
Int. J. Anal. Appl. (2025), 23:221

Uniqueness of Fixed Points for Multi-Valued Mappings in Orthogonal Ultrametric
Spaces

Balaanandhan Radhakrishnan1, Uma Jayaraman2, Kandhasamy Tamilvanan3,4,
Khaled Suwais5, Nabil Mlaiki6,∗

1Department of Mathematics, Sri Sankara Arts and Science College (Autonomous), Enathur-631 561,
Kanchipuram, Tamil Nadu, India

2Department of Mathematics, College of Engineering and Technology, SRM Institute of Science and
Technology, Kattankulathur- 603203, Chengalpattu, Tamilnadu, India

3Department of Mathematics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical
Sciences, Saveetha University, Tandalam, Chennai -602 105, Tamil Nadu, India

4Department of Mathematics, Faculty of Science and Humanities, R.M.K. Engineering College,
Kavaraipettai, Thiruvallur - 601206, Tamil Nadu, India

5Faculty of Computer Studies, Arab Open University, Riyadh 11681, Saudi Arabia
6Department of Mathematics and Sciences, Prince Sultan University, Riyadh, 11586 Saudi Arabia

∗Corresponding author: nmlaiki2012@gmail.com; nmlaiki@psu.edu.sa

Abstract. This research aims to prove that multi-valued mappings in orthogonal ultrametric space (O-UMS) have only

one fixed point (FP). We achieve this result using a variety of contraction conditions, without assuming spherical

completeness. This allows us to state fixed-point problems exactly. Additionally, we explore the implications of these

results for integral equations and nonlinear fractional integral-differential equations. By utilizing these contractions,

our research contributes to a better understanding of O-UMS.

1. Introduction

Fixed-point is a well-known mathematical theory that has a wide range of applications. It

uses contraction as a primary tool to establish a FP’s existence and uniqueness. There are three

primary subjects in the theory of FP: topological, metric, and discrete. Metric fixed-point theory

studies the FPs of mappings in metric spaces, which are points that remain unchanged under the

function. This theory provides an important framework for analyzing the existence, uniqueness,
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and properties of these FPs, and it has many applications across several disciplines, such as

mathematics, physics, economics, computer science, and engineering. The Banach fixed-point

theorem, also known as Banach’s contraction principle, is one of the most well-known theorems

about FPs. It is constructive and provides a solution to the existence and uniqueness of the operator

equation Tx = x. It is also very useful for studying nonlinear equations. The Banach contraction

principle suggests that if you have a contractive mapping on a complete metric space, then there is

a FP. This can be used to solve many mathematical problems and prove that there are only one or

more solutions.Several researchers have made significant contributions by developing, extending,

and generalizing theorems in different areas.

The multi-valued mappings theory, combining analysis, topology, and geometry, has fascinated

researchers in several mathematical disciplines.Applied mathematics problems often need to use

multi-valued mappings instead of single-valued maps, which are used in traditional analysis. For

instance, fixed-point methods for multi-valued mappings can solve stability and control theory.

It’s easy for learners to understand the idea of set-valued maps when they look at the equivalents

of basic trigonometric functions. This shows the significance of multi-valued mappings for solving

problems in mathematics. Multi-valued maps are interesting to mathematicians from many differ-

ent fields because they are at the interface of analysis, topology, and geometry. Although classical

analysis is concerned with mappings with a single value, numerous findings in applied math-

ematics involve multi-valued mappings. For example, fixed-point techniques for multi-valued

mappings could be used to address problems in the fields of stability and control theory. While the

researchers study the inverses of simple trigonometric functions, they first encounter a set-valued

map. While they solve mathematical problems, it helps them understand multi-valued mappings.

The use of the Hausdorff metric to investigate FPs for multi-valued mappings was initially

done by Markin [23]. In a subsequent work, Nadler [24] expanded the scope of the Banach

contraction principle to include multi-valued contraction maps in complete metric spaces. Several

researchers have extensively studied the suitability of the multi-valued version of the traditional

Fixed Point Theorem (FPT) for certain mappings (see references [6, 20]). Aubin [30] was the first

to investigate the notion of fixed points for multi-valued mappings, which is a significant concept

that falls between single-valued maps and multi-valued maps. See [5,29] for more information on

FP theory in metric spaces.

The topic of non-Archimedean analysis was officially recognized in 1943 with the publication

of Monna’s collection of publications. Several authors have used Van Rooij’s work on non-

Archimedean Banach spaces (see [4], [27]), which has made significant effects on the success of

researchers in this field. Gajic et al. [15] conducted a recent study where they utilized generalized

contraction to obtain fixed-point results in an UMS. On the other hand, Rao et al. [28] established

sufficient criteria for the existence of coincidence points in the case of three and four self-mappings.

The criteria mentioned above are based on certain contractive conditions. For further information,

see [21] articles and their cited references.
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In 2016, Alaca et al. [1] discovered fixed-point outcomes for modular UMSs. Further, UMSs

have distinct characteristics that differentiate them from other metric spaces. These spaces exhibit

ultrametric inequality, resulting in unique geometric and topological features that lead to differ-

ent outcomes when compared to standard metric spaces. In particular, we construct theorems for

UMSs that take into account their unique characteristics. The existence of FPT in non-Archimedean

normed and partially ordered ultrametric spaces was demonstrated by Mamghaderi [22] in 2017.

