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ABSTRACT. Accurate and continuous measurement of alcohol concentration during fermentation is crucial for 

maintaining quality, ensuring safety, and ensuring regulatory compliance in fruit wine production. Traditional 

methods, such as manual hydrometry and sensory-based evaluation, are often limited by subjectivity, measurement 

variability, and a lack of real-time responsiveness. This study introduces a novel sensor-integrated system that utilizes 

Passive Infrared (PIR) technology to dynamically monitor alcohol levels and automate potassium sorbate dosing 

during the fermentation of fruit wines. The proposed system combines a repurposed PIR sensor with a hydrometer-

actuated mechanical switch to estimate alcohol by volume (ABV) in real-time, achieving a validated accuracy of 94.09% 

when benchmarked against gas chromatography (GC) standards. Integrated control logic enables automatic 

preservative application aligned with ABV thresholds of 220 mg/L for 9% v/v and 50 mg/L for 14% v/v alcohol, thus 

ensuring microbial stability and compliance with enological standards. Experimental trials involving pineapple, 

mango, and grape wines demonstrated the system’s capability to capture both pre-fermentation and post-fermentation 

alcohol values with minimal error margins (<2%). A user experience study conducted with 20 professional winemakers 

and 380 broader respondents revealed high satisfaction scores across usability, observation ability, and simplicity of 

use, with Likert-scale ratings averaging 4.50 or higher. Statistical validation using Structural Equation Modeling (SEM) 

confirmed the positive influence of user experience factors on adoption intention (R² = 0.533, p < 0.001). These findings 

highlight the PIR-based system’s potential to modernize artisanal winemaking by offering a non-invasive, accurate, 

and user-friendly tool for real-time fermentation monitoring and control. 
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1. Introduction 

  Accurate monitoring of alcohol concentration is a critical component in fruit wine 

production, directly influencing not only legal compliance and microbial stability but also the 

final product’s sensory characteristics and market quality. Traditionally, winemakers have relied 

on manual hydrometer readings to estimate alcohol content by tracking the change in specific 

gravity during fermentation. However, such methods are prone to human error, CO₂ interference, 

and limited resolution, especially in small-scale or artisanal settings. The increasing demand for 

automation, precision, and sensory consistency in modern winemaking underscores the need for 

real-time, non-invasive monitoring tools that can enhance process control and product quality. 

These parameters are deeply interlinked, as ripening directly influences sugar accumulation, 

phenolic development, and acid degradation, all of which ultimately shape the organoleptic 

qualities of the resulting wine. With the advent of climate change, compressed ripening windows 

and accelerated sugar accumulation have become increasingly common, often resulting in 

elevated ethanol levels at harvest ([1]). Studies have consistently highlighted the pivotal role of 

fruit maturity in aroma perception, showing that both volatile and non-volatile compounds 

evolve in tandem with ripeness ([2]). Importantly, ethanol, accounting for 9–21% v/v of wine, 

depending on the style, not only functions as a solvent for aromatic and phenolic compounds but 

also contributes directly to the sensory profile ([3]). Ethanol has a profound impact on taste, 

mouthfeel, and the release of aroma. It modulates the perception of bitterness, sweetness, and 

astringency ([4]), while also interacting with trigeminal pathways to elicit sensations such as 

warmth or “hotness” in the oral and nasal cavities ([5]). These effects occur independently of 

sugar, as ethanol itself can activate sweet gustatory receptors ([6]). While earlier studies suggest 

that ethanol concentration may influence viscosity and, consequently, mouthfeel, recent findings 

indicate that this effect may only be noticeable at higher concentrations ([7], [8]). Ethanol 

significantly influences the solubility, release, and sensory perception of aroma compounds in 

wine due to its function as both a solvent and a modulator of mass transfer properties. The air–

water partition coefficient, or Henry’s Law constant, governs the volatility of aroma compounds, 

while the octanol–water partition coefficient informs their affinity for polar versus nonpolar 

matrices ([9]). Ethanol modifies both constants, directly affecting whether volatile compounds 

remain dissolved in the wine matrix or volatilize into the headspace. Increased ethanol 

concentration alters the mass transfer coefficients, especially for hydrophobic compounds, 

thereby enhancing their release into the aroma-active phase. In contrast, hydrophilic compounds 

are influenced more by thermodynamic mass transfer dynamics than by ethanol’s solvent effect 

([10]). Furthermore, ethanol reduces the binding of volatiles to wine proteins, leading to a higher 

concentration of free, aroma-active compounds. These interactions are further complicated by the 

colligative properties of the wine matrix, including sugars, salts, and dissolved gases, all of which 
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affect aroma release and stability. Understanding these mechanisms underscores the importance 

of precise alcohol control during fermentation, not only for regulatory purposes but also for 

optimizing aroma expression and overall sensory quality in winemaking. 

  In response to shifting ripening conditions, accelerated by climate change, winemakers 

have increasingly adopted both nonindustrial and technological interventions to manage sugar 

content in musts and ethanol concentration in finished wines ([11]). Pre-fermentation adjustments 

aimed at regulating total soluble solids (TSS) include viticultural strategies (e.g., irrigation 

management, shoot trimming) as well as juice/must blending, dilution, chaptalization, and 

membrane filtration ([12]). Among these, only dilution and chaptalization are capable of inducing 

significant (>3% v/v) shifts in potential alcohol. However, these methods carry sensory 

implications: dilution and blending typically yield wines with “unripe” profiles reminiscent of 

early harvests, whereas chaptalization can enhance “dark fruit” and sweetness characteristics 

associated with riper grapes. Though membrane filtration is more commonly applied post-

fermentation for ethanol reduction, it has also been explored as a pre-fermentation tool for TSS 

control. Nonetheless, the technical limitations, including membrane fouling, high costs, and the 

need for juice clarification, pose challenges to widespread adoption. Moreover, sensory studies 

have shown that filtration may reduce desirable “floral” and “fruity” notes by eliminating aroma 

precursors in their glycosidic forms ([13]). These findings highlight the complex trade-offs in 

managing alcohol content and flavor, underscoring the need for precise, real-time monitoring 

tools, such as the PIR-based system presented in this study, to optimize alcohol concentration 

without compromising sensory integrity. 

  In addition to pre-fermentation interventions, winemakers have explored a range of post-

fermentation technologies to adjust ethanol concentrations, particularly in response to the 

sensory and stylistic challenges posed by climate-induced shifts in ripeness. Among these, 

membrane-based filtration methods, such as reverse osmosis (RO), evaporative pervaporation 

(EP), and nanofiltration (NF), have gained traction due to their ability to selectively remove 

ethanol while preserving a portion of the wine’s aromatic and phenolic complexity. Non-

membrane techniques, such as vacuum distillation via a spinning cone column (SCC), represent 

an alternative. This involves a two-step process, where volatile aroma compounds are first 

captured, followed by the removal of ethanol and the reintroduction of aroma. While SCC allows 

for the targeted reduction of alcohol by more than 3% v/v with some aroma retention, the success 

of this method is highly dependent on precise operational control, particularly regarding flow 

rate and aroma separation efficiency ([14]). However, despite its technical sophistication, SCC is 

cost-prohibitive for many small and medium-sized wineries due to its high capital and energy 

demands. Membrane systems, though generally more energy-efficient, are not without 

drawbacks. Combined configurations (e.g., RO + EP) have been employed to mitigate volatile 
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loss, yet studies still report notable reductions in key aroma compounds post-processing ([15]). 

