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ABSTRACT. Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instances offer scalable computing resources
crucial for various applications. Accurate prediction of CPU utilization is essential for efficient resource management
and cost optimization in cloud environments. This study investigates the performance of machine learning models,
specifically Long Short-Term Memory (LSTM) networks and AutoRegressive Integrated Moving Average (ARIMA)
models, for forecasting CPU utilization of AWS EC2 instances in both development and production environments. By
employing historical data from both environments, the research aims to extend predictive horizons and improve
forecasting accuracy. We evaluate and compare model performance using Mean Squared Error (MSE) and fitting times.

Results reveal that ARIMA models consistently outperform LSTM models in terms of MSE and computational
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efficiency, demonstrating superior performance in both environments. LSTM models, despite their potential, show
higher variability and longer fitting times, especially with hyperparameter tuning. This paper highlights the critical
role of model selection and tuning in enhancing forecasting capabilities and operational efficiency in cloud resource
management. The findings contribute valuable insights for optimizing resource allocation and cost management in

AWS cloud services.

1. Introduction

Cloud computing has transformed how businesses and individuals access computing
power, storage, and services over the internet. Amazon Web Services (AWS) is a leading cloud
platform that provides a wide range of on-demand services, including artificial intelligence,
machine learning, and the Internet of Things (IoT) [1]. Alongside other major providers such as
Google Cloud, Microsoft Azure, IBM Cloud, and Alibaba Cloud, AWS enables scalable and cost-
effective deployment of applications worldwide [2]. Cloud storage is increasingly popular for
both individuals and businesses seeking efficient off-site data backup solutions [3, 4].

Research on cloud computing has evolved significantly, with early studies focusing on
virtualization and distributed computing [5]. The concept gained widespread adoption in the
early 2000s, and the launch of AWS in 2006 marked a turning point in the commercial viability of
cloud services. Since then, research has explored various aspects, including performance
optimization, scalability, and security [6, 7]. The shift toward cloud-based solutions has enabled
organizations across industries to access extensive computing resources, often beyond what is
feasible with local infrastructure [8-10]. However, effective management of these services requires
specialized skills and precise resource analysis to avoid inefficiencies and excessive costs [11-14].

Despite advancements, cloud resource management still presents challenges, especially
in large-scale systems [15, 16]. Proper allocation of computational resources is essential to
maintain performance and control expenses. AWS Elastic Compute Cloud (EC2) instances, which
offer scalable computing capacity, require continuous monitoring and optimization. One key
aspect is predicting CPU utilization, as accurate forecasts help prevent under-provisioning
(which degrades performance) and over-provisioning (which increases costs) [17, 18]. Previous
studies have shown that predicting CPU utilization is challenging [19]. While recurrent neural
networks (RNNs) provide accurate short-term predictions, longer forecasts up to 30 minutes are
necessary for proactive capacity adjustments [20, 21].

To address this, our research employs Long Short-Term Memory (LSTM) networks,
known for their superior performance in time series forecasting. Additionally, we apply the
AutoRegressive Integrated Moving Average (ARIMA) model to further enhance predictive
accuracy. By analyzing historical data, these models help optimize AWS resource allocation and

improve cost efficiency [20, 22, 23]. Our study also incorporates anomaly detection techniques
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using Random Forest (RF) and Artificial Neural Networks (ANN) to identify inefficiencies in

resource utilization.

The novelty of our work lies in extending the predictive horizon for CPU utilization while
improving accuracy. By leveraging established machine learning techniques, we provide
practical insights for proactive resource management. This approach not only enhances AWS
operational efficiency but also contributes to sustainable cloud computing practices.

The primary motivations of this research are summarized as follows:

i.  To independently evaluate and compare the forecasting capabilities of ARIMA and LSTM
models for CPU utilization prediction on AWS EC2 instances.

ii.  To investigate the impact of hyperparameter tuning on the performance of ARIMA and
LSTM models, specifically focusing on optimizing prediction accuracy for CPU utilization
in EC2 instances.

iii. =~ Toimplement data pre-processing techniques tailored for time series data, enhancing model
performance and prediction reliability.

iv.  To conduct exploratory data analysis (EDA) to identify patterns, trends, and anomalies in
the dataset, providing valuable insights for model selection and refinement.

The structure of this paper is as follows: Section 2 provides a comprehensive literature
review. Section 3 details the research methodology applied in this research, including the ARIMA
and LSTM models, along with the mathematical formulations. Section 4 provides the results and
discussion on the application of LSTM and ARIMA models for CPU utilization prediction.