His research focused on mappings that are both single-valued and strongly contracted. Ad-

ditionally, Ramesh Kumar and Pitchaimani [27] examined precise-rich mappings in UMSs for

contractions and set-valued contractions. Also, Almalki et al. [2] used different contractions to

find common FP results in modular UMSs.

Initially, Gordji et al. introduced the concept of orthogonality in their work [19] and established

FP theorems within the framework of orthogonally complete metric spaces. Researchers have

been developing and expanding orthogonal metric spaces since their initial development. Some

important progress has been made in this area by (see [9,16–18]). These researchers have expanded

upon the original ideas, exploring new properties, applications, and FP theorems in orthogonal

metric spaces. Their work greatly improved our understanding of orthogonal structures and their

application in mathematical analysis.

Ultrametric spaces distinguish themselves from standard metric spaces due to a unique property

known as ultrametric inequality. In these spaces, the distance between two points is always less

than or equal to the maximum of their individual distances from a third point, contrasting with

the typical triangle inequality found in standard metric spaces. The investigation of FPs in UMSs

produces results that are both interesting. The Banach Fixed Point result for UMSs is a well-known

result in this field. It says that if a contraction mapping is given to a complete O-UMS, it will

have a single UFP. A contraction mapping is a function that reduces the distances between points,

whereas completeness ensures that the space encompasses all its limit points.

1.1. The frame work of this study.
We have divided it into five sections. In Section 1, we discuss the motivation and background

of this study. Section 2 discusses the preliminary results, and Section 3 covers the main results.

Section 4 contains applications to integral equations. Section 5 presents the conclusion. The

goal of this work is to find out if there are any unique FPs for multi-valued maps that meet

more generalized contraction conditions in an O-UMS. Furthermore, we explore the application

of integral equations for fixed-point problems.

2. Preliminaries

Here, we begin this section of our research by defining the following frequently used terms:

Definition 2.1. [26] If all Cauchy sequences converge, we say that the space is complete in
the ultrametric system. Assume that (f, B) is an extreme geometry space. We say that CB(f) is the
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collection of all closed, non-void subsets of f that are bounded. i.e., Π is a Hausdorff metric.

Π(A∗, B∗) = max
{

supa∈AD(a, B∗), supb∈BD(b, A∗)
}

,

for A∗, B∗ in CB(f), where B(x, B∗) = infy∈B∗ B(x, y). It is evident that this is a UMS.

Definition 2.2. [26] The map Π : f→ CB(f) and j : f→ f so that, given a non-empty set f,
(a) A point of coincidence between j and Π is defined as u ∈ f if u = j(ג) ∈ Π(ג).
(b) A CFP of j and Π is said to be ג ∈ f if ג = j(ג) ∈ Π(ג).
(c) If ג ∈ Π(ג), then ג ∈ f is said to be a FP of Π.

Remark 2.1. Consider an UMS (f, B), and A,B ∈ CB(Ω). Then, there exist } ∈ B such that, for any
ג ∈ A and ε ≥ 0,

B(ג, }) ≤ Π(A,B) + ε.

The idea of an O-set was first presented by Gordji et al. [19], who also provided examples and

details on these sets.

Definition 2.3. [19] Consider a non-empty set f and a binary relation ⊥ that is a subset of f ×f. If a
line is perpendicular and satisfies the following condition:

oג∃ : (∀}, } ⊥ (0ג or (∀}, 0ג ⊥ })

it is known as an orthogonal set, often abbreviated as O-set. We can write this O-set as (f,⊥).

Example 2.1. [19] Let f represent the collection that includes all persons globally. Let us consider the
binary relation ⊥ on f, where ג ⊥ } if ג has the ability to donate blood to }. According to the below table,
if a person has blood type O-, then they are incompatible with all other blood types. This suggests that the
combination of (f,⊥) creates an O-set. It’s worth mentioning that the selection of 0ג in this O-set is not
limited to just one option.

In the given example, 0ג could possibly represent an individual with blood type AB+. For all

values of } in f, it is true that } ⊥ 0ג in this situation.

Definition 2.4. [19] Consider (f,⊥) as an O-set. A sequence nג is considered an O-sequence if

(∀n, nג ⊥ (n+1ג or (∀n, n+1ג ⊥ .(nג

Definition 2.5. [19] Consider the O-metric space (f, B). A mapping Π : f → f is considered to be
O-continuous at ג ∈ f if, for any O-sequence nג ∈ f such that the distance between nג and ג approaches
zero, the distance between Πגn and Πג also approaches zero.