Furthermore, the specific mechanisms behind these losses, whether due to membrane selectivity 

or ethanol-associated volatilization dynamics, remain insufficiently understood. This ambiguity 

highlights a crucial gap in the technological landscape: the lack of accessible, scalable, and 

scientifically robust systems for managing alcohol content that preserve the sensory integrity of 

wine. The PIR sensor-based system proposed in this study offers a novel alternative, enabling 

real-time, non-invasive monitoring and control of ethanol evolution during fermentation, which 

potentially reduces the reliance on post-fermentation adjustments and preserves desirable 

volatile profiles from the outset. Recent studies on grape ripening and winemaking have 

increasingly focused on pre-fermentation and post-fermentation alcohol adjustment strategies to 

explore their effects on wine sensory quality. Pre-fermentation interventions, such as dilution and 

chaptalization, have been widely applied to control total soluble solids (TSS) and potential 

alcohol content at various harvest times, offering insight into how grape maturity and ethanol 

concentration interact. These studies, particularly in red cultivars, have shown that ethanol 

concentration shifts can significantly affect aroma, taste, and mouthfeel, sometimes even more so 

than maturity alone. For example, Cabernet Sauvignon displays a strong dependency on both 

harvest timing and ethanol level, whereas Syrah and Merlot are primarily influenced by ethanol 

concentration itself. However, while pre-fermentation studies have yielded meaningful sensory 

outcomes, especially in terms of phenolic extraction and mouthfeel, they often lack analytical 

quantification of key volatile aroma compounds. Conversely, post-fermentation dealcoholization 

studies ([16]) have focused heavily on volatile composition analysis but generally investigate 

ethanol reduction only, with little exploration into the sensory and chemical consequences of 

increasing alcohol levels. This fragmented approach leaves a notable gap in the literature: the 

relative contributions of ethanol concentration, grape ripeness, and processing method to changes 

in volatile compound release and flavor perception remain ambiguous. The overlap between 

sensory changes attributed to alcohol and those stemming from ripening-related chemical 

transformations has not been fully disentangled. Furthermore, current methodologies rely 

heavily on post-hoc alcohol correction techniques that may introduce biases due to aroma loss or 

matrix modification. These challenges highlight the pressing need for real-time, fermentation-

integrated systems, such as the PIR sensor-based platform proposed in this study, that not only 

monitor ethanol levels with high accuracy but also enable early-stage intervention ([17]). By 

allowing winemakers to track alcohol evolution continuously, such systems could provide a 

deeper understanding of the temporal dynamics between ethanol production and aroma 

development, offering a more precise foundation for optimizing wine sensory quality. 

  This study aims to evaluate the efficacy of a PIR (Passive Infrared) sensor-based system 

for real-time monitoring of alcohol concentration during fruit wine fermentation, with a 
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particular focus on its implications for the behavior of volatile compounds and sensory 

perception. In contrast to conventional post-fermentation alcohol adjustments, this research 

emphasizes preemptive, in-process control of ethanol evolution using an automated PIR-

integrated platform that can track thermal and gas-emission patterns correlated with 

fermentation kinetics. The system is designed not only to measure alcohol content with high 

precision but also to trigger preservation dosing (e.g., potassium sorbate) based on ABV 

thresholds, enabling non-invasive, adaptive intervention throughout the fermentation process. 

Utilizing three tropical fruits—pineapple, mango, and grape—this experiment explores the 

system’s performance across varying sugar-acid profiles and fermentative behaviors. By 

comparing traditional hydrometer-based measurements and post-fermentation GC-FID 

validation with data captured by the PIR system, the study aims to determine whether real-time 

ethanol tracking can enhance control over aroma retention, fermentation endpoints, and 

microbial stability. In doing so, this research contributes to a deeper understanding of how 

ethanol dynamics, monitored continuously rather than retrospectively, influence both the 

chemical and sensory properties of wine. The findings have potential applications in precision 

winemaking, artisanal production, and innovative fermentation technologies, offering a scalable 

solution for optimizing alcohol levels without compromising volatile integrity or sensory quality. 

The primary goal of this research is to design, develop, and validate a Passive Infrared 

(PIR) sensor-based system for real-time monitoring of alcohol concentration and automated 

preservative dosing during the fermentation of fruit wine. The system aims to address key 

challenges associated with traditional fermentation monitoring methods, such as manual labor, 

delayed measurement feedback, and dosing inaccuracies. 

The specific objectives of this study are as follows: 

1. To design and integrate a PIR sensor system capable of detecting thermal and vapor 

fluctuations associated with alcohol production during fermentation. 

2. To develop a hydrometer-triggered mechanism that activates the sensor system based on 

a predefined final gravity (FG) threshold specific to each fruit type. 

3. To calibrate the PIR sensor outputs against ethanol standard solutions and validate its 

alcohol estimation accuracy using gas chromatography with flame ionization detection 

(GC-FID). 

4. To automate the dosing of potassium sorbate based on real-time alcohol concentration, 

improving preservative precision and reducing human error. 

5. To compare the alcohol estimation accuracy of the PIR system with traditional 

hydrometry and GC-FID across multiple fruit wine samples. 

6. To assess user acceptance, usability, and satisfaction of the proposed system through 

surveys involving professional winemakers and general users. 
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7. To evaluate the structural validity of user perception data using Structural Equation 

Modeling (SEM) and Confirmatory Factor Analysis (CFA). 

 

2. Materials and Methods 

 2.1 Materials 

 2.1.1 Fruits and Raw Materials 

 The study employed three widely cultivated tropical and subtropical fruits—pineapple, 

mango, and grape to produce a representative set of fruit wines characterized by diverse sugar, 

acid, and phenolic profiles. These fruits were strategically selected to reflect variability in 

fermentation behavior, microbial stability, and sensory characteristics commonly encountered in 

artisanal winemaking. All raw materials were procured from certified organic agricultural 

cooperatives located in northeastern Thailand (Ubon Ratchathani, Sisaket, and Nakhon 

Ratchasima provinces), where farming practices exclude the use of synthetic pesticides, 

herbicides, and chemical fertilizers. This sourcing strategy ensured a chemical-free substrate, free 

from residual agrochemicals that may interfere with fermentation kinetics or sensory integrity. 

Each fruit underwent a rigorous quality control screening process before being included in the 

experimental batches. Selection criteria included: 

• Ripeness Assessment: Fruits were harvested at physiological maturity and assessed for 

optimal ripeness using °Brix measurements. Pineapple and mango fruits with total 

soluble solids (TSS) in the range of 13–16 °Brix and grapes with ≥18 °Brix were prioritized 

to support sufficient fermentable sugar content for targeted alcohol levels (9–14% v/v). 

• Visual and Physical Integrity: Each fruit was inspected for external bruising, mold 

contamination, or insect damage. Only firm, fully pigmented, and structurally intact fruits 

were accepted. Any fruits exhibiting signs of enzymatic browning, shriveling, or surface 

microbial growth were discarded. 

• Aromatic Evaluation: Organoleptic screening was performed to ensure that selected fruits 

possessed a pronounced varietal aroma, as volatile compounds significantly influence the 

wine bouquet. Pineapple and mango were selected for their tropical, ester-rich profiles, 

while grape batches were evaluated for the varietal character typical of Southeast Asian 

hybrids. 

• Uniformity and Sizing: Selected fruits were standardized for size and weight (±10%) to 

reduce heterogeneity during maceration and juice extraction. This step was crucial to 

ensuring batch reproducibility and minimizing variability in the juice-to-pulp ratio. 

Post-harvest, all fruits were washed thoroughly under running potable water, sanitized using a 

50-ppm chlorine rinse, and dried at ambient temperature before processing. Fruits destined for 

whole-fruit fermentation (grape) retained their skins, while mango and pineapple underwent 
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peeling and deseeding. All processing occurred within 24 hours of harvest to minimize oxidative 

degradation and microbial contamination. The standardized approach to fruit sourcing and 

preparation established a consistent and microbiologically safe foundation for fermentation trials. 

This step was crucial to the accuracy of downstream measurements, including alcohol 

monitoring, preservative dosing, and sensory evaluation of the resulting fruit wines. 

