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Abstract. In solving practical problems in the fields of physics and engineering, singular integral equations are frequently

encountered. Among these, singular integral equations with the Hilbert kernel constitute the periodic cases. In this

article, we discuss the construction of an optimal quadrature formula for the numerical solution of Fredholm-type

singular integral equations of the first kind with Hilbert kernels using the functional approach in the space L(1)2 (0, 2π).

Using the constructed optimal quadrature formula, the error between the exact solution and the approximate solution

of the integral equation is demonstrated through examples. Graphs illustrate how the approximate value converges to

the exact value as the number of nodes in the optimal quadrature formula increases.

1. Introduction

Singular integral equations are increasingly being applied to solve practical problems in various

branches of physics, namely mechanics, electrodynamics, aerodynamics, and elasticity theory. It

should be noted that in the aforementioned branches of physics, some problems have begun to

be reduced to singular integrals, as a solid theoretical foundation has been established for them

in the one-dimensional case ( [4], [5], [10], [11], [12], [15]). These authors developed a theory for

finding all solutions in the class of integrable functions for characteristic equations. From the

theories presented in the above-mentioned literature, it is known that if the unknown function

in the integral equation is periodic and its kernel is equal to cot x−t
2 , such an equation is called a
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singular integral equation with Hilbert kernel. We present a first-kind singular integral equation

with Hilbert kernel of the following form

1
2π

2π∫
0

g(x) cot
x− t

2
dx = ϕ(t), (1.1)

where g(x), ϕ(t) are 2π-periodic functions and 0 < t < 2π, 0 ≤ x ≤ 2π.

The solution of integral equation (1.1) when the condition

2π∫
0

ϕ(x)dx = 0 (1.2)

is satisfied, will be equal to

g(t) = −
1

2π

2π∫
0

ϕ(x) cot
x− t

2
dx + C, (1.3)

where C is an arbitrary constant [4]. The solution of equation (1.1) in the form (1.3) obtained with

condition (1.2) also consists of a singular integral with Hilbert kernel, and in many cases, finding

the value of this definite integral is a challenging task.

For this reason, many scientists have provided methods for the approximate calculation of

integrals of the form (1.3). These include interpolation methods [8], [9], discrete convolution

method [10], and other numerical methods [31].

We also provide a new method for the approximate calculation of the integral (1.3) based on the

functional approach. For this, the article is structured as follows. Section 2 of the article presents

the problem statement, Section 3 shows how to obtain the expression for the upper bound of the

quadrature formula error, Section 4 presents the finding of the conditional minimum of the norm

for the error functional, Section 5 finds the optimal coefficients, and Section 6 presents numerical

results.

2. Statement of the Problem

Thus, in this work, we consider the following quadrature formula for the solution of the integral

equation (1.1) in the form (1.3) when condition (1.2) is satisfied:

2π∫
0

ϕ(x) cot
x− t

2
dx �

N∑
β=0

Cβϕ(xβ) (2.1)

where Cβ are coefficients, xβ are node points, ϕ(x) ∈ L(1)
2 (0, 2π). L(1)

2 (0, 2π) is a Hilbert space,

which is defined as:

L(1)
2 (0, 2π) = {ϕ : [0, 2π]→ R,ϕ(x) − absolutely continuous,ϕ′(x) ∈ L2(0, 2π)}.
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In this L(1)
2 (0, 2π) space, the inner product of the functions ϕ and g is defined as follows

< ϕ, g >=

2π∫
0

ϕ′(x)g′(x)dx (2.2)

and the norm of the ϕ function is determined by the inner product (2.2) as follows

‖ϕ‖ =

√√√√√√ 2π∫
0

(ϕ′(x))2dx (2.3)

In the quadrature formula (2.1) under consideration, the difference between the integral and the

quadrature sum

2π∫
0

ϕ(x) cot
x− t

2
dx−

N∑
β=0

Cβϕ(xβ) =

∞∫
−∞

(ε[0,2π](x) cot
x− t

2
−

N∑
β=0

Cβδ(x− xβ))ϕ(x)dx =

=

∞∫
−∞

`(x)ϕ(x)dx = (`,ϕ) (2.4)

is called the error of the quadrature formula (2.1).