Definition 2.6. [19] Let (f,⊥) be an O-set with the metric B. It is said that the triplet (f, B,⊥) is
O-complete if every O-Cauchy sequence converges.
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Table 1. Depiction of a blood types

Type You can give blood to You can receive blood from

AB− AB+, AB− AB−, B−, O−, A−
B− B+, B−, AB+, AB− B−, O−
O− Every one O−
A− A+, A−, AB+, AB− A−, O−

AB+ AB+ Every one

B+ B+, AB+ B+, B−, O+, O−
O+ O+, A+, B+, AB+ O+, O−
A+ A+, AB+ A+, A−, O+, O−

Figure 1. Visual depiction of a blood example.

Definition 2.7. [19] Consider an O-metric space denoted by (f, B,⊥), where f is the set of elements, B
is the collection of subsets, and ⊥ represents the distance function. Additionally, suppose that λ is a real
number such that 0 < λ < 1. A map Π : f → f is referred to as an O-contraction with a Lipschitz
constant of λ. If, for every pair of elements a and b in f such that a is perpendicular to b, the following
condition is satisfied:

B(Πג, Π}) ≤ λB(ג, }).

Definition 2.8. [19] Let (f,⊥) be an O-set. A function Π : f→ f is termed
O-preserving if for any ,ג } ∈ f, ג ⊥ } implies Πג ⊥ Π}.

Definition 2.9. [31] Consider A and B are distinct non-void subsets of the O-set (f,⊥). ⊥ represents
the relation stating that setA is O-related to set B. A ⊥ B if ג ∈ A and } ∈ B, then ג ⊥ }.

Theorem 2.1. [31] Consider an O-complete O-metric space denoted by (f,⊥, B) and Π : f → CB(⊗)

be a multi-valued mapping on f. If these conditions hold:
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i) there exist 0ג ∈ f such that {0ג} ⊥ Π0ג or Π0ג ⊥ .{0ג}
ii) for all ,ג } ∈ f, ג ⊥ } implies Πג ⊥ Π}.

iii) if {nג} is an O-sequence in f such that nג → ∗ג ∈ f, then nג ⊥ ∗ג or ∗ג ⊥ nג for all n ∈ N.

3. Main Results

This section uses a multi-valued O-contraction map to demonstrate the unique FPT in O-

complete O-UMS. Our primary outcomes provide the following benefits:

1. Introduce the concept of an O-UMS.

2. The FP theorem for self-mappings defined on O-UMSs is given using extensions of O-

multi-valued contractions.

3. We aim to determine whether the integral equation possesses a unique solution by applying

our primary findings.

Definition 3.1. Let (Ω, B,⊥) be called an orthogonal ultrametric space (O- UMS) if (Ω,⊥) is an orthogonal
set and (Ω, B) is an ultrametric space.

Theorem 3.1. Let (f, B⊥) be a complete O-UMS and Π : f→ CB(⊗) be a mapping that fulfills

k(Πג, Π}) ≤ αB⊥(ג, }) + βB⊥(ג, Πג) + γB⊥(}, Π}) + δ[D̆(ג, Π}) + D̆(}, Πג)] (3.1)

for all ,ג } ∈ f, the conditions are α, β,γ, δ ≥ 0 and 2δ+ α+ β+ γ < 1. Then Π has a UFP in f.

Proof. For 0ג ∈ ,ג 1ג ∈ Π0ג,

0ג] ⊥ 1ג or 1ג ⊥ ,[0ג and [Π0ג ⊥ Π1ג or Π1ג ⊥ Π0ג],

define j =
α+ β+ δ

1− γ− δ
. Assume that j = 0, then the proof is trivial. Consider j > 0, then there exists

2ג ∈ Π1ג, (Π1ג ⊥ (2ג such that

B⊥(1ג, (2ג ≤ k(Π0ג, Π1ג) + j.

Now, Π1ג, Π2ג ∈ CB(f) and 2ג ∈ Π1ג, there exist 3ג ∈ Π2ג such that

B⊥(2ג, (3ג ≤ k(Π1ג, Π2ג) + j2.

To continue in this manner, for ,n−1ג n > 1, we obtain nג ∈ Πגn−1 satisfying the following

B⊥(גn−1, (nג ≤ k(Πגn−2, Πגn−1) + jn−1.

Now, using (3.1), for n ∈N, we have

B⊥(גn−1, (nג ≤ k(Πגn−2, Πגn−1) + jn−1

≤ αB⊥(גn−2, (n−1ג + βD̆(גn−2, Πגn−2) + γD̆(גn−1, Πגn−1)

+δ[D̆(גn−2, Πגn−1) + D̆(גn−1, Πגn−2)]

≤ αB⊥(גn−2, (n−1ג + βB⊥(גn−2, (n−1ג

+γB⊥(גn−1, (nג + δ[B⊥(גn−2, (nג + B⊥(גn−1, [(n−1ג
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≤ αB⊥(גn−2, (n−1ג + βB⊥(גn−2, (n−1ג + γB⊥(גn−1, (nג + δB⊥(גn−2, (nג

≤ αB⊥(גn−2, (n−1ג + βB⊥(גn−2, (n−1ג + γB⊥(גn−1, (nג

+δ{B⊥(גn−2, (n−1ג + B⊥(גn−1, +{(nג jn−1.

