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Abstract. Compared to the class of Bazilevič functions, the so-called non-Bazilevič functions have not been investigated

as thoroughly. A convex combination of the class of non-Bazilevič functions and its Alexander transform characterisation

would be used to describe and analyze a new class of functions. The differential operator that is used to define the

function class involves generalized M-series. In addition to unifying the generalized Gaussian hypergeometric function

and the Mittag-Leffler function, the generalized M-series also generalizes a number of other well-known topics in

univalent function theory. We focus on estimates involving the initial coefficients of the functions with Maclaurin series

that are part of the defined function class. Additionally, we acquire the inverse and logarithmic coefficients for the

specified function class.

1. Introduction and Definitions

In recent years, one of the most fascinating subjects has emerged: the study of the geometric

behavior of analytic functions. Studying and describing the characteristics of analytic functions

using geometrical and topological techniques is the primary goal of geometric function theory. One

aims to link the analytical characteristics of functions with topological and geometrical insights,

offering a more profound comprehension of the behavior of analytic functions. We now go over

some fundamentals of geometric function theory as well as the analytic function subclasses that

fall under this study’s purview.
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1.1. Generalized Telephone Numbers (GTN). The usual as involution numbers, also known

telephone numbers, are assumed by the recurrence relation

Q(n) = Q(n− 1) + (n− 1)Q(n− 2) f or n ≥ 2

with initial conditions

Q(0) = Q(1) = 1.

In1800, Heinrich August Rothe noted that Υ(n) is the number of involutions (self-inverse permu-

tations)in the symmetric group (see,for example, [10, 19]).Relation between involution numbers

and symmetric groups were observed for the first time in the year 1800. Since involutions corre-

spond to standard Young tableaux, it is clear that the nth involution number is also the number

of Young tableaux on the set 1, 2, ..., n (for details,see [8]).According to John Riordan,the above

recurrence relation,in fact,produces the number of connection patterns in a telephone system with

n subscribers(see [33]).In 2017,Wlochand Wolowiec-Musial [45] introduced generalized telephone

numbers Q(℘, n) defined for integers n ≥ 0and ℘ ≥ 1 by the following recursion:

Υ(℘, n) = ℘Υ(℘, n− 1) + (n− 1)Υ(℘, n− 2)

with initial conditions

Υ(℘, 0) = 1, Υ(℘, 1) = ℘,

and studied some properties. In 2019, Bednarz and Wolowiec-Musial [7] introduced a new gener-

alization of telephone numbers by

Υ℘(n) = Υ℘(n− 1) + ℘(n− 1)Υ℘(n− 2)

with initial conditions

Υ℘(0) = Υ℘(1) = 1

for integers n ≥ 2 and ℘ ≥ 1. They gave the generating function,direct formula and matrix

generators for these numbers. Moreover,they obtained interpretations and proved some properties

of these numbers connected with congruences. Lately, they derived the exponential generating

function and the summation formula for generalized telephone numbers Υ℘(n) as follows:

ex+℘ x2
2 =

∞∑
n=0

Υ℘(n)
xn

n!
(℘ ≥ 1)

As we can observe,if ℘ = 1, then we obtain classical telephone numbers Υ(n). Clearly, Υ℘(n) is

for some values of n as

(1) Υ℘(0) = Υ℘ = 1,

(2) Υ℘(2) = 1 + ℘,

(3) Υ℘(3) = 1 + 3℘

(4) Υ℘(4) = 1 + 6℘+ 3℘2

(5) Υ℘(5) = 1 + 10℘+ 15℘2

(6) Υ℘(6) = 1 + 15℘+ 45℘2 + 15℘3.
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We now consider the function

Ξ(z) := e(z+℘
z2
2 ) = 1+ z+

1 + ℘

2
z2 +

1 + 3℘
6

z3 +
3℘2 + 6℘+ 1

24
z4 +

1 + 10℘+ 15℘2

120
z5 + · · · . (1.1)

with its domain of definition as the open unit disk U studied for the class of analytic functions

[11, 25, 29, 43].

