Case1: According to Eq. (5.1), if κ1 = κ2 = 0, it follows that κ = 0. As a result, M11
+ is a surface of

revolution, and its radial function satisfies:

2r′′
(
r2 + br− a

)
=

(
1− r′2

)
(b + 2r) .

By solving the above equation, we get

s = c2 ∓

∫ √
r2 + br− a

r2 + br− a− c1
dr,

where c1, c2 are constants.

Since κ = 0, we may, without loss of generality, take the spine curve as c(s) = (0, 0, s). The

corresponding Bishop frame is

T = (0, 0, 1), N1 = (1, 0, 0), N2 = (0, 1, 0).

Then, the surface M11
+ can be represented by:

Ψ(s,θ) = (r sinϕ coshθ, r sinϕ sinhθ, r cosϕ+ s) .
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Case2: If κ = 0, then the relation a − br − r2 = 0 holds. This gives r = − b
2 , which is a non-zero

constant, meaning M11
+ is a tubular surface. The constants a and b must satisfy b2 + 4a = 0. Note

that M11
+ becomes a circular cylinder when κ1 = κ2 = κ = 0 and the condition r2 + br − a = 0 is

fulfilled. �

Theorem 5.6. The timelike canal surface M2
+ satisfies the (κG,κM)-linear Weingarten condition if and

only if it is one of the following types:

(i) A tube with radius r = − b
2a ,

(ii) A surface of revolution of the form:

Ψ(s,θ) = (r secϕ cosθ, r secϕ sinθ, r tanϕ+ s) ,

where

s = c2 ∓

∫ √
a− r2

− br
a− r2 − br− c1

dr.

Proof. It is similar to (5.5).

�

6. Singularities of the canal surfaces in E3
1

In this section, we analyze the singularities of canal surfaces in the Minkowski 3-space E3
1.

Singular points are characterized by the vanishing of the Lorentzian vector product of the partial

derivatives of the surface. We derive the conditions under which singularities occur for both

spacelike and timelike canal surfaces.

Definition 6.1. Let Ψ(s,θ) be a surface in E3
1. Then the singular points are the points on the surface

Ψ(s,θ) such thatΨs ×Ψθ = 0 [9].

Theorem 6.1. The point M11
+ (M12

+ ) = Ψ(s0,θ0) of a spacelike surface M11
+ (M12

+ ) = Ψ(s,θ) is a singular
point if and only if

sin2 ϕ− rr′′ + r sinϕw1 = 0 (6.1)

Proof.

Ψs ×Ψθ =
(
sin2 ϕ− rr′′ + r sinϕw1

)
(r cosϕT + r sinϕ coshθN1 + sinhθN2)

Then sin2 ϕ− rr′′ + r sinϕw1 = 0. �

Corollary 6.1. If the vector M11
+ (M12

+ ) ofΨ1
s is on the normal plane spanned by N1 and N2 then all points

on the surface are singular.

Corollary 6.2. If spacelike surface M11
+ (M12

+ ) is cyclindrical cylinder or circular cone then it has no singular
points on M11

+ (M12
+ ).
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Theorem 6.2. The point M2
+ = Ψ(s0,θ0) of a timelike surface M11

+ (M2
+) = Ψ(s,θ) is a singular point

if and only if
rr′′ + r secϕ w3 + sec2 ϕ = 0 (6.2)

Corollary 6.3. If the vector M2
+ ofΨ1

s is on the normal plane spanned by N1 and N2 then all points on the
surface are singular.

Corollary 6.4. If a timelike surface M2
+ is a cylindrical cylinder or circular cone, then it has no singular

points on M2
+.

7. Computational example

Let c(s) be the center curve timelike ℵ given as:

ℵ(s) =
(√

6s, cos
(√

5s
)

, sin
(√

5s
))

,

the Frenet frame 

T =
(√

6,−
√

5 sin
(√

5s
)

,
√

5 cos
(√

5s
))

,

N =
(
0,− cos

(√
5s

)
,− sin

(√
5s

))
,

B =
(√

5,
√

6 sin
(√

5s
)

,−
√

6 cos
(√

5s
))

,

κ = 5, τ =
√

30,

ϕ =
∫ s

0

√
30ds =

√
30s.

(7.1)

Now, we can find the timelike Bishop frame as:

T =
(√

6,−
√

5 sin
(√

5s
)

,
√

5 cos
(√

5s
))

,

N1 = {−
√

5 sin
(√

30s
)

,− cos
(√

5s
)

cos
(√

30s
)
−

√

6 sin
(√

5s
)

sin
(√

30s
)

,

− sin
(√

5s
)

cos
(√

30s
)
+
√

6 cos
(√

5s
)

sin
(√

30s
)
},

N2 = {
√

5 cos
(√

30s
)

,− cos
(√

5s
)

sin
(√

30s
)
+
√

6 sin
(√

5s
)

cos
(√

30s
)

,

− sin
(√

5s
)

sin
(√

30s
)
−

√

6 cos
(√

5s
)

cos
(√

30s
)
}.

when the radius function r(s) =
√

3s, the timelike Bishop canal surface (see Figure 1);

Ψ(s,θ) =
√

6s + 9
√

2s− 2
√

15s cosθ sin
√

30s + 2
√

15s sinθ cos
√

30s,

cos
√

5s− 3
√

15s sin
√

5s + 2
√

3s cosθ(− cos
√

5s cos
√

30s−
√

6 sin
√

5s sin
√

30s)+

2
√

3s sinθ(− cos
√

5s sin
√

30s +
√

6 sin
√

5s cos
√

30s),

sin
√

5s + 3
√

15s cos
√

5s + 2
√

3s cosθ(− sin
√

5s cos
√

30s +
√

6 cos
√

5s sin
√

30s)+

2
√

3s sinθ(− sin
√

5s sin
√

30s−
√

6 cos
√

5s cos
√

30s.
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Figure 1. Timelike canal surface M2
+ with r(s) =

√
3s

8. Conclusion

This study examines spacelike and timelike canal surfaces generated by S2
1 pseudo spheres

in Minkowski 3-space utilizing the Bishop frame. M11
+ , M12

+ represent spacelike Bishop canal

surfaces, while M2
+ denotes a timelike Bishop canal surfaces. Linear Weingarten and Weingarten

canal surfaces are categorized to display their geometric characteristics and singular points. Bishop

canal surfaces can be examined in lightlike cone Q2
1 or hyperbolic space H2

0.
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