Finally, Section 5 concludes the paper with key findings and future directions.

2. Literature Review

This section reviews studies on CPU utilization prediction in cloud computing,
particularly on AWS. Accurate forecasting is crucial for optimizing resource allocation and
reducing costs. Borra [24] describes cloud computing as a flexible IT resource model, while Balaji,
et al. [25] emphasizes user-centric pricing strategies. AWS, as noted by Kaufman [26], provides
scalable, cost-effective cloud services that enhance operational efficiency, enabling global
deployment [27].

Several studies compare predictive models for CPU utilization. Preetham, et al. [28] found
that LSTM models outperform ARIMA in handling complex cloud workloads, improving
resource management, and reducing SLA violations. Similarly, Nguyen, et al. [29] demonstrated
that LSTM-based models significantly enhance prediction accuracy and adaptability compared
to ARIMA. Osypanka and Nawrocki [30] proposed a cost-optimization approach combining

machine learning, anomaly detection, and particle swarm optimization, achieving an 85% cost
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reduction in Azure environments. Duggan, et al. [20] explored RNNs for CPU forecasting,
showing superior performance in dynamic cloud environments compared to traditional methods.
These studies collectively highlight the importance of machine learning techniques in

optimizing cloud resource management, reducing costs, and improving operational efficiency.

3. Methodology

This section describes the approaches used to create and assess the time series forecasting
models known as LSTM and ARIMA. Data collection, preprocessing, model creation, assessment
measures, and implementation tools are all included in the methodology.

3.1. Dataset

The dataset for this study was sourced from Bursa Malaysia Berhad, a reliable and
comprehensive data provider. However, due to confidentiality, the data is not publicly available.
It consists of CPU utilization metrics from Amazon EC2 instances, collected from two distinct
environments: production and development. The production environment comprises 11
instances, spanning data from December 3, 2022, to March 1, 2024, while the development
environment has 10 instances, covering the period from January 1, 2023, to November 30, 2023.
These instances run on various operating systems, including Windows and Red Hat Enterprise
Linux (RHEL). To ensure data integrity, a thorough preprocessing step was performed to address
any missing values, enhancing the accuracy and reliability of the analysis.

3.3.1. Data Preprocessing

Data preprocessing ensures reliability and accuracy before model training or analysis. In
this study, both production and development datasets contained missing values, representing
periods of CPU inactivity. Instances with more than 50% missing data were excluded to maintain
data integrity. For those with fewer missing values, mean imputation was applied, replacing
missing values with the average of the observed data for that instance. This approach preserves
dataset consistency without significantly altering its statistical properties.

3.2. Time Series Forecasting

Forecasting is a critical process for businesses and governments, as it helps in developing
future strategies based on scientifically calculated predictions. An effective forecast should be
accurate, reliable, timely, easy to understand, cost-efficient, and as simple as possible [31].
Forecasting problems are generally categorized into short-term, medium-term, and long-term
forecasts [32]. Short-term forecasts predict events over a few days, weeks, or months, while
medium-term forecasts extend up to two years and are often used for operations management
and budgeting [33]. Long-term forecasts, which span several years, are typically used for strategic
planning.

Short- and medium-term forecasting techniques focus on identifying patterns in historical
data to make reliable predictions [34, 35]. This study explores ARIMA and LSTM models for stock
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market movement prediction, as they are robust univariate forecasting methods capable of
projecting future time series values.

3.3. ARIMA Model

The ARIMA model, also known as the Box-Jenkins model, is a widely used approach for
time series forecasting. It consists of three components: Auto-Regressive (AR), which models a
variable based on its past values; Integrated (I), which ensures stationarity by differencing
observations; and Moving Average (MA), which captures dependencies between an observation
and past errors [36, 37].

Since most real-world time series data are non-stationary, ARIMA first ensures
stationarity using the Augmented Dickey-Fuller (ADF) test before applying the model [37, 38]. It
then converts non-stationary data into a stationary form through differencing. The Box-Jenkins
approach, a variation of ARIMA, analyzes differences between consecutive values rather than
absolute values, making it particularly useful for forecasting financial markets [36]. Figure 1

shows the overall structure of Box-Jenkins. The figure highlights three important processes.
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FIGURE 1. Box Jenkins structure.

The modeling process consists of two key stages: model identification and model
estimation, as well as validation. If validation tests fail, the model is revised and reassessed; if
they pass, the model is applied.