1.2. Generalized M-series. In the study of fractional differential equations, the Mittag-Leffler

function has been widely utilized. Additionally, Geometric Function Theory has been studied in

tandem with Theory of Special Functions, and the generalized Gaussian hypergeometric function,

which is a solution to the famous Gaussian hypergeometric differential equation, has been crucial

to this work. The M-series is one such generalization that has been shown to be a useful tool in

investigations related to duality theory. Unifying the Mittag-Leffler function and the Gaussian

hypergeometric function, recently Sharma and Jain in [37, Eq. 1] (also see [41]) defined the

generalized M-series, which is given by

rM
%,$
s (κ1, . . . ,κr; σ1, . . . , σs; z) =

∞∑
n=0

(κ1)n . . . (κr)n

(σ1)n . . . (σs)n

zn

Γ(n%+$)
, (1.2)

z, %, $ ∈ C, Re(%) > 0 and (κi)n, (σ j)n are the well-known Pochhammer symbol. Further the

primary condition for the existence of the series (1.2) is that the denominator terms σ′js, ( j =

1, 2, . . . s) are never zero or negative integer. Whereas if any of the numerator terms κ′js, ( j =

1, 2, . . . r) is zero or negative integer, then the infinite series terminates to be polynomial in z. For

formal definition and convergence pertaining to the generalized M-series, refer to [37, Eq. 1] (also

see [41]). Also, note that the q-analogue of the generalized M-series was studied by Shimelis and

Suthar [38–40].

Due to Karthikeyan et al. in [17] we consider Hadamard product and the generalized M-series

z(κ1, σ1; %, $)(z) = D(κ1, σ1; %, $)(z) ∗ f (z)

= z +
∞∑

n=2

(κ1)n−1 . . . (κr)n−1

(σ1)n−1 . . . (σs)n−1

Γ($) anzn

(n− 1)!Γ(%(n− 1) +$)
, (1.3)

where m ≥ 0, 0 ≤ λ ≤ 1 and the range of the parameters are same as in (1.2). Further f (z) in (1.3)

belongs to the class A, the class of functions analytic in the unit disc U = {z ∈ C; |z| < 1} which

have an expansion of the form

f (z) = z +
∞∑

n=2

anzn, (an ∈ C). (1.4)

Karthikeyan et al. [17] discuss the particular instances and applications of the operator

z(κ1, σ1; %, $)(z). The significance and applications of the operator z(κ1, σ1; %, $)(z) were cov-

ered in depth in [17] (see [5, 6, 15, 32]), so we have purposefully chosen not to repeat them here.

We let F be the class of Carathéodory’s function (see [9]), a class of analytic functions (pz)
with normalization p(0) = 1 and which satisfies Re (p(z)) > 0, (z ∈ U). Also, the classes of
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starlike and convex functions are known satisfy the inclusion p(z) ∈ F provided p(z) = z f ′(z)
f (z) and

p(z) = (z f ′(z))′

f ′(z) respectively. Here we will denote the classes of starlike and convex functions by S∗

and C respectively. In [23], Miller et al. established the following differential inclusion

Re
{
(1− ϑ)h(z) + ϑ

(
h(z) +

zh′(z)
h(z)

)}
> 0, =⇒ Re (h(z)) > 0, (z ∈ U), (1.5)

where h(z) =
z f ′(z)

f (z) for all real ϑ. For 0 ≤ ϑ ≤ 1, Mocanu class [24] is the class functions f ∈ A
satisfies

Re
{
(1− ϑ)

z f ′(z)
f (z)

+ ϑ
(z f ′(z))′

f ′(z)

}
> 0, (z ∈ U).

Several authors studied the geometrical implications when h(z) is replaced with various analytic

characterizations like z1−σ f ′(z)
[ f (z)]1−σ

or z( f ′(z))δ

f (z) or z f ′(z)
g(z) in (1.5). Here our main focus would be to study

the implication if h(z) in (1.5) is replaced with an analytic characterization associated with the

class of Bazilevič functions.