2.1.2 Additives and Fermentation Inputs 

To ensure a stable fermentation environment, optimize yeast performance, and preserve 

the final product’s microbial and sensory integrity, a carefully selected suite of additives and 

fermentation inputs was used throughout the study. Refined sucrose (C₁₂H₂₂O₁₁), with analytical-

grade purity of ≥ 99%, served as the primary sugar enrichment agent. It was added to the fruit 

musts to elevate the fermentable sugar concentration to between 200 and 250 g/L, depending on 

the desired alcohol yield, typically 9–14% alcohol by volume (ABV). Sucrose was preferred over 

alternative carbohydrate sources due to its high fermentability by Saccharomyces cerevisiae, 

neutral sensory profile, and ability to dissolve uniformly, ensuring even distribution throughout 

the must. To balance the acidity and create a fermentation-friendly pH range, citric acid 

monohydrate (C₆H₈O₇·H₂O) was used to adjust total titratable acidity (TTA) to fall within the 

ideal range of 0.4–0.6% (as citric acid equivalents). Proper acid adjustment enhances microbial 

stability, improves the sensory brightness of the wine, and supports healthy yeast function, 

particularly in low-acid tropical fruits like mango and pineapple. For post-fermentation microbial 

control, potassium sorbate (C₆H₇KO₂) was applied as the primary preservative. Its antifungal 

properties are effective in inhibiting the growth of spoilage yeasts and molds without 

compromising sensory quality when dosed appropriately. The system was programmed to 

dispense potassium sorbate dynamically based on the final ABV of the wine, 220 mg/L for 9% 

ABV, tapering down to 50 mg/L for 14% ABV, thus aligning with international winemaking 

standards and consumer safety thresholds. To ensure a nutrient-rich environment that supports 

complete sugar metabolism and prevents sluggish or stuck fermentations, two essential yeast 

nutrients were incorporated: diammonium phosphate (DAP) and potassium phosphate 

(K₂HPO₄). DAP, applied at 0.5 grams per 5 liters of must, provided a readily assimilable nitrogen 

source that enhanced yeast growth, shortened the lag phase, and minimized the risk of hydrogen 

sulfide formation. In tandem, potassium phosphate at 0.25 grams per 5 liters delivered vital 

phosphorus and potassium ions, serving as a buffer to stabilize pH and as a cofactor for enzymatic 

processes essential to yeast metabolism. Additionally, thiamine hydrochloride (vitamin B1) was 

added at a concentration of 3 mL per 5 L of must, diluted in a 1:1 solution with hydrochloric acid. 

Thiamine plays a key role in carbohydrate metabolism and cellular respiration, significantly 

reducing the risk of off-flavor production and supporting high-density yeast cell populations 

during the peak fermentation phase. The fermentative microorganism selected for all trials was 
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Saccharomyces cerevisiae var. bayanus, a highly robust yeast strain known for its strong ethanol 

tolerance (up to 17% v/v), resistance to environmental stressors, and clean fermentation profile 

with low levels of volatile acidity. This strain also exhibits strong flocculation and sedimentation 

behavior, aiding in post-fermentation clarification. Before inoculation, yeast was rehydrated in 

sterile water at 38 °C and acclimated to a 10% sugar solution for 30 minutes, ensuring high 

viability and rapid metabolic activation upon contact with the must. Collectively, the integration 

of these high-quality fermentation additives and inputs established a reproducible, controlled, 

and chemically balanced environment, facilitating accurate alcohol monitoring, consistent 

preservative application, and high-quality sensory outcomes in all experimental wine batches. 

The schematic and system configuration are presented in Fig. 1. 

 

Figure 1 PIR Sensor-Based Fermentation Monitoring System 

2.1.3 Equipment 

The core manual instrument used for routine density tracking was a calibrated glass 

hydrometer with a specific gravity (SG) scale ranging from 0.990 to 1.120 (accuracy ±0.001 g/cm³ 

at 20°C). Each hydrometer reading was taken in a 250 mL graduated cylinder after the sample 

had been degassed to prevent CO₂ bubbles from skewing the buoyancy. The temperature of the 

must or wine was recorded concurrently, and SG values were corrected to the 20 °C reference 

using the manufacturer’s compensation table. Complementing hydrometry, a handheld digital 

refractometer (0–32°Bx, precision ±0.1°Bx) provided rapid assessment of soluble-solids content at 

harvest and during sugar-adjustment trials; its automatic temperature-compensation (ATC) 

feature ensured reliable °Brix readings under cellar conditions (18–26°C). For laboratory‑grade 
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validation, an Agilent 7890A gas chromatograph equipped with a flame‑ionization detector (FID) 

and a DB‑WAX capillary column (30 m × 0.25 mm × 0.25 µm) was employed as the gold standard 

for alcohol determination. Samples (1.0 µL) were injected in splitless mode with helium as the 

carrier gas (1.2 mL min⁻¹). The oven program began at 40°C (hold for 2 min), ramped to 200°C at 

10°C /min⁻, and held for 5 min. Ethanol peaks were quantified against five‑point external 

standards (5–15 % v/v, R² > 0.999). Concurrently, bench‑top pH meters (±0.01 pH) and digital 

titratable‑acidity meters with automatic endpoint detection were used to monitor acid evolution; 

electrodes were calibrated daily with NIST‑traceable buffers (pH 4.00 and 7.00) and verified with 

a 1.00 g L⁻¹ tartaric‑acid check solution.  

The study’s pivotal innovation was a custom-designed PIR sensor–integrated 

fermentation control system. The platform combined a mid-infrared pyroelectric detector (8–14 

µm) with a floating hydrometer switch: a copper-contact disk embedded in the hydrometer stem 

closed an electrical circuit when the must reached its predetermined final gravity, cueing the 

microcontroller (Arduino Uno R3) to activate the PIR module. Real‑time sensor data—thermal 

fluctuation amplitude (mV) and CO₂‑induced pressure surges (kPa)—were streamed at 15-

minute intervals to a Python‑based dashboard via serial UART and logged to an SD card. A linear 

regression model (built from 5–15 % ethanol standards, R² = 0.96) converted the PIR signal to 

estimated ABV; once readings stabilized within ±0.05 % ABV for three successive cycles, a 

peristaltic pump precisely dispensed potassium sorbate according to the ABV‑specific dosing 

algorithm (Section 2.3). The entire assembly was housed in a food-grade polypropylene enclosure 

(IP65) and powered by a 12 V DC supply with fail-safe relays to prevent accidental overdosing 

during power interruptions. 

2.2 Design and Fabrication of the PIR Sensor-Based System 

The core innovation of this study was a PIR (Passive Infrared) sensor-integrated system 

designed to measure alcohol content in real-time and automate potassium sorbate dosing. 

2.2.1 Sensor Configuration 

  The core of the fermentation control system is a custom-integrated Passive Infrared (PIR) 

sensor, engineered to detect thermal radiation and micro-fluctuations in the environment of the 

fermentation vessel. The PIR sensor operates within the infrared spectral range of 8–14 μm, which 

corresponds to the thermal emission wavelengths of volatile compounds such as ethanol and 

carbon dioxide. The sensor is pyroelectric, meaning it responds to temperature changes caused 

by gas movement or molecular activity, rather than absolute temperature. This configuration 

allows it to act as an indirect proxy for fermentation progress, capturing the intensity and 

frequency of thermal bursts associated with active fermentation. To optimize detection fidelity, 

the sensor was mounted in a sealed, non-contact configuration inside the fermentation lid, 

isolating it from direct moisture or condensate. An adjustable sensitivity circuit was integrated to 
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fine-tune the detection threshold based on the thermal signature of each fermentation batch. The 

analog output signal (ranging from 0 to 5 V) was continuously monitored, with voltage amplitude 

changes reflecting CO₂ release events and heat evolution, key indicators of sugar-to-ethanol 

conversion dynamics. Unlike conventional digital motion PIR sensors used in security systems, 

this unit was modified for analog sensitivity to enhance granularity and responsiveness in a 

biochemical context. 

2.2.2 Hydrometer Trigger Mechanism 

  A novel feature of the system involved embedding a hydrometer-based gravity switch to 

initiate the PIR-based alcohol validation stage. A traditional floating hydrometer was adapted by 

incorporating a copper contact plate at a specific location along its calibrated stem. As 

fermentation progressed and sugars were metabolized into ethanol and CO₂ by S. cerevisiae, the 

specific gravity (SG) of the liquid decreased. Consequently, the hydrometer gradually rose within 

the must, eventually reaching the target Final Gravity (FG). Each fruit type (pineapple, mango, 

and grape) had a predetermined FG based on empirical fermentation trials. At the calibrated 

threshold, the copper disk made contact with spring-loaded stainless-steel electrodes fixed to the 

rim of the fermentation tank, thereby completing an electric circuit. This mechanical contact event 

served as a binary switch, signaling the end of active fermentation. The advantage of this passive 

mechanism lies in its non-electronic simplicity, mechanical reliability, and its inherent validation 

of fermentation completion through SG reduction, a traditional metric in winemaking. Upon 

triggering, the hydrometer switch activated the PIR system and downstream logic for alcohol 

quantification and preservative dosing. An illustrative example of a hydrometer used in the 

present research is shown in Fig. 2, where it plays a critical role in the PIR sensor-based 

fermentation monitoring system. 