In this study, the Augmented Dickey-Fuller (ADF) test serves as a crucial diagnostic tool
for evaluating the stationarity of time series data. The decision to rely on p-values from the ADF
test is based on its ability to detect unit roots, which indicate non-stationarity. This ensures that

trends or spurious relationships are identified, improving the reliability of the forecasting models.
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For model selection, the auto.arima function in Python automates the determination of
the (p, d, q) parameters of the ARIMA model, where:
i. ‘p’ is the number of lag observations included in the model (autoregressive part).
ii.  ‘d’is the number of times that the raw observations are different (integrated part).
iii.  ‘q’ is the size of the moving average window.
Once the parameters were determined, the ARIMA model was fitted to the training data.
The residuals of the fitted model were analyzed to ensure no significant patterns were left
unmodeled and to confirm the model’s adequacy. The Ljung-Box test was used to verify the white
noise characteristics of the residuals, ensuring the model’s validity. A comprehensive flow chart
detailing the ARIMA model approach for time series forecasting is presented in Figure 2. The
ARIMA model can be represented by the following equation (1):
Vi =C+aY ,+tdY, ,+..+ ¢p Yipt O ,+0,6 ,+..+ qut—q +&, 1)
where

a. Y, is the value at time 1.
b. C isa constant term.
c. @, ..., @, are the coefficients of the autoregressive part.

d. 6.,6,,.., 49q are the coefficients of the moving average part.

e. &, is the error term at time (white noise).
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FIGURE 2. The approach followed for forecasting using ARIMA.
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3.4. LSTM Model

Artificial neural networks (ANNs) are computational models inspired by biological
neural networks, consisting of interconnected units called neurons organized in layers. A specific
type of ANN, known as Recurrent Neural Networks (RNNs), is designed to process sequences of
data where each value depends on previous ones. Long Short-Term Memory (LSTM) networks,
a specialized form of RNNs, excel at remembering information over long periods [39]. These
models are particularly effective for predicting, processing, and classifying time series data [40].
LSTM networks stand out for their ability to handle time-dependent data, thanks to their four
interacting layers that communicate uniquely during data processing. The model's structure often
takes the form of a chain. An analysis block diagram of the method used in our study to predict

CPU utilization is shown in Figure 3.
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FIGURE 3. The approach followed for forecasting using LSTM.
The main feature of LSTM networks is their ability to store and process information over

long sequences. Each LSTM unit has four parts that work together, as shown in Figure 4.

h,

4 “)

C; ,\f)-(\ ;@ >C,

T

Forget gate—{» f;
tanh

©
8 A A J

= |
@ Input gate Output gate

FIGURE 4. Structure of the RNN-LSTM algorithm



8 Int. J. Anal. Appl. (2025), 23:261

The line running through these units is called the cell state, which carries information
through the LSTM network, updating it as needed. LSTM networks have three types of gates: the
input gate, the forget gate, and the output gate. The process of identifying and excluding data in

LSTM is controlled by the forget gate. The forget gate takes the output of the last LSTM unit h,_,

at time t—1 and the current input X, at time t. The sigmoid function also determines which

parts of the previous output should be discarded, producing a vector f, with values ranging from

0 to 1 for each element in the cell state C, ; (Figure 4). If the output is 1, the information is retained,

and if it is 0, the information will be discarded. The equation for the forget gate is :
fo=o(W,.[hy, X, ]+b;), @)

where:

a. W, represents the weight matrix associated with the forget gate.

b. [h[_l, Xt] denotes the concatenation of the current input and the previous hidden state.

c. b, is the bias with the forget gate.

d. o isthe sigmoid activation function.

The input gate adds useful information to the cell state. First, the input is regulated using

the sigmoid function to filter the values to be remembered, using the inputs h[_1 and X,.Then, a
vector is created using a tanh function, outputting values from -1 to 1, representing all possible
values from h_, and X, . Finally, the values of the vector and the regulated values are multiplied

to obtain the useful information. The equations for the input gate are:
i, =o(W.[h_, X ]+b). 3)
C, =tanh(W_.[h_, X, ]+h,). (4)
The previous state is multiplied by f,, disregarding the information chosen to be ignored.

The updated candidate values it . ét are then added, resulting in:
C =f.C,+i.C. (5)
From the current cell state, the output gate collects relevant information to display as
output. The tanh function is first used to build a vector. After that, the data is controlled by the
sigmoid function, which filters the values that need to be retained using the inputs h_, and X..