For the resulting expression (2.4), the following error functional corresponds to the dual space

L(1)∗
2 (0, 2π), and its form is as follows

`(x) = ε[0,2π](x) cot
x− t

2
−

N∑
β=0

Cβδ(x− xβ), (2.5)

where ε[0,2π](x) is the characteristic function of the segment [0, 2π], and δ(x) is Dirac’s delta

function.

According to the definition of the norm of a linear continuous functional, the following is known

‖`‖
L(1)∗

2
= sup
‖ϕ‖,0

|(`,ϕ)|
‖ϕ‖

.

From the last equality, the Cauchy-Schwarz inequality follows

|(`,ϕ)| ≤ ‖`‖
L(1)∗

2
‖ϕ‖

L(1)
2

. (2.6)

According to the Cauchy-Schwarz inequality, the absolute value of expression (2.4) is estimated

from above. For the ϕ(x) function, according to the norm (2.3), the following condition holds

(`, 1) = 0. (2.7)

Therefore, the upper bound of the error (2.4) of the quadrature formula (2.1) is estimated from

above using the norm of the error functional `(x) belonging to the conjugate space L(1)∗

2 (0, 2π).

Problem 2.1. Find the norm of the error functional `(x) of the quadrature formula (2.1).
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It can be seen that the error functional `(x) depends on the coefficients Cβ and the nodes xβ.
Minimizing the norm of the error functional with respect to the coefficients and nodes is called the

Nikolsky problem [13], [14]. When the xβ nodes are fixed, and only the norm of the error functional

is minimized with respect to the coefficients Cβ, it is called the Sard problem [16], [17], [18]. In this

work, we solve the Sard problem at equally distributed fixed points xβ = hβ (h = 2π
N , N = 1, 2, ...).

Minimizing the norm of the error functional with respect to the coefficients Cβ, i.e.,

‖ ˚̀‖
L(1)∗

2 (0,2π)
= inf

Cβ
‖`‖

L(1)∗

2 (0,2π)
(2.8)

coefficients satisfying this equality are called optimal coefficients and are denoted by C̊β. The

quadrature formula constructed using these optimal coefficients is called the optimal quadrature
formula. Therefore, to construct an optimal quadrature formula corresponding to expression (2.1)

in the space L(1)
2 (0, 2π), the following problem must be solved.

Problem 2.2. Find the C̊β optimal coefficients that achieve the value (2.8).

The main purpose of this article is to construct an optimal quadrature formula that calculates

the value of the integral (1.3) with high accuracy in the space L(1)
2 (0, 2π).

In the space L(m)
2 (−1, 1) space, singular integrals with Cauchy kernels were approximately

calculated using the Sobolev method in works [21], [22], [23], [24]. Optimal quadrature formulas

for regular integrals in various other spaces using the Sobolev method were constructed in works

[7], [25], [26], [27].

3. Upper Bound for the Error of a Quadrature Formula

First, to solve Problem 2.1, we will use the concept of an extremal function introduced by

Sobolev.

Definition 3.1. The functionψ`(x) corresponding to the error functional `(x), which transforms inequality
(2.6) into equality, is called an extremal function.

The form of the extremal function in the space L(1)
2 (0, 2π) is defined as follows [29]

ψ`(x) = −`(x) ∗G1(x) + d, (3.1)

where G1(x) =
|x|
2 , d is an arbitrary constant.

Remark 3.1. ∗ is a convolution operation, and the convolution of two functions is defined as follows

ϕ(x) ∗ψ(x) =

∞∫
−∞

ϕ(y)ψ(x− y)dy =

∞∫
−∞

ϕ(x− y)ψ(y)dy.

According to this, we calculate the form of the extremal function
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ψ`(x) = −`(x) ∗G1(x) + d = −

∞∫
−∞

`(y)
|x− y|

2
dy + d = −

2π∫
0

|x− y|
2

cot
y− t

2
dy +

N∑
γ=0

Cγ
|x− hγ|

2
+ d.

Since L(1)
2 (0, 2π) is a Hilbert space, we present the Riesz theorem on the general form of a linear

continuous functional.

Theorem 3.1. (Riesz theorem) Let H be a Hilbert space. Then for each linear continuous functional ` ∈ H∗,
there exists a unique function ψ` in the space H that satisfies the equality (`,ϕ) =< ψ`,ϕ > and for this
function the following equality holds

‖`‖H∗ = ‖ψ`‖H

and vice versa. For any ψ` ∈ H, a unique functional ` ∈ H∗ is found that satisfies the equalities (`,ϕ) =<
ψ`,ϕ > and ‖`‖H∗ = ‖ψ`‖H [3].