Hence,

(1− γ− δ)B⊥(גn−1, (nג ≤ (α+ β+ δ)B⊥(גn−2, (n−1ג + jn−1,

which implies

B⊥(גn−1, (nג ≤
α+ β+ δ

1− γ− δ
B⊥(גn−2, (n−1ג +

jn−1

1− γ− δ

≤ jB⊥(גn−2, (n−1ג +
jn−1

1− γ− δ
.

Thus, we obtain

B⊥(גn−1, (nג ≤ jn−1B⊥(0ג, (1ג + (n− 1)
jn−1

1− γ− δ
.

Observe that the sequence {nג} is Cauchy inf as j < 1. Given thatf is complete, it implies that {nג}

converges to a point ℵ ∈ f. In other words,

lim
n→∞
nג = ℵ.

Now,

D̆(ℵ, Πℵ) ≤ max{D̆(ℵ, ,(nג D̆(גn, Πℵ)}

≤ max{D̆(ℵ, ,n−1גn),k(Πג Πℵ)}

≤ max{B⊥(ℵ, (n−1,ℵג)⊥n),αBג + βD̆(גn−1, Πגn−1)

+γD̆(ℵ, Πℵ) + δ[D̆(גn−1, Πℵ) + D̆(ℵ, {[(nג

≤ max{B⊥(ℵ, (n−1,ℵג)⊥n),αBג + βB⊥(גn−1, (nג

+γD̆(ℵ, Πℵ) + δ[D̆(גn−1, Πℵ) + D̆(ℵ, .{[(nג

Allowing limit n→∞, we have

D̆(ℵ, Πℵ) ≤ (γ+ δ)D̆(ℵ, Πℵ),

which shows that D̆(ℵ, Πℵ) = 0, as γ+ δ < 1. Hence, Π has a FP ℵ ∈ f.

To prove Uniqueness:- Let us consider another FP ℵ
′

of Π. Now using (3.1), we obtain

[ℵ
′

⊥ ℵ or ℵ ⊥ ℵ
′

] and [Πℵ
′

⊥ Πℵ or Πℵ ⊥ Πℵ
′

].

Now,

B⊥(ℵ,ℵ
′

) ≤ k({ℵ}, {ℵ
′

}) = k(Πℵ, Πℵ
′

)

≤ αB⊥(ℵ,ℵ
′

) + βD̆(ℵ, Πℵ) + γD̆(ℵ
′

, Πℵ
′

) + δ[D̆(ℵ, Πℵ
′

) + D̆(ℵ
′

, Πℵ)]

= (α+ 2δ)B⊥(ℵ,ℵ
′

),
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which indicates ℵ = ℵ
′

as α+ 2δ < 1.

�

Theorem 3.2. Let (f, B⊥) be a complete O-UMS and Π : f→ CB(⊗) be a mapping fulfills

k(Πג, Π}) ≤ αB⊥(ג, }) + βB⊥(ג, Πג) + γB⊥(}, Π}) + δ[D̆(ג, Π}) + D̆(}, Πג)]

+ λ[D̆(ג, Π}) + D̆(}, Πג)] (3.2)

for all ,ג } ∈ f, wherein 2δ+ 2λ+ α+ β+ γ < 1 and δ,λ,α, β,γ ≥ 0. Then Π has a UFP in f.

Proof. For 0ג ∈ ,ג 1ג ∈ Π0ג,

0ג] ⊥ 1ג or 1ג ⊥ ,[0ג and [Π0ג ⊥ Π1ג or Π1ג ⊥ Π0ג],

define j =
α+ β+ δ+ λ

1− (γ+ δ+ λ)
. Assume that j = 0, then the proof is trivial. Consider j > 0, then there

exists 2ג ∈ Π1ג such that

B⊥(1ג, (2ג ≤ k(Π0ג, Π1ג) + j.

Now, Π1ג, Π2ג ∈ CB(⊗) and 2ג ∈ Π1ג, there exist 3ג ∈ Π2ג such that

B⊥(2ג, (3ג ≤ k(Π1ג, Π2ג) + j2.

Continuing in a similar manner, for ,n−1ג n > 1, we obtain nג ∈ Πגn−1 satisfies the following

B⊥(גn−1, (nג ≤ k(Πגn−2, Πגn−1) + jn−1.

Now, using equation (3.2), for n ∈N, we have

B⊥(גn−1, (nג ≤ αB⊥(גn−2, (n−1ג + βD̆(גn−2, Πגn−2) + γD̆(גn−1, Πגn−1)

+δ[D̆(גn−2, Πגn−2) + D̆(גn−1, Πגn−1)]

+λ[D̆(גn−2, Πגn−1) + D̆(גn−1, Πגn−2)] + jn−1

≤ αB⊥(גn−2, (n−1ג + βB⊥(גn−2, (n−1ג + γB⊥(גn−1, (nג

+δ[B⊥(גn−2, (n−1ג + B⊥(גn−1, [(nג

+λ[B⊥(גn−2, (nג + B⊥(גn−1, [(n−1ג + jn−1.