To send the values of the vector and the controlled values as output and input to the following

cell, they are finally multiplied. The equation for the output gate is:
0, =o(W,.[h_, X, ]+h,). (6)
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These gates are essential for how LSTMs work. The input gate allows the network to learn
new patterns, the forget gate prevents old, irrelevant information from cluttering the cell state,
and the output gate ensures accurate predictions. By managing the flow of information with these
gates, LSTMs can capture long-term dependencies in data. This makes them useful for tasks like
time series forecasting and natural language processing, where understanding long-term patterns
is important.

To set up the LSTM model, the data must be transformed into sequences, each of which is
used to predict the next value. The dataset was split into training and testing subsets, as shown
in Figure 3. An optimization process was conducted to evaluate the results, improve performance,
and enhance accuracy by minimizing errors in the final forecasting. In the LSTM cell, the weight

matrices and biases for the sigmoid function are crucial components for the forget gate. This gate

determines and stores the input data from the new information X, in the cell state and updates

it accordingly. The sigmoid layer then decides whether the new data should be retained or

discarded (0 or 1), while the tnh function assigns weights to the values based on the importance
(-1 to 1). The values are multiplied to update the new cell state, which is then combined with the
previous cell state C,_; to form the new cell state C,. Figure 5 illustrates the neuron processing
mechanism of the LSTM model [41, 42].

In this study, the LSTM was designed with two layers, each with 4 and 32 LSTM units, to
capture long-term dependencies in the data. To avoid overfitting, dropout layers with a rate of
0.0 - 0.2 were added. To assess the effectiveness of LSTM models, three different approaches were
compared: using hyperparameter tuning methods such as Grid Search and Random Search, and
a baseline model without hyperparameter tuning. Additionally, the training time for each model

was recorded to assess the computational efficiency of each approach.

The next step involves the cell states C,; and C, at times t—1 and t, respectively. In the
final step, the value of h, is determined based on the output cell state O, . A sigmoid layer decides
which parts of the cell state will contribute to the output. The output of the sigmoid gate O, is

then multiplied by the new values created by the tanh layer from the cell state C,, with values

ranging between -1 and 1.
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FIGURE 5. Internal LSTM model process.

To ensure the reliability and accuracy of the models, a rolling forecasting origin approach
was used for model validation, evaluating their performance across various segments of the
dataset. This method helps confirm that the models can make accurate predictions in different
scenarios. The ARIMA and LSTM models were compared using performance metrics to identify
the best forecasting model. The evaluation focused on Mean Squared Error (MSE) and training
time. MSE was chosen as the key evaluation metric, as it measures the average squared error
between predicted and actual values, offering a comprehensive assessment of model accuracy. A

smaller MSE indicates better model performance [43].
N

MSE ==Y (y,- )" )

i-1
where N is the number of observations, Y; is the actual value and Y is the predicted value.

For the LSTM model, we performed three categories of analysis:
1. Using default hyperparameters

This study introduces a hyperparameter optimization algorithm using a Multilayer
Perceptron (MLP) model to predict and refine hyperparameters, improving accuracy while
reducing training data. Innovations include the MLP Prediction Model for better efficiency,
Neighboring Value Perturbation inspired by genetic algorithms for exploring optimal solutions,
and a Stability Model to ensure precision and stability across multiple runs.
2. Using hyperparameters with grid search

Grid search is a powerful hyperparameter optimization technique for fine-tuning LSTM
models, improving their performance in time series forecasting. By systematically exploring

hyperparameter combinations like the number of layers, units, and learning rates, grid search
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enhances the LSTM's ability to learn long-term dependencies and improve accuracy in forecasting
tasks [44].
3. Using hyperparameters with random search

Random search is more efficient than grid search for hyperparameter tuning in LSTM
models, requiring less computational effort while still finding optimal configurations. It can
explore a wider range of hyperparameter combinations, achieving similar or better performance
on various datasets. This efficiency, supported by empirical evidence, makes random search an
excellent baseline for optimizing LSTM models without the exhaustive search needed by grid
search [45].

4. Results and Discussion
41. LSTM Model Analysis

41.1. Default Hyperparameters

Table 1 displays the results of LSTM models with default hyperparameters in the
development environment, showing varied performances across different instances. The MSE
values reveal significant differences, indicating that the default parameters may not be optimal
for all datasets. Training times also vary, highlighting the computational demands of LSTM
models. Notably, EC2-Instance-DEV-04 achieves the lowest MSE (0.0048) with a moderate
training time of 4.3 seconds, suggesting a good balance of performance and efficiency. Figure 6
illustrates the predictive performance of these models across instances in the development
environment.