According to the theorem, the extremal function ψ`(x) is a Riesz element, and the following

holds

(`,ψ`) = ‖`‖2 = ‖ψ`‖
2.

According to the theorem, we calculate the square of the norm of the error functional

‖`‖2 = (`,ψ`) =

∞∫
−∞

`(x)ψ`(x)dx =

∞∫
−∞

`(x)(−`(x) ∗G1(x) + d)dx =

= −

2π∫
0

2π∫
0

|x− y|
2

cot
x− t

2
cot

y− t
2

dxdy + 2
N∑
β=0

Cβ

2π∫
0

|x− hβ|
2

cot
x− t

2
dx−

N∑
β=0

N∑
γ=0

CβCγ
|hβ− hγ|

2
.

Therefore,

‖`‖2 = −

2π∫
0

2π∫
0

|x− y|
2

cot
x− t

2
cot

y− t
2

dxdy + 2
N∑
β=0

Cβ

2π∫
0

|x− hβ|
2

cot
x− t

2
dx−

N∑
β=0

N∑
γ=0

CβCγ
|hβ− hγ|

2
. (3.2)

Thus, Problem 2.1 is solved.

4. Finding the ConditionalMinimum of the Norm for the Error Functional

Now we solve Problem 2.2. The square of the norm of the error functional obtained in (3.2) is a

multivariable function with respect to the coefficients Cβ. According to the theory of conditional

extremum of a multivariable function, along with the condition (2.7), we find the local minimum

of ‖`‖2. For this, we construct the Lagrange function

Φ(Cβ,λ) = ‖`‖2 − 2λ(`, 1), β = 0, 1, ..., N.

Taking the partial derivatives of the resulting Φ function with respect to the coefficients Cβ (β =

0, 1, ..., N) and the unknown λ and setting them to zero, we obtain the following system of linear

equations
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N∑
γ=0

Cγ
|hβ− hγ|

2
+ λ = f1(hβ), β = 0, 1, ..., N, (4.1)

N∑
β=0

Cβ = g0, (4.2)

where

f1(hβ) =

2π∫
0

|x− hβ|
2

cot
x− t

2
dx =

=
∞∑

k=0

2k+1∑
i=1

(−1)3k+1+i B2k · t2k+1−i

i! · (2k + 1− i)!

(
(2π)i

− 2(hβ)i
)
+ 2(t− hβ) ln

∣∣∣∣∣∣ sin t
2

sin hβ−t
2

∣∣∣∣∣∣, (4.3)

where the following formula was used [6]:∫
xp cot xdx =

∞∑
k=0

(−1)k 22kB2k

(2k + p)(2k)!
x2k+p, p ≥ 1, |x| < π,

B2k are Bernoulli numbers.

g0 =

2π∫
0

cot
x− t

2
dx = 0.

To solve the system of linear equations (4.1)-(4.2), we will use the Sobolev method [29]. For

this, we use the discrete analog D1(hβ) of the differential operator d2/dx2. The operator D1(hβ) is

defined in the work [19] as follows

D1(hβ) =
1
h2


0, |β| ≥ 2,

1, |β| = 1,

−2, β = 0.

(4.4)

We use some properties of the discrete analog D1(hβ). They are shown in the following theorem

[19].

Theorem 4.1. Discrete analogue D1(hβ) of the differential operator d2/dx2 satisfies the following equalities:
1) D1(hβ) ∗G1(hβ) = δ(hβ)
2) D1(hβ) ∗ 1 = 0,

where δ(hβ) is the discrete delta function, i.e., δ(hβ) = 0 for β , 0 and δ(0) = 1.

Since we will now use functions with discrete arguments and operations on them, we will

present some concepts about them:

Definition 4.1. The function ϕ(hβ) is a function of discrete argument, if it is given on some set of integer
values of β.
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Definition 4.2. The inner product of two discrete argument functions ϕ(hβ) and ψ(hβ) is given by

[ϕ(hβ),ψ(hβ)] =
∞∑

β=−∞

ϕ(hβ) ·ψ(hβ),

if the series on the right hand side converges absolutely.

Definition 4.3. The convolution of two functions ϕ(hβ) and ψ(hβ) is the inner product

ϕ(hβ) ∗ψ(hβ) = [ϕ(hγ),ψ(hβ− hγ)] =
∞∑

γ=−∞

ϕ(hγ) ·ψ(hβ− hγ).