We define the following new subclass in light of Shanmugam et al. [35,36] and the recent study

on telephone numbers [11, 25, 27, 29, 43]:

Definition 1.1. For parameters range mentioned as in the operator z(κ1, σ1; %, $) f and 0 ≤ ς,ϑ ≤ 1, a
function f (z) ∈ A is said to be inN(κ1, σ1; ς; ϑ; Ξ) if and only if it satisfies the condition

(1− ϑ)
z1+ςz′(κ1, σ1; %, $)(z)

[z(κ1, σ1; %, $)(z)]1+ς
+ ϑ

[zz′(κ1, σ1; %, $)(z)]′

[z′(κ1, σ1; %, $)(z)]1+ς
≺ Ξ(z), ∀ z ∈ U. (1.6)

where Ξ(z) is starlike symmetric with respect to horizontal axis and maps the unit disc onto a right-half
plane which has an expansion of the form (1.1)

Remark 1.1. The classN(κ1, σ1; ς; ϑ; Ξ) would reduce to

S(κ1, σ1; ς; ϑ; Ξ) =

 f ∈ A :
z1+ςz′(κ1, σ1; %, $)(z)

[z(κ1, σ1; %, $)(z)]1+ς
≺ Ξ(z)

 . (1.7)

and

C(κ1, σ1; ς; ϑ; Ξ) =

 f ∈ A :
[zz′(κ1, σ1; %, $)(z)]′

[z′(κ1, σ1; %, $)(z)]1+ς
≺ Ξ(z)

 (1.8)

by letting ϑ = 0 and ϑ = 1 in (1.6) respectively.

Note that f (z) ∈ C(κ1, σ1; ς; ϑ; Ξ) if and only if z f ′(z) ∈ S(κ1, σ1; ς; ϑ; Ξ). Hence, the class

N(κ1, σ1; ς; ϑ; Ξ) is same as famous Mocanu class which unifies two classes related by the Alexan-

der theorem.

Remark 1.2. We will now discuss the significance of the defined function class.
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(1) Letting % = 0 = ϑ in (1.6), we let class B(κ1, σ1; ς; Ξ) whose analytic characterization is given by

(z′(κ1, σ1)(z))
(

z
z(κ1, σ1)(z)

)1+ς

≺ Ξ(z), ∀ z ∈ U,

where z(κ1, σ1) f (z) = z +
∑
∞

n=2
(κ1)n−1 ... (κr)n−1
(σ1)n−1 ... (σs)n−1

anzn

(n−1)! .

(2) For the choice ϑ = % = 0, r = 2, s = 1, κ1 = σ1, κ2 = 1, the classN(κ1, σ1; ς; ϑ; Ξ) ≡ N(ς, Ξ)

which is defined by  f
′

(z)
(

z
f (z)

)1+ς
 ≺ Ξ(z), ∀ z ∈ U

called as Obradović type non-Bazilević functions linked telephone numbers(see Obradović in [28]).
(3) Similarly, ς = % = 0, r = 2, s = 1, κ1 = σ1, κ2 = 1, the class N(κ1, σ1; ς; ϑ; Ξ) reduces to

Mocanu’s ϑ-convex functions (see [24]) associated with telephone numbers.

Further, various other new and well-known classes of univalent functions can be obtained

by specializing the parameter involved in the operator (1.3) and the general function Ξ(z) (see

[4, 12]).In this present investigation, we obtain Fekete-Szegö’s inequality for certain non-Bazilevič

functions f (z) defined on the open unit disk. A similar results have been done for the function

f−1. Further application of our results to certain functions defined by convolution products with

a normalized analytic functions is given, and in particular we obtain Fekete-Szegö inequalities for

certain subclasses of non-Bazilevič functions.

2. Coefficient Inequalities

We will need the following lemmas to establish our main results.