TABLE 1. Results of the LSTM models with default hyperparameters for the development
environment

Instance ID MSE Training Time (s)
EC2-Instance-DEV-01 0.0354 35
EC2-Instance-DEV-02 0.0285 5.5
EC2-Instance-DEV-03 0.0998 43
EC2-Instance-DEV-04 0.0048 4.3
EC2-Instance-DEV-05 0.0086 16.4
EC2-Instance-DEV-06 0.0050 54
EC2-Instance-DEV-07 0.4234 3.3
EC2-Instance-DEV-08 0.0884 4.7

EC2-Instance-DEV-09 3.2938 5.4
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FIGURE 6. Predictive performance of the LSTM models with default hyperparameters for the

development environment.

Table 2 shows the results of the LSTM models with default hyperparameters for the
production environment. The result also exhibits variability in MSE and training times. The EC2-
Instance-PROD-07 stands out with an MSE of 0.0008 and a training time of 7.3 seconds, indicating
excellent performance. However, EC2-Instance-PROD-03 has a higher MSE of 0.4672, suggesting
that the LSTM model may struggle with certain datasets in the production environment. Figure

7 displays the predictive performance of the LSTM models with default hyperparameter settings

for the production environment across various instances.

TABLE 2. Results of the LSTM models with default hyperparameters for the production

environment
Instance ID MSE Training Time (s)
EC2-Instance-PROD-01 0.0278 10.1
EC2-Instance-PROD-02 0.0278 6.5
EC2-Instance-PROD-03 0.4672 6.8
EC2-Instance-PROD-04 0.2613 5.6
EC2-Instance-PROD-05 0.0120 9.7
EC2-Instance-PROD-06 0.2639 44
EC2-Instance-PROD-07 0.0008 7.3
EC2-Instance-PROD-08 0.0005 7.9
EC2-Instance-PROD-09 0.1053 41
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FIGURE 7. Predictive performance of the LSTM models with default hyperparameters for the

production environment.

41.2 Grid Search Hyperparameters

Table 3 illustrates the results of the grid search approach for the development

environment, which optimizes hyperparameters, generally leads to improved MSE values

compared to the default settings, albeit at the cost of increased training times. EC2-Instance-DEV-

04 retains a low MSE of 0.0048, with a training time extending to 5 minutes and 39.9 seconds. This

suggests that the hyperparameter tuning process was effective in maintaining performance while

extending the training duration. Figure 8 portrays the predictive performance of the LSTM

models with grid search hyperparameter settings for the development environment across

various instances.

TABLE 3. Results of the LSTM models with grid search hyperparameters for the development

environment
Instance ID MSE Training Time (s)

EC2-Instance-DEV-01 0.0321 338.2
EC2-Instance-DEV-02 0.0758 331.8
EC2-Instance-DEV-03 0.1244 348.7
EC2-Instance-DEV-04 0.0048 339.9
EC2-Instance-DEV-05 0.0279 360

EC2-Instance-DEV-06 0.0058 378.6
EC2-Instance-DEV-07 0.3694 434.8
EC2-Instance-DEV-08 0.1005 560.6
EC2-Instance-DEV-09 3.3271 688.9
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FIGURE 8. Predictive performance of the LSTM models with grid search hyperparameters for
the development environment.

Table 4 demonstrates the results of the grid search optimization in varying improvements
for the production environment. For example, EC2-Instance-PROD-05 achieves an MSE of 0.0033
with a training time of 6 minutes and 8.7 seconds. However, EC2-Instance-PROD-03 has a
significantly higher MSE of 0.8878, indicating that hyperparameter tuning may not always lead
to better performance for all datasets. Figure 10 portrays the predictive performance of the LSTM
models with grid search hyperparameters settings for the production environment across various

instances.

TABLE 4. Results of the LSTM models with grid search hyperparameters for the production

environment
Instance ID MSE Training Time (s)
EC2-Instance-PROD-01 0.0443 3229
EC2-Instance-PROD-02 0.0423 3249
EC2-Instance-PROD-03 0.8878 332.3
EC2-Instance-PROD-04 0.3053 385.8
EC2-Instance-PROD-05 0.0033 368.7
EC2-Instance-PROD-06 0.2513 355.0
EC2-Instance-PROD-07 0.0029 428.2
EC2-Instance-PROD-08 0.0212 525.0

EC2-Instance-PROD-09 0.1749 793.4
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FIGURE 9. Predictive performance of the LSTM models with grid search hyperparameters for

the production environment.