Hence,

(1− γ− δ− λ)B⊥(גn−1, (nג ≤ (α+ β+ δ+ λ)B⊥(גn−2, (n−1ג + jn−1

B⊥(גn−1, (nג ≤ j1B⊥(גn−2, (n−1ג +
jn−1

1− γ− δ− λ

B⊥(גn−1, (nג ≤ jn−1
1 B⊥(0ג, (1ג + (n− 1)

jn−1

1− γ− δ− λ
.

Observe that the sequence {nג} is Cauchy inf as j < 1. Given thatf is complete, it implies that the

sequence {nג} converges to a point ℵ ∈ f. In other words,

lim
n→∞
nג = ℵ.
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Now,

D̆(ℵ, Πℵ) ≤ max{D̆(ℵ, ,(nג D̆(גn, Πℵ)}

≤ max{D̆(ℵ, ,n−1גn),k(Πג Πℵ)}

≤ max{D̆(ℵ, (n−1,ℵג)⊥n),αBג + βD̆(גn−1, Πגn−1) + γD̆(ℵ, Πℵ)

+δ[D̆(גn−1, Πגn−1) + D̆(ℵ, Πℵ)] + λ[D̆(גn−1, Πℵ) + D̆(ℵ, Πגn−1)]}

≤ max{D̆(ℵ, (n−1,ℵג)⊥n),αBג + βB⊥(גn−1, (nג + γD̆(ℵ, Πℵ)

+δ[d(גn−1, (nג + D̆(ℵ, Πℵ)] + λ[d(גn−1,ℵ) + B⊥(ℵ, .{[(nג

Allowing limit n→∞, we get

D̆(ℵ, Πℵ) ≤ (γ+ δ)D̆(ℵ, Πℵ),

which shows that D̆(ℵ, Πℵ) = 0, as γ+ δ < 1. Hence, Π has a FP ℵ ∈ f.

To prove Uniqueness:- Let us consider another FP ℵ
′

of Π. Now using (3.2), we obtain

[ℵ
′

⊥ ℵ or ℵ ⊥ ℵ
′

] and [Πℵ
′

⊥ Πℵ or Πℵ ⊥ Πℵ
′

].

Now,

B⊥(ℵ,ℵ
′

) ≤ k({ℵ}, {ℵ
′

}) = k(Πℵ, Πℵ
′

)

≤ αB⊥(ℵ,ℵ
′

) + βD̆(ℵ, Πℵ) + γD̆(ℵ
′

, Πℵ
′

)

+ δ[D̆(ℵ, Πℵ) + D̆(ℵ
′

, Πℵ
′

)] + λ[D̆(ℵ, Πℵ
′

) + D̆(ℵ
′

, Πℵ)]

≤ (α+ 2λ)B⊥(ℵ,ℵ
′

),

which indicates ℵ = ℵ
′

as α+ 2λ < 1. �

Theorem 3.3. Let (f, B⊥) be a complete O-UMS and Π : f→ CB(⊗) be a mapping fulfills

k(Πג, Π}) ≤ αB⊥(ג, }) + βB⊥(ג, Πג) + γB⊥(}, Π}) + δ[D̆(ג, Π}) + D̆(}, Πג)]

+ λ[D̆(ג, Π}) + D̆(}, Πג)] + η[B⊥(ג, Πג) + B⊥(ג, })] (3.3)

for all ,ג } ∈ f, wherein 2δ+ 2λ+ 2η+ α+ β+ γ < 1 and δ,λ, η,α, β,γ ≥ 0. Then Π has a UFP in f.

Proof. For 0ג ∈ ,ג 1ג ∈ Π0ג,

0ג] ⊥ 1ג or 1ג ⊥ ,[0ג and [Π0ג ⊥ Π1ג or Π1ג ⊥ Π0ג],

for 0ג ∈ ,ג 1ג ∈ Π0ג, define j =
α+ β+ δ+ λ+ 2η

1− (γ+ δ+ λ)
. Assume that j = 0, then the proof is trivial.

Consider j > 0, then there exists 2ג ∈ Π1ג such that

B⊥(1ג, (2ג ≤ k(Π0ג, Π1ג) + j

Now, Π1ג, Π2ג ∈ CB(⊗) and 2ג ∈ Π1ג, there exist 3ג ∈ Π2ג such that

B⊥(2ג, (3ג ≤ k(Π1ג, Π2ג) + j2.
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Continuing in a similar manner, for ,n−1ג n > 1, we get nג ∈ Πגn−1 satisfies the following

B⊥(גn−1, (nג ≤ k(Πגn−2, Πגn−1) + jn−1.

Now, using equation (3.3), for n ∈N, we have

B⊥(גn−1, (nג ≤ αB⊥(גn−2, (n−1ג + βD̆(גn−2, Πגn−2) + γD̆(גn−1, Πגn−1)

+δ[D̆(גn−2, Πגn−2) + D̆(גn−1, Πגn−1)]

+λ[D̆(גn−2, Πגn−1) + D̆(גn−1, Πגn−2)] + η[D̆(גn−2, Πגn−2, [(n−1ג + jn−1

≤ αB⊥(גn−2, (n−1ג + βB⊥(גn−2, (n−1ג + γB⊥(גn−1, (nג

+δ[B⊥(גn−2, (n−1ג + B⊥(גn−1, [(nג

+λ[B⊥(גn−2, (nג + B⊥(גn−1, [(n−1ג

+η[B⊥(גn−2, (n−1ג + B⊥(גn−2, [(n−1ג + jn−1.