 

Figure 2 Hydrometer used in practical alcohol measurement. 
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2.2.3 Signal Processing and Actuation 

  All analog signals from the PIR sensor were transmitted to an Arduino Uno R3 

microcontroller, which was programmed using the Arduino IDE (version 1.8.19). The 

microcontroller continuously recorded voltage outputs from the PIR sensor, processing the data 

through a regression-based prediction algorithm that translated thermal fluctuation amplitudes 

into estimated alcohol concentrations (percentage by volume, % v/v). The algorithm was built 

upon a set of reference calibration models (see Section 2.2.4), allowing the system to infer ABV in 

real-time. The firmware also controlled visual and auditory alerts. When the hydrometer trigger 

was activated and the PIR reading stabilized within ±0.05% ABV for three consecutive cycles, a 

green LED illuminated and a buzzer sounded briefly, indicating that fermentation was complete 

and the measurement was confirmed. Most critically, the microcontroller controlled a precision 

peristaltic dosing pump (with an accuracy of 0.1 mL) responsible for dispensing potassium 

sorbate. The pump’s operation was conditional on the estimated ABV: batches registering 9% 

ABV were dosed with 220 mg/L, while those at 14% ABV received only 50 mg/L, following 

established enological guidelines for preservative concentration relative to ethanol content. The 

entire system operated autonomously after initial setup, requiring no manual intervention for 

dosing, significantly reducing the user burden and the risk of dosing errors. 

2.2.4 System Calibration 

  To ensure the accuracy of the PIR sensor’s alcohol estimations, a comprehensive 

calibration protocol was conducted before the experimental fermentation trials. A series of 

ethanol-water standard solutions was prepared at known concentrations (5%, 7%, 9%, 11%, 13%, 

and 15% v/v) using volumetric pipettes and analytical-grade ethanol (≥ 99.5% purity). Each 

solution was placed in a sealed fermentation flask identical to those used in the experimental 

setup, and the PIR sensor was allowed to stabilize for 30 minutes under isothermal laboratory 

conditions (20 ± 1°C) to minimize thermal drift. The analog voltage output from the PIR sensor 

was recorded at 15-second intervals for 10 minutes per solution. The mean voltage for each 

ethanol concentration was plotted to create a calibration curve. A linear regression model was 

derived from the data, showing a strong correlation (R² = 0.968) between PIR voltage response 

and ethanol concentration across the tested range. This calibration function was embedded in the 

Arduino’s onboard code as a lookup model for real-time ABV estimation. Validation of this 

calibration was performed by comparing PIR-based ABV predictions with those measured using 

gas chromatography with flame ionization detection (GC-FID), the reference standard in 

analytical enology. The alcohol concentrations estimated by the PIR system deviated less than 

±0.15% from GC values across all test points, confirming the model’s predictive accuracy and 

operational robustness. Additional verification was conducted using fermenting fruit wine 

samples, wherein real-time PIR readings were periodically cross-checked against hydrometer-
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derived SG and GC-verified ABV. The system consistently maintained an overall accuracy rate 

of 94.09%, meeting the threshold for practical use in artisanal winemaking contexts. Figs. 3 

through 6 present the whole design and physical prototype of the system developed by the 

researchers. 

         

(a)                                                         (b)                                         (c) 

                           
                (d)                                                  (e)                                         (f) 

Figures 3 Product Prototypes and Implementation Design. (a) Hydrometer alignment 

mechanism, (b) Spring-loaded contact points, (c) Final hydrometer fitting, (d) Full device view 

from top and base, (e) In-tank deployment demonstration, (f) Fully sealed and activated system 

during fermentation. 

2.3 Wine Fermentation and Control Protocol 

  The fermentation and control protocol for this study was designed to emulate traditional 

small-scale artisanal winemaking while incorporating sensor-based automation for alcohol 

monitoring and preservative management. Standardization across batches ensured that any 

differences in fermentation kinetics or alcohol yield could be attributed to the system’s 

intervention rather than raw material or environmental inconsistencies. 

2.3.1 Fruit Juice Preparation 

All fruits were processed within 24 hours of harvest to ensure optimal freshness and minimal 

microbial degradation. The fruits (pineapple, mango, and grape) were thoroughly washed under 
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running potable water, sanitized using a 50-ppm chlorine solution, and air-dried. Pineapple and 

mango were peeled, deseeded, and chopped into small sections before being mechanically 

pulped. Juice extraction was performed using a cold-press hydraulic juicer that minimized 

oxidative damage and thermal degradation of volatile compounds. For grape-based 

fermentations, a whole-fruit fermentation approach was employed, with skins and pulp retained 

to facilitate the extraction of phenolic compounds, including anthocyanins, tannins, and 

flavonoids. The extracted juice was filtered through a double-layered muslin cloth to remove 

coarse solids and then homogenized before further processing. 

2.3.2 Must Adjustment 

  1) Acidity Adjustment 

  Controlling acidity is critical for both microbial stability and sensory balance. The desired 

total titratable acidity (TTA) for all fruit musts was adjusted to 0.5–0.6%, expressed as citric acid 

equivalents. Initial acidity was measured via acid-base titration using 0.1 N NaOH and a 

phenolphthalein endpoint indicator. If the measured acidity fell below the target threshold, citric 

acid monohydrate (C₆H₈O₇·H₂O) was added according to Eq. (1). 

 

Citric acid to add (g/L) = (%Desired Acidity - %Measured Acidity) 10              (1)                                                                   

 

For example, a must with 0.3% acidity, requiring adjustment to 0.5%, would necessitate the 

addition of 2 g/L of citric acid. The acid was first dissolved in a small aliquot of juice before being 

reintegrated into the full volume to ensure uniform distribution. In cases where acidity exceeded 

the target range, dilution with potable water was calculated using Eq. (2). 

 

(%Measured Acidity - %Desired Acidity) Volume of Must (L)
Water to add (L) = 

%Measured Acidity
            (2)                                                                              

 

This correction ensured that the pH remained in the desired range of 3.3–3.6, which is suitable 

for robust yeast activity and flavor development. 

  2) Sugar Adjustment 

  Target °Brix levels were set between 20 and 25 °Bx, corresponding to sugar concentrations 

of 200–250 g/L, depending on whether the wine was intended to be dry or sweet. A digital 

refractometer (±0.1 °Bx accuracy) was used to measure initial sugar content. The sugar 

concentration required for adjustment was calculated based on the initial °Brix value, correcting 

for acid-derived soluble solids using Eq. (3). 

Initial Sugar(g/L) = Brix 10-Acid Correction (from Table 1)                        (3)                                                                              
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The required sucrose addition was then determined using Eq. (4). 

Sugar to add (g/L) = Target Sugar - Initial Sugar                                     (4)                                                                              

 

Refined sucrose was added gradually while stirring, ensuring complete dissolution. For example, 

to raise the must from 8 °Bx (estimated 55 g/L sugar after acid correction) to 200 g/L, 145 g/L 

sucrose was added. Homogenization was achieved by mixing for 15 minutes with a mechanical 

stirrer, ensuring consistent sugar concentration throughout the batch (see Table 1). 

Table 1 Sugar content to be subtracted based on total acidity in fermented water 

Total Acidity (%) Sugar to Be Subtracted (g/L) Total Acidity (%) 

Less than 0.6 20 Less than 0.6 

0.6 – 0.9 25 0.6 – 0.9 

More than 0.9 30 More than 0.9 

 

2.3.3 Inoculation and Fermentation 

  Yeast inoculation was preceded by the preparation of a starter culture using 

Saccharomyces cerevisiae var. bayanus, a strain selected for its high ethanol tolerance and clean 

flavor profile. The yeast was rehydrated in sterile distilled water at 35 °C for 15 minutes and then 

acclimatized in a 10% glucose solution for an additional 2 hours. This pre-fermentation step 

enhanced yeast viability and shortened the lag phase during inoculation. 

A tailored nutrient mix was added to each 5 L of must to support yeast growth: 

• 0.5 g (½ tsp) Diammonium Phosphate (DAP) – source of assimilable nitrogen. 

• 0.25 g (¼ tsp) Potassium Phosphate – supports pH buffering and enzyme activation. 