According to the Sobolev method, assuming that β < 0 and β > N, Cβ = 0, we convert equation

(4.1) to convolutional form, where because the coefficients Cβ are discrete, we set Cβ = C[β] as

follows

C[β] ∗G1[β] + λ = f1[β], β = 0, 1, ..., N.

From here, we introduce the following notation

ν[β] = C[β] ∗G1[β], (4.5)

u[β] = ν[β] + λ,

then the following holds:

u[β] = f1[β], β = 0, 1, ..., N.

D1(hβ) according to the properties of the differential operator

C[β] = h ·D1[β] ∗ u[β]. (4.6)

Thus, according to expression (4.6), to find the optimal coefficients of quadrature formula (2.1),

we need to determine the complete form of u[β] for β < 0 and β > N. For this, we rewrite expression

(4.5):

ν[β] = C[β] ∗G1[β] =
N∑
γ=0

C[γ] ·
|hβ− hγ|

2
.

Hence for β < 0

ν[β] = −
N∑
γ=0

C[γ] ·
[β− γ]

2
= −

[β]

2
g0 + p,

where p = 1
2

N∑
γ=0

C[γ][γ].

Then for β > N

ν[β] =
N∑
γ=0

C[γ] ·
[β− γ]

2
=

[β]

2
g0 − p.
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Considering that g0 = 0, we rewrite the form of u[β]

u[β] =


p + λ , β < 0,

f1[β] , 0 ≤ β ≤ N,

−p + λ , β > N.

Here we introduce the following notations

p + λ = a−0 , −p + λ = a+0 ,

from this we can determine the following

p =
a−0 − a+0

2
, λ =

a−0 + a+0
2

.

Then u[β] will have the following form:

u[β] =


a−0 , β < 0,

f1[β] , 0 ≤ β ≤ N,

a+0 , β > N.

(4.7)

In (4.7), a−0 and a+0 are unknowns. If we find these unknowns, the form of u[β] will be fully

determined. To find these unknowns, from (4.7) we determine that for β = 0, a−0 = f1[0] and for

β = N, a+0 = f1[N]. Thus, the form of u[β] is fully determined

u[β] =


f1[0] , β < 0,

f1[β] , 0 ≤ β ≤ N,

f1[N] , β > N.

(4.8)

5. Finding the Coefficients of the Optimal Quadrature Formula

For the optimal coefficients of the quadrature formula (2.1), the following theorem holds.

Theorem 5.1. The coefficients C̊β, β = 0, 1, ..., N of the optimal quadrature formula (2.1) in the space

L(1)
2 (0, 2π) have the fpllowing forms

C[0] =
1
h

(
f1[1] − f1[0]

)
;

C[β] =
1
h

(
f1[β− 1] − 2 f1[β] + f1[β+ 1]

)
, β = 1, 2, ..., N − 1;

C[N] =
1
h

(
f1[N − 1] − f1[N]

)
; (5.1)

here f1[β] is defined by (4.3).
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Proof. To find the optimal coefficients of the quadrature formula (2.1), we use formula (4.6). In this

case, the discrete analog D1[β] of the differential operator d2/dx2 is defined by formula (4.4), and

the function u[β] is determined by expression (4.8)

C[β] = hD1[β] ∗ u[β] =

= h
( −1∑
γ=−∞

D1[β− γ]u[γ] +
N∑
γ=0

D1[β− γ]u[γ] +
∞∑

γ=N+1

D1[β− γ]u[γ]
)
=

= h
( ∞∑
γ=1

D1[β+ γ]u[−γ] +
N∑
γ=0

D1[β− γ]u[γ] +
∞∑
γ=1

D1[β− (γ+ N)]u[γ+ N]

)
=

= h
( ∞∑
γ=1

D1[β+ γ] f1[0] +
N∑
γ=0

D1[β− γ] f1[γ] +
∞∑
γ=1

D1[β− (γ+ N)] f1[N]

)
.

for β = 0

C[0] = h
( ∞∑
γ=1

D1[γ] f1[0] +
N∑
γ=0

D1[−γ] f1[γ] +
∞∑
γ=1

D1[−(γ+ N)] f1[N]

)
=

= h
(

1
h2 f1[0] +

1
h2 (−2 f1[0] + f1[1])