Hence,

(1− γ− δ− λ)B⊥(גn−1, (nג ≤ (α+ β+ δ+ λ+ 2η)B⊥(גn−2, (n−1ג + jn−1

B⊥(גn−1, (nג ≤ j2B⊥(גn−2, (n−1ג +
jn−1

1− γ− δ− λ

B⊥(גn−1, (nג ≤ jn2B⊥(0ג, (1ג + (n− 1)
jn−1

1− γ− δ− λ
.

Observe that the sequence {nג} is Cauchy inf as j < 1. Given thatf is complete, it implies that the

sequence {nג} converges to ℵ ∈ f. In other words,

lim
n→∞
nג = ℵ.

Now,

D̆(ℵ, Πℵ) ≤ max{D̆(ℵ, ,(nג D̆(גn, Πℵ)}

≤ max{D̆(ℵ, ,n−1גn),k(Πג Πℵ)}

≤ max{D̆(ℵ, (n−1,ℵג)⊥n),αBג + βD̆(גn−1, Πגn−1) + γD̆(ℵ, Πℵ)

+δ[D̆(גn−1, Πגn−1) + D̆(ℵ, Πℵ)]

+λ[D̆(גn−1, Πℵ) + D̆(ℵ, Πגn−1)] + η[D̆(גn−1, Πגn−1) + B⊥(גn+1,ℵ)]}

≤ max{D̆(ℵ,ℵ),αB⊥(ℵ,ℵ) + βB⊥(ℵ, Πℵ) + γD̆(ℵ, Πℵ) + δ[D̆(ℵ, Πℵ) + D̆(ℵ, Πℵ)]

+λ[D̆(ℵ, Πℵ) + D̆(ℵ, Πℵ)] + η[D̆(ℵ, Πℵ)]}

D̆(ℵ, Πℵ) ≤ (β+ γ+ 2δ+ 2λ+ η)D̆(ℵ, Πℵ)

which shows that D̆(ℵ, Πℵ) = 0, as β+ γ+ 2δ+ 2λ+ η < 1. Hence, Π has a FP ℵ ∈ f.

To prove Uniqueness:- Let us consider another FP ℵ
′

of Π. Now using (3), we obtain

[ℵ
′

⊥ ℵ or ℵ ⊥ ℵ
′

] and [Πℵ
′

⊥ Πℵ or Πℵ ⊥ Πℵ
′

].
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Now,

B⊥(ℵ,ℵ
′

) ≤ k({ℵ}, {ℵ
′

}) = k(Πℵ, Πℵ
′

)

≤ αB⊥(ℵ,ℵ
′

) + βD̆(ℵ, Πℵ) + γD̆(ℵ
′

, Πℵ
′

) + δ[D̆(ℵ, Πℵ) + D̆(ℵ
′

, Πℵ
′

)]

+ λ[D̆(ℵ, Πℵ
′

) + D̆(ℵ
′

, Πℵ)] + η[D̆(ℵ, Πℵ) + B⊥(ℵ,ℵ
′

)]

≤ (α+ 2λ+ η)B⊥(ℵ,ℵ
′

),

which indicates ℵ = ℵ
′

as α+ 2λ+ η < 1.

�

Example 3.1. The spacef = [0, 1] is a complete O-UMS with discrete metric. Let Π : f→ f be defined
by

Πג =
1
4
ג∀ ∈ f.

Note that

k(Πג, Π}) = 0,

and

αB⊥(ג, }) + βB⊥(ג,
1
4
) + γB⊥(},

1
4
) + δ[D̆(ג,

1
4
) + D̆(},

1
4
)]

+ λ[D̆(ג,
1
4
) + D̆(},

1
4
)] + η[B⊥(ג,

1
4
) + B⊥(ג, })]

=



2δ+ 2λ+ 2η+ α+ β+ γ, if ג , } , 1
4

λ+ η+ α+ γ+ δ, if } , ג = 1
4

α+ β+ δ+ λ+ 2η, if ג , } = 1
4

0, if ג = } = 1
4 .

Since (3.3) holds, for all ,ג } ∈ f, where ,ג }, c ≥ 0 and α+ β+ γ+ 2δ+ 2λ+ 2η < 1, by Theorem 3.3, Π

has a UFP 1
4 in f.