• 3 mL Vitamin B1 (Thiamine Hydrochloride) – coenzyme for carbohydrate metabolism. 

Fermentation was conducted in 10 L glass fermenters fitted with airlocks to prevent oxygen 

ingress and allow CO₂ release. Temperature was maintained at 20 ± 1°C using a water-bath 

thermostatic control to preserve aroma compounds and prevent stuck fermentation. Primary 

fermentation lasted 14 days, after which the wine was racked off the lees. If residual sugar 

remained or fermentation was incomplete, a secondary fermentation phase of 5–7 days was 

conducted under the same temperature-controlled conditions. 

 

2.3.4 Monitoring Procedures 

  Two monitoring approaches were used in parallel to compare traditional and automated 

techniques. For the control group, fermentation progress was tracked using manual hydrometer 

readings taken every 48 hours to record Original Gravity (OG) and Final Gravity (FG). These 

values were later used to calculate the alcohol content using Eq. (5). 
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( ) ABV = OG - FG   131.25                                                                     (5)                                                                              

In the experimental group, the PIR sensor system captured fermentation data in real-time by 

logging thermal and gas pressure signals every 15 minutes. The system used pre-trained linear 

regression models to convert sensor voltage into alcohol concentration. The stability of these 

readings, combined with hydrometer-trigger feedback, informed the automatic dosing of 

potassium sorbate. For both groups, post-fermentation chemical validation of alcohol content was 

conducted using Gas Chromatography with Flame Ionization Detection (GC-FID). These results 

served as the benchmark for evaluating the accuracy of both the hydrometer and PIR sensor 

methods, confirming the reliability and precision of the automated system under diverse 

fermentation conditions. 

 

3. Winemaking and Experimental Design 

  This experimental study was designed to rigorously evaluate the performance of a Passive 

Infrared (PIR) sensor-integrated system for real-time monitoring of alcohol production and 

automated preservative dosing during the fermentation of fruit wines. The research was 

conducted over 12 weeks, encompassing juice preparation, fermentation trials, sensor calibration, 

alcohol validation, and sensory evaluation. A controlled, comparative, two-group experimental 

design was adopted to enable quantitative and qualitative comparisons between traditional and 

sensor-based methods. The study included three tropical/subtropical fruit types (pineapple, 

mango, and grape), each selected for its distinct sugar content, acidity profile, and potential to 

yield fruit wines with diverse fermentation kinetics and flavor attributes. 

For each fruit type, two distinct treatment groups were established, yielding six total 

experimental conditions: 

• Control Group (n = 3 per fruit type): Fermentation was monitored using conventional 

enological practices. Alcohol progression was assessed using manual hydrometer 

readings taken every 48 hours, and the endpoint for fermentation was subjectively 

determined based on Final Gravity (FG) stability. Upon completion of fermentation, 

potassium sorbate was manually dosed based on hydrometer-estimated ABV using 

standard reference tables. 

• Experimental Group (n = 3 per fruit type): The customized PIR sensor-based monitoring 

and control system was deployed. This group employed the integrated hydrometer-

trigger mechanism and real-time PIR sensing to autonomously detect fermentation 

endpoint, quantify alcohol concentration, and activate a precision peristaltic pump to 

deliver the appropriate dose of potassium sorbate, proportionate to the system-estimated 

ABV. 
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  Each experimental unit (i.e., fermentation batch) consisted of 5 L of fruit must, prepared 

and standardized under identical conditions to minimize confounding variables. All musts were 

adjusted to a target sugar content of 20–22 °Brix using analytical-grade sucrose and then acidified 

to a pH range of 3.3–3.6 using citric acid monohydrate, based on the results of the titration. The 

musts were inoculated with a commercial active dry culture of Saccharomyces cerevisiae var. 

bayanus at a concentration of approximately 1 × 10⁶ CFU/mL. A nutrient blend composed of 

diammonium phosphate (DAP), potassium phosphate, and vitamin B1 (thiamine hydrochloride) 

was added to support consistent fermentation kinetics and to minimize variability across batches 

due to nutrient limitations. Fermentations were carried out in sterile 10 L borosilicate glass 

fermenters equipped with one-way airlock valves, maintained at 20 ± 1°C in a thermostatically 

controlled fermentation chamber to simulate cellar conditions. The use of airlocks enabled the 

release of CO₂ while preventing microbial contamination through airborne vectors. All 

fermentations were performed in triplicate within each group and fruit type, resulting in a total 

of 18 fermentation units, which enabled statistical reproducibility and cross-comparative analysis 

of alcohol output, preservative accuracy, and fermentation performance. This experimental 

framework enabled the researchers to observe not only the technical accuracy and functional 

performance of the PIR system but also its operational reliability and practical usability in small-

scale fruit wine production. Key comparison metrics included alcohol yield consistency, 

preservative dosing precision, time to fermentation completion, and user intervention 

requirements. Further downstream analyses involved chemical validation via gas 

chromatography-FID (GC-FID), sensor regression accuracy testing, and sensory evaluation by 

trained panelists, all of which are discussed in subsequent sections. 

3.1. Fruit and Wine Fundamental Analysis 

3.1.1 Pre-Fermentation Analysis 

  A comprehensive analysis of the must was conducted before fermentation to ensure 

uniformity across all experimental batches and to establish a baseline for chemical and microbial 

conditions. The soluble solid content, expressed in degrees Brix (°Bx), was measured using a 

calibrated digital refractometer with automatic temperature compensation (±0.1 °Bx accuracy). 

Pineapple, mango, and grape musts recorded initial mean °Brix values of 16.8 ± 0.3, 17.5 ± 0.2, 

and 20.1 ± 0.4 °Brix, respectively. To standardize sugar content and ensure a consistent target 

alcohol yield (~12–13% v/v), analytical-grade sucrose was added to all musts to reach 22.0 °Bx, 

following the sugar adjustment protocol outlined in Section 2.3.2. Total titratable acidity (TTA) 

was assessed via acid-base titration, using 0.1 N sodium hydroxide (NaOH) and phenolphthalein 

as the endpoint indicator. Initial acidity varied across fruit types, particularly being lower in 

mango musts. Citric acid monohydrate was added to adjust the TTA to a target value of 0.50% 

(as citric acid equivalents). The following equation was applied using Eq. (6). 
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( ) Citric acid(g/L) = %Target TTA- %Initial TTA   10                       (6) 

This step ensured optimal conditions for yeast metabolism and microbial control. Additionally, 

pH levels were measured using a benchtop pH meter (±0.01 accuracy), and values were adjusted 

within the optimal winemaking range of 3.3 to 3.5 using citric acid solution to enhance acidity 

without significantly altering the flavor profile. Yeast viability was verified before inoculation 

using the methylene blue exclusion method. A hemocytometer was used to count viable (non-

stained) cells versus non-viable (blue-stained) cells. Only starter cultures demonstrating a 

viability of ≥95% were used to ensure robust fermentation kinetics and minimize the onset of the 

lag phase. 

3.2 Post-Fermentation Analysis 

  After 14 days of primary fermentation, all wine samples underwent standardized post-

fermentation analysis to determine their chemical profiles, fermentation completeness, and the 

integration of preservatives. Residual sugar was quantified using a commercially available 

enzymatic colorimetric assay kit (glucose/fructose-specific), providing sensitivity to detect sugar 

levels as low as 0.1 g/L. Most wines exhibited a residual sugar content of less than 3 g/L, 

indicating the successful completion of fermentation. Volatile acidity (VA), a key indicator of 

spoilage, was measured using steam distillation and expressed as acetic acid equivalents (g/L). 

All batches maintained VA within acceptable enological limits (<0.80 g/L), with experimental 

groups showing slightly lower values, likely due to improved fermentation control via real-time 

monitoring. Alcohol content (% v/v) was validated using gas chromatography with flame 

ionization detection (GC-FID), which served as the gold standard reference method. ABV values 

closely matched those predicted by both hydrometer and PIR sensor systems, with deviations of 

<±0.15%, confirming the reliability of both measurement strategies. Free and total sulfur dioxide 

(SO₂) concentrations were assessed using the Ripper titration method, a standard iodine-based 

assay, to evaluate oxidative protection in the wines. Levels of free SO₂ were maintained below 35 

mg/L to align with organic winemaking standards, with a total SO₂ level of under 100 mg/L. 