Lemma 2.1. [14, Theorem 1] If L(z) = 1 +
∞∑

r=1
`rzr
∈ F , and ρ ∈ C, then∣∣∣`ε − ρ`r`ε−r

∣∣∣ ≤ 2 max
{
1; |2ρ− 1|

}
,

for all 1 ≤ r ≤ ε− 1.

Motivated by the well-known results of Ma-Minda [21, p. 162] and Livingston [20, Lemma 1]

in this section we obtain the initial coefficients and solution to the Fekete-Szegö [16]problem for

f ∈ N(κ1, σ1; ς; ϑ; Ξ).

Theorem 2.1. Let f (z) ∈ N(κ1, σ1; ς; ϑ; Ξ) and 0 ≤ ς < 1, then we have

|a2| ≤
1∣∣∣(1 + ϑ) (1− ς) Γ2

∣∣∣ (2.1)

|a3| ≤
1∣∣∣(2− ς)(1 + 2ϑ)Γ3

∣∣∣ max
{

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2

∣∣∣∣∣∣
}

(2.2)

and for all ρ ∈ C
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∣∣∣a3 − ρa2
2

∣∣∣ ≤ 1∣∣∣(2− ς)(1 + 2ϑ)Γ3
∣∣∣ max

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2 −

ρ(1 + 2ϑ)(2− ς)Γ3

(1 + ϑ)2(1− ς)2Γ2
2

∣∣∣∣∣∣


(2.3)

The inequalities are sharp.

Proof. As f (z) ∈ N(κ1, σ1; ς; ϑ; Ξ), by (1.6), we have

(1− ϑ)
z1+ςz′(κ1, σ1; %, $)(z)

[z(κ1, σ1; %, $)(z)]1+ς
+ ϑ

[zz′(κ1, σ1; %, $)(z)]′

[z′(κ1, σ1; %, $)(z)]1+ς
= Ξ [w(z)] . (2.4)

For function ` of the form `(z) = 1 +
∑
∞

k=1 `nzn
∈ F , the right side of (2.4) will be of the form

1 +
`1

2
z +

(
`2

2
+

(℘− 1)`2
1

8

)
z2 +

(
`3

2
+ (℘− 1)

`1`2

4
+

(1− 3℘)
48

`3
1

)
z3 + · · · ., (2.5)

The left hand side of (2.4) will be of the form

(1− ϑ)
z1+ςz′(κ1, σ1; %, $)(z)

[z(κ1, σ1; %, $)(z)]1+ς
+ ϑ

[zz′(κ1, σ1; %, $)(z)]′

[z′(κ1, σ1; %, $)(z)]1+ς

= 1 + (1 + ϑ) (1− ς) a2Γ2z + (2− ς)

a3(1 + 2ϑ)Γ3 −
(1 + 3ϑ)(ς+ 1)a2

2Γ2
2

2

 z2 + · · · . (2.6)

Equating coefficients of z from (2.6) and (2.5), we obtain

a2 =
`1

2 (1 + ϑ) (1− ς) Γ2
(2.7)

Further by comparing coefficients of z2 from (2.6) and (2.5), we get,

(2− ς)

a3(1 + 2ϑ)Γ3 −
(1 + 3ϑ)(ς+ 1)a2

2Γ2
2

2

 =
(
`2

2
+

(℘− 1)`2
1

8

)
(2− ς) (1 + 2ϑ)a3Γ3 =

(2− ς) (1 + 3ϑ)(ς+ 1)a2
2Γ2

2

2
+

(
`2

2
+

(℘− 1)`2
1

8

)
.

Using (2.7) in above equation, we have

a3 =
1

2(2− ς)(1 + 2ϑ)Γ3

`2 −
`2

1

2

(
1−℘

2
−
(1 + 3ϑ)(ς+ 1)(2− ς)

2(1 + ϑ)2(1− ς)2

) . (2.8)

Using Lemma 2.1 in (2.8), we get (2.2).