41.3 Random Search Hyperparameters

Table 5 provides the results of the random search method for hyperparameter tuning for
the development environment. EC2-Instance-DEV-04 achieves an MSE of 0.0051 with a training

time of 8.3 seconds, indicating a slight increase in both MSE and training time compared to the

default settings. Figure 10 shows the predictive performance of the LSTM models with random

search hyperparameters settings for the development environment across various instances.

TABLE 5. Results of the LSTM models with random search hyperparameters for the development

environment

Instance ID MSE Training Time (s)
EC2-Instance-DEV-01 0.0302 8.3
EC2-Instance-DEV-02 0.0276 8.2
EC2-Instance-DEV-03 0.0982 7.9
EC2-Instance-DEV-04 0.0051 8.3
EC2-Instance-DEV-05 0.0061 8.3
EC2-Instance-DEV-06 0.0059 8.4
EC2-Instance-DEV-07 0.1709 8.5
EC2-Instance-DEV-08 0.1041 8.0
EC2-Instance-DEV-09 3.3068 8.6
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FIGURE 10. Predictive performance of the LSTM models with random search hyperparameters
for the development environment.

Table 6 shows the results of a random search for the production environment, which

shows mixed outcomes. For instance, EC2-Instance-PROD-07 achieves an MSE of 0.0009 with a

training time of 8.5 seconds, which is an improvement over the default settings. However, EC2-
Instance-PROD-03 still has a high MSE of 0.4541, suggesting that random search may not be as
effective in optimizing hyperparameters for this dataset. Figure 11 illustrates the predictive

performance of the LSTM models with random search hyperparameters settings for the

production environment across various instances.

TABLE 6. Results of the LSTM models with random search hyperparameters for the production

environment

Instance ID MSE Training Time (s)
EC2-Instance-PROD-01 0.0413 11.1
EC2-Instance-PROD-02 0.0401 8.2
EC2-Instance-PROD-03 0.4541 8.6
EC2-Instance-PROD-04 0.2699 8.4
EC2-Instance-PROD-05 0.0164 10.0
EC2-Instance-PROD-06 0.2687 8.8
EC2-Instance-PROD-07 0.0012 104
EC2-Instance-PROD-08 0.0205 7.9
EC2-Instance-PROD-09 0.0956 8.2
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FIGURE 11. Predictive performance of the LSTM models with random search hyperparameters
for the production environment.

42 ARIMA Model Analysis

Table 7 provides the results of the ARIMA models for the development environment,
which exhibit lower MSE values and shorter fitting times compared to LSTM models. For
instance, EC2-Instance-DEV-04 achieves an MSE of 0.0009 with a fitting time of 6.025 seconds,
highlighting ARIMA's efficiency in handling this dataset. However, EC2-Instance-DEV-09 has a
high MSE of 3.5406, indicating that ARIMA may struggle with certain datasets in the
development environment. Figure 12 shows the predictive performance of the ARIMA models

for the development environment across various instances.

TABLE 7. Results of the ARIMA models for the development environment

Instance ID MSE Fitting Time (s)
EC2-Instance-DEV-01 0.0403 1.925
EC2-Instance-DEV-02 0.0253 0.653
EC2-Instance-DEV-03 0.0417 1.712
EC2-Instance-DEV-04 0.0009 6.025
EC2-Instance-DEV-05 0.0078 1.805
EC2-Instance-DEV-06 0.0037 0.765
EC2-Instance-DEV-07 0.3591 4.647
EC2-Instance-DEV-08 0.1086 1421

EC2-Instance-DEV-09 3.5406 0.229
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FIGURE 12. Predictive performance of the ARIMA models development environment.

Table 8 presents the results of the ARIMA models for the production environment,
maintaining a consistent performance, with low MSE values and relatively fast fitting times. EC2-
Instance-PROD-07 achieves an MSE of 0.0016 with a fitting time of 0.409 seconds, demonstrating
ARIMA's capability in quickly fitting models to data. However, EC2-Instance-PROD-03 has a
higher MSE of 0.5739, indicating some variability in performance. Figure 13 shows the predictive

performance of the ARIMA models for the production environment across various instances.