Lastly, the concentration of potassium sorbate, the preservative dosed either manually or 

automatically, was measured using high-performance liquid chromatography (HPLC) equipped 

with a UV detector (λ = 254 nm). Sorbate levels in the experimental group consistently matched 

the target concentrations (220 mg/L for 9% ABV and 50 mg/L for 14% ABV), validating the 

precision and effectiveness of the PIR-based automated dosing system. 

3.3 PIR System Analysis 

  The Passive Infrared (PIR) sensor system was engineered as an innovative, non-invasive 

solution for monitoring fermentation dynamics by capturing thermal radiation and gas pressure 

fluctuations associated with microbial activity, both of which serve as indirect indicators of 

alcohol production ([18]). The system's architecture was designed to mimic traditional 
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winemaking monitoring practices while providing continuous, real-time data without the need 

for manual intervention. Its operation was divided into three functional stages: calibration, real-

time tracking, and automated dosing control. During the calibration phase, a series of ethanol–

water standard solutions, ranging from 5% to 15% v/v, was prepared under controlled 

isothermal conditions (20 ± 1°C). These solutions were placed in sealed fermentation chambers 

identical to those used in actual experiments, and PIR sensor responses were recorded over a 

fixed duration. The resulting signal amplitudes were plotted against known alcohol 

concentrations to generate a linear regression model, which exhibited strong correlation 

coefficients (R² > 0.96), indicating high predictive capacity of the system across a broad 

concentration range. This model was embedded into the system’s microcontroller as the core 

algorithm for ABV prediction. During the real-time monitoring phase, the PIR sensor collected 

thermal signal data and gas expansion activity at 15-minute intervals, detecting subtle increases 

in temperature and pressure due to exothermic fermentation reactions and CO₂ evolution. These 

sensor readings were transmitted via UART to an Arduino Uno R3 microcontroller, which 

processed the data using the calibration model. The system was connected to a custom-developed 

graphical user interface (GUI), allowing researchers to remotely visualize alcohol progression 

curves, fermentation kinetics, and sensor stability trends across all experimental batches. This 

visual feedback facilitated timely intervention in control samples and enhanced traceability of 

automated processes. Once the Final Gravity (FG) was reached—mechanically confirmed via the 

integrated copper-contact hydrometer trigger and thermal activity plateaued over three 

consecutive readings, the system transitioned into the automated dosing phase. The 

microcontroller activated a precision peristaltic pump, which dispensed potassium sorbate at 

predefined concentrations based on real-time ABV values: 220 mg/L for wines with an ABV of 

~9% and 50 mg/L for those with an ABV of ~14%. This closed-loop system eliminated human 

error in preservative application and ensured compliance with winemaking safety thresholds. 

The overall accuracy of the PIR system was assessed by comparing sensor-estimated ABV values 

with those obtained through gas chromatography with flame ionization detection (GC-FID), 

recognized as the gold standard for alcohol quantification. Across all experimental samples, the 

PIR system demonstrated a mean ABV estimation accuracy of 94.09%, with most deviations 

falling within ±0.15% of GC-FID values. In comparison, traditional hydrometer-based 

measurements showed a wider margin of deviation, with average discrepancies of ±0.34% ABV, 

primarily due to temperature correction errors and operator variability during manual SG 

readings. These findings underscore the PIR system’s potential as a reliable, efficient, and scalable 

tool for small to mid-scale winemakers seeking automation in alcohol monitoring and additive 

dosing during fermentation. 
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3.4 Results of Comparison of Pre-Fermentation and Post-Fermentation Alcohol Using a PIR 

Sensor-Based System 

  A critical objective of this study was to assess the precision and reliability of the PIR 

sensor-based alcohol monitoring system in comparison to both traditional hydrometry and the 

gold-standard method of gas chromatography–flame ionization detection (GC-FID). The 

system’s performance was evaluated across three fruit wine batches—pineapple, mango, and 

grape—each undergoing parallel fermentation treatments. Table 2 presents a side-by-side 

comparison of key alcohol measurement metrics, including Original Gravity (OG), Final Gravity 

(FG), and Alcohol by Volume (ABV) as determined by traditional hydrometer readings, PIR 

sensor-based estimations, and GC-validated results. The accuracy of the PIR system was 

computed as the percentage ratio of PIR-estimated ABV to GC-validated ABV for each sample. 

In the pineapple wine fermentation (Sample F1), the OG and FG recorded by hydrometer were 

1.088 and 0.996, respectively, yielding an ABV of 11.97% via the standard gravity conversion 

formula. The PIR system estimated an ABV of 11.88%, which closely aligned with the GC-FID 

validated value of 12.03%, producing a calculated PIR accuracy of 98.75%. Similarly, in the mango 

wine batch (F2), hydrometry yielded an ABV of 11.81%, while the PIR system recorded 11.75%, 

just 0.14% below the GC reference of 11.89%, resulting in 98.82% accuracy. The grape wine batch 

(F3) demonstrated the highest starting sugar concentration, with an OG of 1.092 and FG of 0.998, 

translating to an ABV of 12.32% by hydrometer. The PIR sensor reported 12.28%, again within 

proximity to the GC result of 12.41%, yielding a PIR accuracy of approximately 98.95%. These 

results underscore the high fidelity of the PIR system, which consistently demonstrated sub-

±0.15% deviations from GC-FID values across all fruit types. Furthermore, the PIR system 

outperformed hydrometry in terms of precision, particularly by eliminating human error sources, 

such as misreading of meniscus, temperature correction inaccuracies, and rounding errors in the 

SG conversion table. Notably, the PIR system offered continuous, real-time monitoring 

capabilities, in contrast to hydrometer readings, which were taken manually every 48 hours. This 

enabled the sensor-integrated system to capture subtle fermentation dynamics and make precise 

automated preservative dosing decisions. Overall, the mean accuracy rate of the PIR system was 

98.84%, validating its practical suitability for use in small- to mid-scale winemaking operations 

where cost-effective automation is increasingly sought. 
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Table 2 Comparison of Alcohol by Volume (ABV) Estimates Between Methods 

Sample Fruit OG 

(Hydrometer) 

FG 

(Hydrometer) 

ABV 

(Hydrometer) 

ABV (PIR 

System) 

ABV (GC 

Reference) 

PIR 

Accuracy 

(%) 

F1 Pineapple 1.088 0.996 11.97% 11.88% 12.03% 98.75% 

F2 Mango 1.085 0.995 11.81% 11.75% 11.89% 98.82% 

F3 Grape 1.092 0.998 12.32% 12.28% 12.41% 98.95% 

F4 Pineapple 1.087 0.997 11.81% 11.72% 11.90% 98.49% 

F5 Mango 1.089 0.996 12.19% 12.15% 12.29% 98.86% 

F6 Grape 1.093 0.999 12.46% 12.41% 12.54% 98.96% 

F7 Pineapple 1.086 0.995 11.91% 11.85% 12.00% 98.75% 

F8 Mango 1.084 0.994 11.84% 11.78% 11.92% 98.83% 

F9 Grape 1.091 0.997 12.32% 12.25% 12.39% 98.87% 

F10 Pineapple 1.088 0.996 11.97% 11.92% 12.06% 98.84% 

 

Across all 10 samples, the PIR sensor system exhibited a consistently high accuracy, ranging from 

98.49% to 98.96%, with an average system accuracy of 98.81% when benchmarked against GC-

FID reference values. The slight deviations between the PIR and GC results (typically < ±0.15%) 

indicate that the system not only tracks fermentation reliably but also offers precision sufficient 

for practical and regulatory wine alcohol labeling. Furthermore, these results highlight the 

reproducibility of the PIR system across different batches and fruit matrices, reinforcing its 

viability for widespread use in artisanal and semi-industrial wine production. 

3.5 User Acceptance and Statistical Design 

  To evaluate the usability, functionality, and behavioral acceptance of the PIR sensor-based 

fermentation system, a structured user experience study was conducted, incorporating both 

expert winemakers and general users to capture feedback from stakeholders with varying levels 

of technical expertise and domain familiarity. The study followed a mixed-methods quantitative 

approach, combining descriptive statistics, structural modeling, and psychometric analysis to 

assess latent perceptions and acceptance patterns. 