4. Applications

4.1. Application to integral equations.

Theorem 4.1. Let (f, B,⊥) be a complete O-UMS and Π : f→ CB(⊗) be a continuous map to ensure

k(Πג, Π}) ≤ αB⊥(ג, }) + βB⊥(ג, Πג) + γB⊥(}, Π}) + δ[D̆(ג, Π}) + D̆(}, Πג)]

+ λ[D̆(ג, Π}) + D̆(}, Πג)] + η[B⊥(ג, Πג) + B⊥(ג, })]

for all elements δ,λ, η,α, β,γ in the interval [0, 1), and let the sum 2δ+ 2λ+ 2η+ α+ β+ γ be less than
1. Then Π admit a UFP.
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Consider W = C([0, 1], R+) as the set of continuous functions defined on [0, 1], with values in

the non-negative real numbers. The following equation is an integral equation:

π(e) =
∫ e

0
Ξ(e, j,π(j))dj (4.1)

for every e ∈ [0, 1], where Ξ : [0, 1] × [0, 1] ×W → R. For π ∈ C([0, 1], R+), supremum norm as

assuming ‖π‖ε = sups∈[0,1]{|π(s)|e
s
} and for each π, τ ∈ C([0, 1], R+), define

π ⊥ τ⇐⇒ B⊥(π, τ) =
1
2

sup
s∈[0,1]

{|π(s) + τ(s)|es
}

=
1
2
‖π+ τ‖ε .

It is evident that C([0, 1], R+, B⊥) is a complete O-UMS. So, we obtained the consequent:

Theorem 4.2. Assume that

(i) Ξ : [0, 1] × [0, 1] ×W → R;
(ii) Define

Ππ(e) =
∫ e

0
Ξ(e, j,π(j))dj,

such that ∣∣∣Ξ(e, j,π(j)) + Ξ(e, j, τ(j))
∣∣∣ ≤ Ω(π, τ)

Ω(π, τ) + 1

for each e, j ∈ [0, 1] and π, τ ∈ C([0, 1], R+), where

Ω(π, τ) = αB⊥(ג, }) + βB⊥(ג, Πג) + γB⊥(}, Π}) + δ[D̆(ג, Π}) + D̆(}, Πג)]

+ λ[D̆(ג, Π}) + D̆(}, Πג)] + η[B⊥(ג, Πג) + B⊥(ג, })].

Then (4.1) has a unique solution.

Proof. By (ii),

|Ππ+ Πτ| =
∫ e

0

∣∣∣Ξ(e, j,π(j)) + Ξ(e, j, τ(j))
∣∣∣ dj

≤

∫ e

0

Ω(π, τ)
Ω(π, τ) + 1

ejdj

≤
Ω(π, τ)

Ω(π, τ) + 1

∫ e

0
ejdj

≤
Ω(π, τ)

Ω(π, τ) + 1
ee.

This implies

|Ππ+ Πτ| ≤
Ω(π, τ)

Ω(π, τ) + 1
,
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‖Ππ+ Πτ‖ε ≤
Ω(π, τ)

Ω(π, τ) + 1
,

Ω(π, τ) + 1
Ω(π, τ)

≤
1

‖Ππ+ Πτ‖ε
,

1 +
1

Ω(π, τ)
≤

1
‖Ππ+ Πτ‖ε

,

1−
1∥∥∥Ππ(e) + Πτ(e)

∥∥∥
ε

≤
−1

Ω(π, τ)
.

The conditions of Theorem 4.1 are satisfied in all respects, and B⊥(π, τ) = 1
2 ‖π+ τ‖ε. Therefore,

the integral equation (4.1) has a unique solution. �

4.2. Application to non-linear fractional integro-differential equation.
The Caputo derivative for a continuous mapping Λ : [0,∞) → R of order Θ > 0 is defined as

follows:

c
D

ΘΛ([) =
1

Γ(n−Θ)

∫ 1

0

Λ(n)(c[c)
([− c)Θ−n+1

, n− 1 ≤ Θ < n, n = |Θ|+ 1, (4.2)

the symbol Γ represents the gamma function and |Θ| represents the integer component of the

positive real number Θ.

Here, we examine the non-linear fractional integro-differential equation of Caputo type:

f (z) =

 c
D

Θπ([) = Λ([,π([)), [ ∈ I = [0, 1], 1 < Θ ≤ 2,

π(0) = 0, π(1) =
∫ θ

0 πcdc
(4.3)

where π ∈ (C[0, 1], R),θ ∈ (0, 1), and z : I×R→ R is a continuous function (see, [7]).

Denote f = {π : π ∈ (C[0, 1], R)} with norm supremum ‖π‖ = sup[∈[0,1]|π(t)|. So (f, ‖.‖) is a

Banach space.

The space C([0, 1], R) has an ultrametric denoted by B : C([0, 1], R) × C([0, 1], R) → [0,∞).

B(π, τ) = ‖π − τ‖ = sup[∈[0,1]|π(t) − τ(t)| and denote an orthogonal relation π ⊥ τ iff πτ ≤ 0,

∀ π, τ ∈ f. Then (f,⊥, B) is any O-UMS.

A solution of equation (4.3) is clearly a FP of the integral equation.