)
=

1
h

(
f1[1] − f1[0]

)
;

for β = 1, 2, ..., N − 1

C[β] = h
( ∞∑
γ=1

D1[β+ γ] f1[0] +
N∑
γ=0

D1[β− γ] f1[γ] +
∞∑
γ=1

D1[β− (γ+ N)] f1[N]

)
=

= h
( β−2∑
γ=0

D1[β− γ] f1[γ] + D1[1] f1[β− 1] + D1[0] f1[β] + D1[−1] f1[β+ 1] +
N∑

γ=β+2

D1[β− γ] f1[γ]
)
=

=
1
h

(
f1[β− 1] − 2 f1[β] + f1[β+ 1]

)
;

for β = N

C[N] = h
( ∞∑
γ=1

D1[N + γ] f1[0] +
N∑
γ=0

D1[N − γ] f1[γ] +
∞∑
γ=1

D1[−γ] f1[N]

)
=

= h
(

1
h2 (−2 f1[N] + f1[N − 1]) +

1
h2 f1[N]

)
=

1
h

(
f1[N − 1] − f1[N]

)
.

�

The theorem is proven.

Problem 2.2 is solved.

In the next section, we will use the optimal coefficients found to approximately calculate singular

integral equations with a Hilbert kernel.
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6. Numerical Results

In this section, we conduct numerical comparisons with the exact solutions of several Fredholm-

type singular integral equations of the first kind with Hilbert kernels to determine the order of

accuracy of the optimal quadrature formula. The purpose is to demonstrate the effectiveness of the

optimal quadrature formula. For each example, the errors in the approximation of the integral’s

value to the exact solution are numerically analyzed in tabular and graphical form as the number

of node points increases.

Example 6.1. Solve the singular integral equation with the Hilbert kernel

1
2π

2π∫
0

g(x) cot
x− t

2
dx = cos t. (6.1)

Solution. Since the integral equation (6.1) satisfies the condition (1.2), this equation has the following
solution according to (1.3)

g(t) = −
1

2π

2π∫
0

cos x cot
x− t

2
dx. (6.2)

The integral (6.2) has an exact solution g(t) = sin t (see [5]). Thus, the integral equation (6.1) has
the solution g(x) = sin x. We will approximate the exact solution of this integral (6.2) using the optimal
quadrature formula (2.1).

Table 1 and Table 2 show the exact value of the integral calculated using the Maple mathematical

package, the value of the integral calculated using the optimal quadrature formula (OQF), and the

absolute error between them when N = 10 and N = 100, respectively.

These numerical results were calculated when the number of nodes was N = 10.
t g(t) OQF |g(t) −OQF|

2π
9 0.642787609686538 0.634477720875035 8.3098888115030E-03

4π
9 0.984807753012207 0.955978845267640 2.8828907744567E-02

6π
9 0.866025403784440 0.832944977510745 3.3080426273695E-02

8π
9 0.342020143325668 0.327538128272579 1.4482015053089E-02

10π
9 -0.342020143325668 -0.327538128272584 1.4482015053084E-02

12π
9 -0.866025403784440 -0.832944977510745 3.3080426273695E-02

14π
9 -0.984807753012207 -0.955978845267635 2.8828907744572E-02

16π
9 -0.642787609686538 -0.634477720875055 8.3098888114830E-03

Table 1. Here g(t) = sin t, OQF = − 1
2π

N∑
β=0

C[β] cos(hβ)
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Figure 1. This figure shows

graphs of g(t) = sin t and OQF =

−
1

2π

N∑
β=0

C[β] cos(hβ), N = 10;

Figure 2. This figure shows the

error graph of |g(t) −OQF|, N =

10;

These numerical results were calculated when the number of nodes was N = 100.
t g(t) OQF |g(t) −OQF|

2π
9 0.642787609686538 0.642720351959590 6.72577269480E-05

4π
9 0.984807753012207 0.984517232639225 2.90520372982E-04

6π
9 0.866025403784440 0.865674715834655 3.50687949785E-04

8π
9 0.342020143325668 0.341863672689138 1.56470636530E-04

10π
9 -0.342020143325668 -0.341863672689141 1.56470636527E-04

12π
9 -0.866025403784440 -0.865674715834685 3.50687949755E-04

14π
9 -0.984807753012207 -0.984517232639215 2.90520372992E-04

16π
9 -0.642787609686538 -0.642720351959060 6.72577274780E-05

Table 2. Here g(t) = sin t and OQF = − 1
2π

N∑
β=0

C[β] cos(hβ)

Figure 3. This figure shows

graphs of g(t) = sin t and OQF =

−
1

2π

N∑
β=0

C[β] cos(hβ), N = 100;

Figure 4. This figure shows the

error graph of |g(t) −OQF|, N =

100;



12 Int. J. Anal. Appl. (2025), 23:224

Remark 6.1. As can be seen from the Figures 1-4, the error decreases as the number of node points N
increases.