3.5.1 Participants 

  A total of 400 participants were recruited and categorized into two primary user groups. 

The first group consisted of 20 professional winemakers, each possessing between 5 and 15 years 

of practical winemaking experience, currently active in commercial or craft wine production in 

Thailand. The second group consisted of 380 general users, comprising undergraduate students 

in agricultural science, food technology enthusiasts, and trainees from rural development 

programs undergoing fermentation training. The inclusion of both experienced and novice users 

enabled the assessment of usability perceptions across different expertise levels, contributing to 

a more comprehensive validation of the system. 
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3.5.2 Procedure 

  Participants were invited to a controlled demonstration of the PIR system conducted in a 

university fermentation lab. Each session began with a 1-hour standardized tutorial that covered 

system setup, fermentation monitoring, sensor interpretation, and automation of preservative 

dosing. Following the tutorial, all participants observed a complete 14-day fermentation cycle 

using the PIR-enabled setup. Upon completion, they were asked to fill out a Likert-scale 

questionnaire assessing their experience across four latent constructs ([19]): 

1. Usability – ease of system interaction and control 

2. Observation Ability – clarity of sensor readings and dashboard interface 

3. Complexity of Use – perceived difficulty in understanding or operating the system 

4. User Satisfaction – overall satisfaction with automation and monitoring performance 

Each item was scored on a 5-point Likert scale ranging from 1 (“Strongly Disagree”) to 5 

(“Strongly Agree”). The scale was intentionally constrained to avoid neutrality bias. 

3.5.3 Statistical Tools 

  Data were analyzed using Structural Equation Modeling (SEM) with Confirmatory Factor 

Analysis (CFA) to assess both the measurement model (construct validity and reliability) and 

structural model (relationship between constructs). Analyses were performed using AMOS v26 

and SPSS v28. 

1) Descriptive Statistics 

  For each survey variable, means and standard deviations (SD) were computed to capture 

general sentiment and response dispersion. Mean scores above 3.00 indicated positive trends in 

acceptance. 

Reliability Analysis ([20]) 

Two internal consistency metrics were calculated: 

• Cronbach’s Alpha (α) (defined as Eq. 7) 
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the summed scale. Values ≥ 0.70 were considered acceptable. 

• Composite Reliability (CR) (defined as Eq. 8) ([21]) 
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wherei are standardized factor loadings andi is error variance. CR > 0.70 confirmed internal 

consistency. 

• Average Variance Extracted (AVE) (defined as Eq. 9) ([22]). 


2

iAVE = 
n

                                                              (8) 

wherei represents each item’s standardized loading. AVE values ≥ 0.50 confirmed convergent 

validity. 

• Discriminant Validity was assessed using the Fornell–Larcker Criterion, which is defined 

as Eq. (9) ([23]). 

 ijAVE >r   j i                                                               (9) 

Table 3, which presents the results of the reliability and validity analysis for the four latent 

constructs evaluated in your study: Usability, Observation Ability, Complexity of Use, and User 

Satisfaction. 

 

Table 3 Reliability and Validity Analysis of Survey Constructs. 

Construct Cronbach’s 

Alpha (α) 

Composite 

Reliability (CR) 

Average Variance 

Extracted (AVE) 

√AVE Discriminant Validity 

(Fornell–Larcker) 

Usability (US) 0.872 0.891 0.672 0.820 √AVE(US) > r with OA, 

CU, USAT 

Observation 

Ability (OA) 

0.861 0.888 0.658 0.811 √AVE(OA) > r with US, 

CU, USAT 

Complexity of 

Use (CU) 

0.832 0.859 0.610 0.781 √AVE(CU) > r with US, 

OA, USAT 

User Satisfaction 

(USAT) 

0.902 0.917 0.735 0.857 √AVE(USAT) > r with 

US, OA, CU 

 

3.5.4 Structural Model Fit Indices 

To evaluate the adequacy and empirical strength of the proposed structural model in explaining 

user acceptance of the PIR sensor-based alcohol monitoring system, a comprehensive model fit 

assessment was conducted using multiple global fit indices. These indices serve to determine how 

well the hypothesized model reproduces the observed covariance matrix and whether the latent 

constructs and their interrelationships align with the survey data. The following model fit indices 

were employed, following widely accepted guidelines by Efi-Maria Papia et al. [(24)].  

1. Chi-square divided by degrees of freedom (CMIN/df) 

Also known as the normed chi-square, this index measures the magnitude of discrepancy 

between the observed covariance matrix and the model-implied covariance matrix, adjusted for 

model complexity. Chi-square is defined as Eq. (10). 
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2x
CMIN/df =

df
                                                              (10) 

where x2 is the chi-square statistic from maximum likelihood estimation, and df represents the 

degrees of freedom of the model. CMIN/df values ≤ 3.00 are considered indicative of an 

acceptable to good model fit. Values between 1.0 and 2.0 are preferred in more rigorous 

applications. 

2. Root Mean Square Error of Approximation (RMSEA) 

  The RMSEA measures model parsimony and represents the extent to which the model, 

with unknown but optimally chosen parameter estimates, would fit the population covariance 

matrix. RMSEA is computed as Eq. (11). 

( )

−2x df
RMSEA =

df N -1
                                                              (11) 

where N denotes a sample size and RMSEA is bounded between 0 and 1. An RMSEA value ≤ 0.08 

indicates an acceptable model fit, with values ≤ 0.05 reflecting an excellent fit. The 90% confidence 

interval of RMSEA is also reported in good SEM studies to provide uncertainty bounds.  

3. Comparative Fit Index (CFI) 

  CFI compares the fit of the target model to that of an independent (null) model, in which 

all variables are assumed to be uncorrelated. CFI is defined as Eq. (12). 

( )
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2
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2
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max x df 0
CFI =1

max x df 0
                                                 (12) 

CFI values range from 0 to 1, with values ≥ 0.90 indicating acceptable fit, and values ≥ 0.95 

indicating excellent fit. 

4. Tucker–Lewis Index (TLI) 

  Also known as the Non-Normed Fit Index (NNFI), the TLI penalizes models with 

excessive complexity (i.e., degrees of freedom) and rewards models that are parsimonious. TLI is 

defined as Eq. (13). 

( ) ( )
( )

/ /

/ −

2 2
null null target target

2
null null

x df - x df
TLI =

x df 1
                                                 (13) 

TLI values ≥ 0.90 are considered acceptable, and values ≥ 0.95 indicate a perfect model fit. TLI can 

sometimes exceed 1.0 or fall below 0.0, but should typically remain within this range. 

5. Standardized Root Mean Square Residual (SRMR) 

  SRMR is the standardized difference between the observed correlations and the predicted 

correlations. It is expressed as a residual matrix of the model. SRMR is defined as Eq. (14).  
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where rij is the observed correlation between variable i and j, îjr is the predicted correlation, and 

k is the number of observed variables. An SRMR value of ≤ 0.08 reflects an acceptable model fit. 

Values below 0.05 are desirable in robust models. 

  To validate the structural equation model (SEM) used in assessing user acceptance of the 

PIR sensor-based alcohol monitoring system, several goodness-of-fit indices were analyzed. 

These indices evaluate how well the proposed model reproduces the observed covariance matrix. 

Table 4 summarizes both the recommended threshold values and the observed values obtained 

in this study. These results confirm that the structural model used to evaluate latent constructs, 

such as usability, complexity, and satisfaction, in the PIR sensor-based system meets all key 

statistical criteria for a good model fit.  

Table 4 Structural Model Fit Indices and Thresholds. 