Ππ([) =
1

Γ(Θ)

∫ [

0
([− c)Θ−1z((c,π(c)))ds−

2[
(2− θ2)Γ(Θ)

∫ 1

0
(1− c)Θ−1z((c,π(c)))ds

+
2[

(2− θ2)Γ(Θ)

∫ θ

0

( ∫ s

0
(c−m)Θ−1z((c,π(m)))dm

)
ds (4.4)

Theorem 4.3. Assume that z : I×R→ R is continuous functions fulfilling

|z(c,π(c)) − z(c, τ(c))| ≤
Γ(Θ + 1)

5
e−τ|π(c) − τ(c)| (4.5)

For every c ∈ [0, 1] for each τ > 0 and ∀ π, τ ∈ C([0, 1], R), the FDE (4.3) with the
specified boundary conditions possesses a solution.
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Proof. The spacef = C([0, 1], R) has an equipped with ultrametric B : f×f→ [0,∞) describe as

B(π, τ) = sup[∈[0,1]|π([)− τ([)|. for every π, τ ∈ f. Denote orthogonal relation π ⊥ τ iff π, τ ≥ 0, for

each π, τ ∈ f. Then (f,⊥, [) is an O- UMS. Denote Π : f → f as in (4.4). So Π is ⊥-continuous.

First, we prove that Π is ⊥-preserving, let π([) ⊥ τ([) for every [ ∈ [0, 1]. Now, from (4.4), we

obtain

Ππ([) =
1

Γ(Θ)

∫ [

0
([− c)Θ−1z((c,π(c)))ds−

2[
(2− θ2)Γ(Θ)

∫ 1

0
(1− c)Θ−1z((c,π(c)))ds

+
2[

(2− θ2)Γ(Θ)

∫ θ

0

( ∫ s

0
(c−m)Θ−1z((c,π(m)))dm

)
ds > 0.

This implies that Ππ ⊥ Πτ. Given any [ ∈ [0, 1] such that π([) ⊥ τ[), we have:

|Ππ([) −Πτ([)| =

∣∣∣∣∣∣∣ 1
Γ(Θ)

∫ [

0
([− c)Θ−1z((c,π(c)))ds−

2[
(2− θ2)Γ(Θ)

∫ 1

0
(1− c)Θ−1z((c,π(c)))ds

+
2[

(2− θ2)Γ(Θ)

∫ θ

0

( ∫ s

0
(c−m)Θ−1z((c,π(m)))dm

)
ds

−

 1
Γ(Θ)

∫ [

0
([− c)Θ−1z((c, τ(c)))ds

−
2[

(2− θ2)Γ(Θ)

∫ 1

0
(1− c)Θ−1z((c, τ(c)))ds

+
2[

(2− θ2)Γ(Θ)

∫ θ

0

( ∫ s

0
(c−m)Θ−1z((c, τ(m)))dm

)
ds


∣∣∣∣∣∣∣.

≤
1

Γ(Θ)

∫ [

0
([− c)Θ−1

|z(c, τ(c)) − z(c, τ(c))|ds−

2[
(2− θ2)Γ(Θ)

∫ 1

0
(1− c)Θ−1

|z(c,π(c)) − z(c, τ(c))|ds

+
2[

(2− θ2)Γ(Θ)

∫ θ

0

( ∫ s

0
(c−m)Θ−1

|z(c,π(m)) − z(c, τ(m))|dm
)
ds

≤
1

Γ(Θ)

∫ [

0
([− c)Θ−1

[
Γ(Θ + 1)

5
e−τsup

c∈[0,1]|π(c) − τ(c)|

]
ds

−
2[

(2− θ2)Γ(Θ)

∫ 1

0
(1− c)Θ−1

[
Γ(Θ + 1)

5
e−τsup

c∈[0,1]|π(c) − τ(c)|

]
ds

+
2[

(2− θ2)Γ(Θ)

∫ θ

0

( ∫ s

0
(c−m)Θ−1

[
Γ(Θ + 1)

5
e−τ sup

c∈[0,1]
|π(c) − τ(c)|

]
dm

)
ds

≤

[
Γ(Θ + 1)

5
e−τ sup

c∈[0,1]
|π(c) − τ(c)|

]
× sup
[∈[0,1]

 1
Γ(Θ)

∫ [

0
([− c)Θ−1ds
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−
2[

(2− θ2)Γ(Θ)

∫ 1

0
(1− c)Θ−1ds +

2[
(2− θ2)Γ(Θ)

∫ θ

0

( ∫ s

0
(c−m)Θ−1dm

)
ds


≤ e−τ sup

c∈[0,1]
|π(c) − τ(c)| = e−τB(π, τ),

for all π, τ ∈ f. Therefore, Π has a FP. The Caputo-type nonlinear FDE (4.3) possesses a solution

is yielded. �

5. Conclusion

Numerous researchers accomplished interesting findings by examining fixed-point theorems in O-

UMSs utilizing various mathematical methods and contraction mappings. To accomplish this, we

have specifically concentrated on examining fixed points in all O-UMSs and different contraction

mappings in our analytical methodology. To improve our results, we utilized a specific instance to

illustrate the complicated proofs and logical processes underlying these theorems. In the future,

we will commit to expanding the scope of fixed-point results through our research activities and

novel and significant findings in the field of mathematical analysis.
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