Now to prove (5), we consider∣∣∣a3 − ρa2
2

∣∣∣ =

∣∣∣∣∣∣∣ 1
2(2− ς)(1 + 2ϑ)Γ3

`2 −
`2

1

2

(
1−℘

2
−
(1 + 3ϑ)(ς+ 1)(2− ς)

2(1 + ϑ)2(1− ς)2

)
−

ρ`2
1

4 (1 + ϑ)2 (1− ς)2 Γ2
2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣ 1
2(2− ς)(1 + 2ϑ)Γ3

`2 −
`2

1

2

(
1−℘

2
−
(1 + 3ϑ)(ς+ 1)(2− ς)

2(1 + ϑ)2(1− ς)2



Int. J. Anal. Appl. (2025), 23:233 7

+
ρ(2− ς)(1 + 2ϑ)Γ3

(1 + ϑ)2(1− ς)2Γ2
2


∣∣∣∣∣∣∣.

=

∣∣∣∣∣∣∣ 1
2(2− ς)(1 + 2ϑ)Γ3

[
`2 −W`2

1

] ∣∣∣∣∣∣∣. (2.9)

where

W =
1
2

1−℘
2
−
(1 + 3ϑ)(ς+ 1)(2− ς)

2(1 + ϑ)2(1− ς)2 +
ρ(2− ς)(1 + 2ϑ)Γ3

(1 + ϑ)2(1− ς)2Γ2
2


Further, by Lemma 2.1 we deduce∣∣∣a3 − ρa2

2

∣∣∣ ≤ 1∣∣∣(2− ς)(1 + 2ϑ)Γ3
∣∣∣ max

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2 −

ρ(1 + 2ϑ)(2− ς)Γ3

(1 + ϑ)2(1− ς)2Γ2
2

∣∣∣∣∣∣
 .

(2.10)

An examination of the proof shows that the equality for (2.3) holds if `1 = 0, `2 = 2. Equivalently,

by Lemma 2.1 we have

Ξ
(
ϑ(z) − 1
ϑ(z) + 1

)
= Ξ

 1+z2

1−z2 − 1
1+z2

1−z2 + 1

 = Ξ
(

2z2

1 + z2

)
= Ξ2(z).

Therefore, the extremal function of the classN(κ1, σ1; ς; ϑ; Ξ) is given by

(1− ϑ)
z1+ςz′(κ1, σ1; %, $)(z)

[z(κ1, σ1; %, $)(z)]1+ς
+ ϑ

[zz′(κ1, σ1; %, $)(z)]′

[z′(κ1, σ1; %, $)(z)]1+ς
= Ξ2(z).

Similarly, the equality for (2.3) holds if `2 = 2. Equivalently, by Lemma 2.1 we have

Ξ
(
ϑ(z) − 1
ϑ(z) + 1

)
= Ξ

 1+z
1−z − 1
1+z
1−z + 1

 = Ξ
( 2z
1 + z

)
= Ξ1(z).

Therefore, the extremal function inN(κ1, σ1; ς; ϑ; Ξ) is given by

(1− ϑ)
z1+ςz′(κ1, σ1; %, $)(z)

[z(κ1, σ1; %, $)(z)]1+ς
+ ϑ

[zz′(κ1, σ1; %, $)(z)]′

[z′(κ1, σ1; %, $)(z)]1+ς
= Ξ1(z),

and the proof of the theorem is complete. �

Let ϑ = 1 in Theorem 2.1, we get the following.

Corollary 2.1. If f (z) ∈ C(κ1, σ1; ς; ϑ; Ξ)( see Remark1.1) and 0 ≤ ς < 1, then we have

|a2| ≤
1

2
∣∣∣(1− ς) Γ2

∣∣∣ , |a3| ≤
1

3
∣∣∣(2− ς)Γ3

∣∣∣ max
{

1;

∣∣∣∣∣∣1 + ℘

2
+

(ς+ 1)(2− ς)
2(1− ς)2

∣∣∣∣∣∣
}

and for all ρ ∈ C

∣∣∣a3 − ρa2
2

∣∣∣ ≤ 1

3
∣∣∣(2− ς)Γ3

∣∣∣ max
{

1;

∣∣∣∣∣∣1 + ℘

2
+

(ς+ 1)(2− ς)ψ1

2(1− ς)2 −
3ρ(2− ς)
4(1− ς)2

∣∣∣∣∣∣
}

.