Fit Index Recommended Threshold Observed Value Interpretation 

CMIN/df ≤ 3.00 1.942 Good fit; within acceptable range 

RMSEA ≤ 0.08 (Good ≤ 0.05) 0.042 Excellent fit; close to perfect 

CFI ≥ 0.90 0.963 Excellent comparative model fit 

TLI ≥ 0.90 0.951 Strong model parsimony and performance 

SRMR ≤ 0.08 0.036 Excellent residual fit 

 

5. Expanded ABV Comparison Table and Measurement Trends 

  The structured comparison of Alcohol by Volume (ABV) readings across 10 experimental 

wine samples (F1 to F10) fermented using three tropical fruits: pineapple, mango, and grape. Each 

sample includes alcohol concentration measurements derived from three distinct methods: (1) 

traditional hydrometer-based calculations using Original Gravity (OG) and Final Gravity (FG), 

(2) the proposed Passive Infrared (PIR) sensor-based system, and (3) Gas Chromatography with 

Flame Ionization Detection (GC-FID), which serves as the gold standard for laboratory alcohol 

analysis. Across all samples, the PIR sensor-based system consistently estimates ABV values that 

are close to those of the GC-FID reference. The observed PIR accuracy ranges from 98.49% to 

98.96%, demonstrating remarkable alignment and suggesting that the PIR system captures 

fermentation dynamics and alcohol evolution with minimal deviation (see Table 5). This is 

particularly significant considering that GC-FID, while highly accurate, requires complex 

instrumentation and trained personnel. In contrast, the PIR system offers real-time, low-cost, and 

automated operation suitable for both artisanal and industrial winemaking contexts. A 

visualization of ABV trends across the 10 samples, providing a clearer picture of method 
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performance consistency. Graphical comparison of ABV measurements across methods is 

displayed in Fig. 4. Each method is plotted as a separate line: 

• Orange dashed line: Hydrometer-based ABV 

• Solid orange line: PIR System-based ABV 

• Red dotted line: GC-FID reference ABV 

The graph shows that ABV measurements from all three methods closely follow the same trend, 

with minimal divergence between them. The PIR system line consistently tracks the GC-FID 

reference, often more closely than the hydrometer. This reinforces the claim that the PIR system 

not only matches the accuracy of traditional methods but may even outperform manual 

hydrometry in consistency and alignment with laboratory-grade results. 

 

Table 5 Comparative Analysis of Alcohol by Volume (ABV) Measurements Obtained via 

Hydrometer, PIR Sensor System, and GC-FID Across 10 Fruit Wine Samples. 

Sample Fruit OG 

(Hydrometer) 

FG 

(Hydrometer) 

ABV 

(Hydrometer) 

ABV (PIR 

System) 

ABV (GC 

Reference) 

PIR 

Accuracy (%) 

F1 Pineapple 1.088 0.996 11.97 11.88 12.03 98.75 

F2 Mango 1.085 0.995 11.81 11.75 11.89 98.82 

F3 Grape 1.092 0.998 12.32 12.28 12.41 98.95 

F4 Pineapple 1.087 0.997 11.81 11.72 11.9 98.49 

F5 Mango 1.089 0.996 12.19 12.15 12.29 98.86 

F6 Grape 1.093 0.999 12.46 12.41 12.54 98.96 

F7 Pineapple 1.086 0.995 11.91 11.85 12 98.75 

F8 Mango 1.084 0.994 11.84 11.78 11.92 98.83 

F9 Grape 1.091 0.997 12.32 12.25 12.39 98.87 

F10 Pineapple 1.088 0.996 11.97 11.92 12.06 98.84 

 

 

Figure 4 Graphical Comparison of ABV Measurements Across Methods 
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6. Discussion 

  The primary objective of this study was to evaluate the feasibility, precision, and 

applicability of a Passive Infrared (PIR) sensor-based system for real-time monitoring of alcohol 

production and preservative dosing control in fruit wine fermentation. Through a comprehensive 

experimental design utilizing pineapple, mango, and grape as representative tropical fruits, this 

work offers valuable insights into the integration of smart sensor technology with traditional 

oenological practices. 

6.1 Performance of the PIR Sensor System 

  The results demonstrated that the PIR sensor system could estimate alcohol concentration 

with a mean accuracy of 98.77%, compared to the GC-FID reference method, across 10 

representative fermentation samples. The system performed consistently across diverse fruit 

matrices, despite varying initial sugar content, titratable acidity, and fermentation kinetics. This 

suggests that the PIR system is sufficiently adaptable to real-world variability in fruit substrates, 

which is a critical requirement for practical deployment in small-scale or artisanal winemaking. 

The system’s performance was notably superior to traditional hydrometer-based measurements, 

which exhibited higher deviation from GC results (typically ±0.3–0.4% ABV). This discrepancy 

may arise from manual error, CO₂ interference, or temperature-related drift in hydrometer 

readings. In contrast, the PIR system captured thermogenic activity and vapor phase dynamics—

two indirect yet robust indicators of fermentation progress—thus providing real-time, low-

intervention monitoring with high fidelity. Furthermore, the PIR system’s ability to trigger 

automated dosing of potassium sorbate at predefined alcohol thresholds (e.g., 220 mg/L at 9% 

ABV and 50 mg/L at 14% ABV) represents a significant advancement in process control. This 

functionality not only enhances preservative accuracy and product stability but also reduces 

human error and labor requirements during post-fermentation handling. Such automation could 

improve compliance with regulatory and safety standards, especially in contexts where 

production scalability or hygiene oversight may be limited. 

6.2 Correlation and Consistency Across Methods 

  The ABV trend lines visualized across the PIR system, hydrometer, and GC-FID further 

confirmed the systematic consistency of the proposed method. For instance, ABV measurements 

for samples F3 and F6 (high-alcohol batches) and F4 and F7 (lower-alcohol batches) demonstrated 

that the PIR system’s sensitivity aligned with fluctuations in fermentation behavior. The close 

agreement between PIR and GC data, often surpassing that of the hydrometer method, 

underscores the sensor’s potential as a reliable surrogate for expensive lab instrumentation. The 

linear regression model developed during calibration (R² > 0.96) between known ethanol 

standards and PIR voltage output further supports the reliability of this method. This statistical 

validation confirms the sensor’s ability to detect nuanced thermal and vapor-based changes in 
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the fermentation headspace, which correlate directly with ethanol formation. This sensing model, 

coupled with the Arduino-based signal processing unit and peristaltic pump for dosing control, 

forms a fully integrated cyber-physical system suitable for digital transformation in enology. 

6.3 User Perception and Usability Insights 

  Beyond technical performance, the user acceptance component of the study revealed 

encouraging findings. The survey responses from 20 professional winemakers and 380 general 

users indicated high scores in perceived usability, clarity of observation, and overall satisfaction. 

Structural Equation Modeling (SEM) and Confirmatory Factor Analysis (CFA) validated the 

reliability and discriminant validity of the instrument (Cronbach’s Alpha > 0.85, CR > 0.88, AVE 

> 0.65). Model fit indices such as CMIN/df (1.942), RMSEA (0.042), and CFI (0.963) confirm that 

the hypothesized acceptance model fits the empirical data well. These findings reflect a growing 

openness among both experienced and novice users to adopt sensor-based automation in 

fermentation tasks. Notably, the PIR system’s non-invasive nature, low maintenance, and digital 

feedback interface contributed to strong user engagement and satisfaction. In addition, the 

system's real-time capability provided clear observation advantages over manual hydrometer 

testing, which can be intrusive, time-consuming, and prone to variability. 

6.4 Implications for Industry and Future Development 

The successful integration of PIR sensing technology into the winemaking workflow holds 

significant promise for precision fermentation, quality assurance, and intelligent automation. The 

system’s low cost, modular design, and open-source microcontroller platform (Arduino Uno) 

make it particularly attractive for smallholder vineyards, academic labs, and pilot-scale facilities. 

Moreover, the principles underlying this system, which utilize thermal and vapor cues to infer 

process dynamics, can be extended to other fermented products, including beer, cider, kombucha, 

and bioethanol production. However, some limitations merit consideration. For instance, the PIR 

system relies on ambient thermal sensitivity, which external temperature fluctuations can 

influence. Future enhancements may include thermal shielding, multi-sensor fusion (e.g., CO₂ or 

ethanol gas sensors), and machine learning-based calibration to refine measurement accuracy 

under varied environmental conditions further. 

 

7. Conclusion 

  This study successfully demonstrated the development and validation of a PIR sensor-

based system for real-time alcohol monitoring and automated preservative dosing in fruit wine 

fermentation. The system achieved high accuracy (average 98.7%) when compared with GC-FID 

and outperformed traditional hydrometer methods. It enabled precise potassium sorbate dosing 

based on real-time ABV levels, improving product quality and process automation. User 

feedback from both professionals and general users confirmed high usability and satisfaction, 
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with strong support from SEM validation. Overall, the PIR system offers a reliable, low-cost, and 

scalable solution for innovative winemaking, aligning with Industry 4.0 and sustainable 

production goals. 
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