TABLE 8. Results of the ARIMA models for the production environment

Instance ID MSE Fitting Time (s)
EC2-Instance-PROD-01 0.0046 0.512
EC2-Instance-PROD-02 0.0146 2.450
EC2-Instance-PROD-03 0.5739 0.643
EC2-Instance-PROD-04 0.0169 5.664
EC2-Instance-PROD-05 0.0025 0.557
EC2-Instance-PROD-06 0.4428 4.024
EC2-Instance-PROD-07 0.0016 0.409
EC2-Instance-PROD-08 0.0018 1.606

EC2-Instance-PROD-09 0.0865 5.533
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FIGURE 13. Predictive performance of the ARIMA models production environment.

4.3 LSTM Model Performance

The LSTM model showed varied performance based on the hyperparameter tuning
methods applied.

Default Hyperparameters: The default configuration provided moderate performance
with relatively lower training times. In the production environment, instances such as EC2-
Instance-PROD-07 and EC2-Instance-PROD-08 achieved very low MSE values of 0.0008 and
0.0005, respectively, indicating high accuracy.

Grid Search Hyperparameters: This method generally improved the model accuracy at
the cost of significantly increased training times. The instance EC2-Instance-PROD-05 in the
production environment achieved the lowest MSE of 0.0033, suggesting effective hyperparameter
optimization.

Random Search Hyperparameters: This method provided a balance between accuracy
and training time. Notably, EC2-Instance-PROD-07 achieved an MSE of 0.0012 in the production
environment, with a reasonable training time of 10.4 seconds.

44.  ARIMA Model Performance

The ARIMA model, known for its statistical robustness, performed differently across

instances:
In the development environment, instance EC2-Instance-DEV-04 achieved an

exceptionally low MSE of 0.0009, indicating high predictive accuracy with a fitting time of 6.025

seconds.
In the production environment, instance EC2-Instance-PROD-01 had the lowest MSE of

0.0046 with a fitting time of 0.512 seconds, demonstrating both accuracy and efficiency.
45.  Comparison of LSTM and ARIMA

4.5.1. Model Performance in the Development Environment
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In the development environment, ARIMA consistently outperforms all LSTM variants in
terms of MSE, particularly for Instance IDs EC2-Instance-DEV-04 (MSE: 0.0009) and EC2-
Instance-DEV-06 (MSE: 0.0037). This suggests ARIMA's robustness in handling time series data,
which may be attributed to its ability to capture linear patterns effectively.

The LSTM models, while offering competitive performance in some instances, exhibit
higher variability in MSE. For example, the LSTM default model achieves a low MSE of 0.0048
for Instance ID EC2-Instance-DEV-04, yet fails to generalize similarly across other instances, such
as EC2-Instance-DEV-09, where the MSE soars to 3.2938. The LSTM models with grid search and
random search tuning exhibit mixed results. While random search provides an improvement over
the default settings in several cases, such for instance ID EC2-Instance-DEV-07 (MSE: 0.1709), it
still falls short of ARIMA's performance. Grid search, on the other hand, often results in higher
MSE values, indicating potential overfitting or suboptimal parameter selection.

Fitting time is a critical consideration in model selection, especially in time-sensitive or
resource-constrained environments. ARIMA models consistently exhibit the shortest fitting times
across both environments, typically completing in under 10 seconds, apart from Instance ID EC2-
Instance-DEV-04 in the development environment, where the fitting time was slightly higher at
6.025 seconds. This makes ARIMA not only the most accurate but also the most computationally
efficient model in this study. The MSE and fitting times for each model in the development
environment are summarized in Table 9.

TABLE 9. Combined results for the development environment

Instance ID LSTM LSTM Grid LSTM ARIMA Fitting time (s)
Default Search MSE Random MSE
MSE Search MSE
EC2-Instance-DEV-01 0.0354 0.0321 0.0302 0.0403 51
EC2-Instance-DEV-02 0.0285 0.0758 0.0276 0.0253 3.8
EC2-Instance-DEV-03 0.0998 0.1244 0.0982 0.0417 4.6
EC2-Instance-DEV-04 0.0048 0.0048 0.0051 0.0009 6.025
EC2-Instance-DEV-05 0.0086 0.0279 0.0061 0.0078 41
EC2-Instance-DEV-06 0.0050 0.0058 0.0059 0.0037 4.4
EC2-Instance-DEV-07 0.4234 0.3694 0.1709 0.3591 9.3
EC2-Instance-DEV-08 0.0884 0.1005 0.1041 0.1086 7.9

EC2-Instance-DEV-09 3.2938 3.3271 3.3068 3.5406 8.6
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4.5.2. Model Performance in the Production Environment

The production environment further corroborates ARIMA's superiority, with the model
consistently achieving the lowest MSE values across most instances. This indicates that ARIMA
outperforms the LSTM models for Instance ID EC2-Instance-PROD-01 (MSE: 0.0046) and EC2-
Instance-PROD-08 (MSE: 0.0018), demonstrating its efficacy in real-world forecasting tasks.