Letting ϑ = ς = % = 0, r = 2, s = 1, κ1 = σ1, and κ2 = 1 in Theorem 2.1, we get the following

result.
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Corollary 2.2. [42, Theorem 3.1.] If f (z) = z + a2z2 + a3z3 + · · · ∈ S∗(ψ), then for all ρ ∈ C we have∣∣∣a3 − ρa2
2

∣∣∣ ≤ 1
2

max
{
1;

∣∣∣∣∣3 + ℘

2
− 2ρ

∣∣∣∣∣} .

The inequality is sharp for the function f∗ given by

f∗(z) =


z exp

∫ z

0

Ξ(t) − 1
t

dt, if
∣∣∣∣3+℘

2 − 2ρ
∣∣∣∣ ≥ 1,

z exp
∫ z

0

Ξ(t2) − 1
t

dt, if
∣∣∣∣3+℘

2 − 2ρ
∣∣∣∣ ≤ 1.

(2.11)

Proof. In Theorem 2.1, taking ϑ = ς = % = m = 0, r = 2, s = 1, κ1 = σ1, and κ2 = 1 , we get the

inequality

∣∣∣a3 − ρa2
2

∣∣∣ ≤


1
2

, if
∣∣∣∣3+℘

2 − 2ρ
∣∣∣∣ ≤ 1,

1
2

∣∣∣∣∣3 + ℘

2
− 2ρ

∣∣∣∣∣ , if
∣∣∣∣3+℘

2 − 2ρ
∣∣∣∣ ≥ 1.

Finally, following a similar technique to that for the sharpness of Theorem 3.1 of [42], we obtain

(2.11). �

3. Coefficient Estimates of f−1(z)

The inverse f−1, defined by f−1( f (z)) = z, z ∈ U and f ( f−1(t)) = t, (|t| < r; r ≥ 1/4). The

coefficient inequalities of the inverse functions N(κ1, σ1; ς; ϑ; Ξ) are valid only for the functions

which are univalent. From [18, Lemma 2.1.], for f−1(t) = w +
∑
∞

k=2 bkwk, (|t| < r; r ≥ 1/4), we

have

b2 = −a2, b3 = 2a2
2 − a3 and b3 − τb2

2 = 2a2
2 − a3 − τa2

2.

Taking modulus in the above equality and using the inequalities (2.1) and (2.3), we get the

following result.

Theorem 3.1. Let f ∈ N(κ1, σ1; ς; ϑ; Ξ) and let f−1 be the inverse of f defined by

f−1(t) = w +
∞∑

k=2

bktk, (|t| < r; r ≥ 1/4),

then we have

|b2| ≤
1∣∣∣(1 + ϑ) (1− ς) Γ2

∣∣∣
and

|b3| ≤
1∣∣∣(2− ς)Γ3

∣∣∣ max

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2 −

2(2− ς)Γ3

(1 + ϑ)2(1− ς)2Γ2
2

∣∣∣∣∣∣


Also, for all τ ∈ C
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∣∣∣b3 − τb2
2

∣∣∣ ≤ 1∣∣∣(2− ς)Γ3
∣∣∣ max

{
1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2

−
(τ− 2)(2− ς)Γ3

(1 + ϑ)2(1− ς)2Γ2
2

∣∣∣∣∣∣
 ,

where ς , 1.

4. Logarithmic Coefficients for Functions Belonging toN(κ1, σ1; ς; ϑ; Ξ)

Logarithmic coefficients took the spotlight when Milin in [22] studied its properties which would

imply the bounds of the Taylor coefficients of univalent functions. For detailed study, refer to [2,3].