Example 6.2. Solve the singular integral equation with a Hilbert kernel

1
2π

2π∫
0

g(x) cot
x− t

2
dx = sin t. (6.3)

Solution. Since the integral equation (6.1) satisfies the condition (1.2), this equation has the following
solution according to (1.3)

g(t) = −
1

2π

2π∫
0

sin x cot
x− t

2
dx. (6.4)

The integral (6.4) has an exact solution g(t) = − cos t (see [5]). Thus, the integral equation (6.3) has
the solution g(x) = − cos x. We will approximate the exact solution of this integral (6.4) using the optimal
quadrature formula (2.1).

Table 3 and Table 4 show the exact value of the integral calculated using the Maple mathematical

package, the value of the integral calculated using the optimal quadrature formula (OQF), and the

absolute error between them when N = 10 and N = 100, respectively.

These numerical results were calculated when the number of nodes was N = 10.
t g(t) OQF |g(t) −OQF|

2π
9 0.766044443118979 0.726773910587135 3.9270532531844E-02

4π
9 0.173648177666934 0.148941121134408 2.4707056532526E-02

6π
9 -0.500000000000000 -0.496575061480595 3.4249385194050E-03

8π
9 -0.939692620785909 -0.914027554549930 2.5665066235979E-02

10π
9 -0.939692620785909 -0.914027554549935 2.5665066235974E-02

12π
9 -0.500000000000000 -0.496575061480587 3.4249385194130E-03

14π
9 0.173648177666934 0.148941121134406 2.4707056532528E-02

16π
9 0.766044443118979 0.726773910587185 3.9270532531794E-02

Table 3. Here g(t) = cos t, OQF = 1
2π

N∑
β=0

C[β] sin(hβ)
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Figure 5. This figure shows

graphs of g(t) = cos t and

OQF = 1
2π

N∑
β=0

C[β] sin(hβ), N =

10;

Figure 6. This figure shows the

error graph of |g(t) −OQF|, N =

10;

These numerical results were calculated when the number of nodes was N = 100.
t g(t) OQF |g(t) −OQF|

2π
9 0.766044443118979 0.765667567866665 3.76875252314E-04

4π
9 0.173648177666934 0.173400292491196 2.47885175738E-04

6π
9 -0.500000000000000 -0.499953795693014 4.62043069860E-05

8π
9 -0.939692620785909 -0.939403175141790 2.89445644119E-04

10π
9 -0.939692620785909 -0.939403175141755 2.89445644154E-04

12π
9 -0.500000000000000 -0.499953795693042 4.62043069580E-05

14π
9 0.173648177666934 0.173400292491074 2.47885175860E-04

16π
9 0.766044443118979 0.765667567867245 3.76875251734E-04

Table 4. Here g(t) = cos t and OQF = 1
2π

N∑
β=0

C[β] sin(hβ)

Figure 7. This figure shows

graphs of g(t) = cos t and

OQF = 1
2π

N∑
β=0

C[β] sin(hβ), N =

100;

Figure 8. This figure shows the

error graph of |g(t) −OQF|, N =

100;
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Remark 6.2. As can be seen from the Figures 5-8, the error decreases as the number of node points N
increases.

7. Conclution

In this article, an optimal quadrature formula was constructed using the Sobolev method for

high-precision approximate calculations of singular integral equations with Hilbert kernel, and

an analytical representations of the corresponding optimal coefficients were found. Using these

optimal coefficients, the exact and approximate solutions of two singular integral equations with

Hilbert kernels were compared. Their results are presented in tables, and the errors between the

exact and approximate solutions for the case 0 < t < 2π are illustrated using graphs. As can be seen

from the tables and graphs, the accuracy of the constructed optimal quadrature formula increases

as the number of nodal points N increases, resulting in a decrease in error.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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