If f is analytic in U, with f (z)
z , 0 for all z ∈ U, then the well-known logarithmic coefficients

cn := cn( f ), n ∈N, of f are given by

log
f (z)

z
= 2

∞∑
n=1

cnzn, z ∈ U, log 1 = 0. (4.1)

Now we will add additional criterion to the class N(κ1, σ1; ς; ϑ; Ξ), so that logarithmic coeffi-

cients ofN(κ1, σ1; ς; ϑ; Ξ) is well-defined. That is, we let

LN(κ1, σ1; ς; ϑ; Ξ) = N(κ1, σ1; ς; ϑ; Ξ) ∩
{

f is analytic in U : f (z)
z , 0, z ∈ U

}
. Note that for all

functions LN(κ1, σ1; ς; ϑ; Ξ), the relation (4.1) is well-defined.

Theorem 4.1. If f (z) ∈ LN(κ1, σ1; ς; ϑ; Ξ) with the logarithmic coefficients given by (4.1), then we have
for ς , 1

|c1| ≤
1

2
∣∣∣(1 + ϑ) (1− ς) Γ2

∣∣∣ , (4.2)

|c2| ≤
1∣∣∣(2− ς)Γ3

∣∣∣ max

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2 −

(2− ς)Γ3

2(1 + ϑ)2(1− ς)2Γ2
2

∣∣∣∣∣∣
 , (4.3)

and∣∣∣c2 − µc2
1

∣∣∣ ≤ 1∣∣∣(2− ς)Γ3
∣∣∣ max

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2 −

(1 + µ)(2− ς)Γ3

(1 + ϑ)2(1− ς)2Γ2
2

∣∣∣∣∣∣
 . (4.4)

Proof. From f (z) = z +
∑
∞

n=2 anzn and equating the first two coefficients of relation (4.1), we get

c1 =
a2

2
, c2 =

1
2

a3 −
a2

2

2

 .

Using (2.7)) and (2.8) in the above equation and applying Lemma 2.1, we obtain (4.2) and (4.3). To

obtain (4.4), consider ∣∣∣c2 − µc2
1

∣∣∣ = 1
2

[
a3 −

(1 + µ)

2
a2

2

]
.

Changing ρ =
1+µ

2 in (5), we get the desired result. �
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5. Applications to Functions Defined by Certain Distribution

Let consider a given function ψ ∈ A of the form

ψ(z) = z +
∞∑

n=2

ψnzn, z ∈ U. (5.1)

In this section we will define a new function classMψ
N
(ς,ϑ,λ) based on the convolution (Hadamard)

product and we discuss an application of the Poisson distribution series to this function class.

If f ∈ A has the form (1.4), then the convolution product of f and ψ is given by

( f ∗ψ)(z) := z +
∞∑

n=2

ψnanzn, z ∈ U,

and let define the class

M
ψ
N
(ς,ϑ,λ) := { f ∈ A : f ∗ψ ∈ MN(ς,ϑ,λ)}.

We will obtain an upper bound for the Fekete-Szegő functional for the classMψ
N
(ς,ϑ,λ), corre-

sponding to the Theorem 3.1 to 4.1. Since the proofs are similar with these previous results, we

will omit them.

Theorem 5.1. Suppose that ψ ∈ A has the form (5.1), such that ψ2 ·ψ3 , 0. If f given by (1.4) belongs to
M

ψ
N
(ς,ϑ,λ), then for any ρ complex number we have

∣∣∣a3 − ρa2
2

∣∣∣ ≤ 1∣∣∣(2− ς)(1 + 2ϑ)ψ3Γ3
∣∣∣ max

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2 −

ρ(1 + 2ϑ)(2− ς)ψ3Γ3

(1 + ϑ)2(1− ς)2ψ2
2Γ2

2

∣∣∣∣∣∣
 ,

where the notations are the same like in Theorem 2.1.

Proof. The left hand side of (2.4) will be of the form

(1− ϑ)
z1+ςz′(κ1, σ1; %, $)(z)

[z(κ1, σ1; %, $)(z)]1+ς
+ ϑ

[zz′(κ1, σ1; %, $)(z)]′

[z′(κ1, σ1; %, $)(z)]1+ς

= 1 + (1 + ϑ) (1− ς) a2ψnΓ2z + (2− ς)

a3(1 + 2ϑ)ψ3Γ3 −
(1 + 3ϑ)(ς+ 1)a2

2ψ
2
2Γ2

2

2

 z2 + · · · . (5.2)

�

Employing the techniques as in Theorem 2.1 , we get

a2 =
`1

2 (1 + ϑ) (1− ς)ψ2Γ2
(5.3)

(2− ς) (1 + 2ϑ)a3ψ3Γ3 =
(2− ς) (1 + 3ϑ)(ς+ 1)a2

2ψ
2
2Γ2

2

2
+

(
`2

2
+

(℘− 1)`2
1

8

)
.

Using (5.3) in above equation, we have

a3 =
1

2(2− ς)(1 + 2ϑ)ψ3Γ3

`2 −
`2

1

2

(
1−℘

2
−
(1 + 3ϑ)(ς+ 1)(2− ς)

2(1 + ϑ)2(1− ς)2

) . (5.4)
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Employing the techniques as in lines of Theorem 2.1 , we get∣∣∣a3 − ρa2
2

∣∣∣ =

∣∣∣∣∣∣∣ 1
2(2− ς)(1 + 2ϑ)ψ3Γ3

[
`2 −W`2

1

] ∣∣∣∣∣∣∣. (5.5)

where

W =
1
2

1−℘
2
−
(1 + 3ϑ)(ς+ 1)(2− ς)

2(1 + ϑ)2(1− ς)2 +
ρ(2− ς)(1 + 2ϑ)ψ3Γ3

(1 + ϑ)2(1− ς)2ψ2
2Γ2

2


further, by Lemma 2.1 we deduce∣∣∣a3 − ρa2

2

∣∣∣ ≤ 1∣∣∣(2− ς)(1 + 2ϑ)ψ3Γ3
∣∣∣

×max

1;

∣∣∣∣∣∣1 + ℘

2
+

(1 + 3ϑ)(ς+ 1)(2− ς)
2(1 + ϑ)2(1− ς)2 −

ρ(1 + 2ϑ)(2− ς)ψ3Γ3

(1 + ϑ)2(1− ς)2ψ2
2Γ2

2

∣∣∣∣∣∣
 .

Remark 5.1. 1. For ψ(z) = z +
∞∑

n=2

mn−1

(n−1)! e
−manzn power series whose coefficients are probabilities of the

Poisson distribution introduced and studied by Porwal [31] (see also, [26]).

2. For ψ(z) = z +
∑
∞

n=2
(mN)

n−1

(n−1)! e−mN anzn whose coefficients are probabilities of neutrosophic Poisson
distribution defined and investigated in [1].

3. For ψ(z) = z +
∑
∞

k=2
[λ(k−1)]k−2e−λ(k−1)

(k−1)! zk, (0 < λ ≤ 1) whose coefficients are probabilities of the Borel
distribution [44]

4. For ψ(z) = z +
∞∑

n=2
(n+m−2

m−1 ) · qn−1(1 − q)mzn,, whose coefficients are probabilities of the Pascal

distribution [13].

Further by following the steps on lines similar to Theorem 2.1 and 5.1 after an obvious change

of the coefficients of parameter ρ one can deduce the results analogues to Theorems3.1 to 4.1 based

on various probability distribution listed in Remark 5.1

6. Conclusions

Using the defined operator, we have defined a subclass of analytic functions whose analytic

characterization is associated with the class of non-Bazilevič functions subordinated with telephone

numbers. Though one has to be content with the parameters involved, but it helps in specializing

most of the subclass of the univalent function theory. Some bounds of the initial coefficients are

our main results.The defined class is not only new but the results obtained here is also new. That

is, for a class of non-Bazilevič functions only conditions for starlikeness or univalence have been

found but the coefficient bounds have not been established based on telephone numbers.
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