The LSTM default model shows moderate success in the production environment,
achieving an MSE of 0.0008 for Instance ID EC2-Instance-PROD-07. However, its performance is
inconsistent across other instances, and it often lags behind ARIMA. The LSTM grid search and
random search models similarly fail to consistently outperform the default LSTM or ARIMA,
with grid search yielding the highest MSE values in instances such as EC2-Instance-PROD-03
(MSE: 0.8878).

For fitting time, the LSTM models, particularly those with grid search, demonstrate
significantly longer fitting times. For instance, the grid search for Instance ID EC2-Instance-
PROD-09 in the production environment took an extensive 793.4 seconds, making it impractical
for scenarios requiring quick turnaround times. Even the LSTM models with random search,
although faster than grid search, cannot match the fitting efficiency of ARIMA. The MSE and
fitting times for each model in the production environment are summarized in Table 10.

TABLE 10. Combined results for the production environment

Instance ID LSTM LSTM Grid LSTM ARIMA Fitting time (s)
Default Search Random MSE
MSE MSE Search MSE
EC2-Instance-PROD-01 0.0278 0.0443 0.0413 0.0046 54
EC2-Instance-PROD-02 0.0278 0.0423 0.0401 0.0146 52
EC2-Instance-PROD-03 0.4672 0.8878 0.4541 0.5739 10.1
EC2-Instance-PROD-04 0.2613 0.3053 0.2699 0.0169 41
EC2-Instance-PROD-05 0.0120 0.0033 0.0164 0.0025 7.9
EC2-Instance-PROD-06 0.2639 0.2513 0.2687 0.4428 8.6
EC2-Instance-PROD-07 0.0008 0.0029 0.0012 0.0016 7.3
EC2-Instance-PROD-08 0.0005 0.0212 0.0205 0.0018 7.1
EC2-Instance-PROD-09 0.1053 0.1749 0.0956 0.0865 793.4

The varied performance between production and development environments suggests
that the operating system and the specific configurations of EC2 instances may influence the

effectiveness of the forecasting models. Further analysis is required to identify the exact factors
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contributing to these differences. The findings of this research are crucial for optimizing resource
allocation and predictive maintenance in cloud computing environments. By selecting
appropriate forecasting models and tuning methods, organizations can enhance the performance

and reliability of their EC2 instances, leading to improved cost efficiency and service delivery.

5. Conclusion

This study presents the analysis of LSTM networks and ARIMA models for forecasting
CPU utilization of AWS EC2 instances in both development and production environments. By
analyzing a comprehensive dataset from these environments, the research evaluates the
effectiveness of these machine learning models in predicting CPU utilization accurately and
efficiently. The findings reveal that ARIMA models consistently outperform LSTM networks in
several key aspects. ARIMA demonstrates superior predictive accuracy with significantly lower
MSE values across various instances. Additionally, ARIMA models achieve shorter fitting times
compared to LSTM models, highlighting their efficiency in processing and forecasting time series
data. This efficiency is attributed to ARIMA's ability to effectively capture linear patterns within
the data, making it a robust choice for forecasting tasks that require both accuracy and
computational efficiency. In contrast, while LSTM models have shown potential in time series
forecasting, they tend to exhibit higher variability in MSE values. This variability indicates that
LSTM models may not consistently generalize well across different instances. The extended
fitting times associated with LSTM models, particularly when employing hyperparameter tuning
techniques such as grid search and random search, pose practical challenges.

Future research should focus on several key areas to build upon these findings and
enhance forecasting capabilities. Firstly, exploring advanced hyperparameter optimization
techniques, such as Bayesian optimization, could significantly improve LSTM model
performance by more efficiently finding the optimal set of parameters, leading to greater accuracy
and reliability. Additionally, investigating ensemble methods that combine multiple forecasting
models could provide a more robust solution by leveraging the strengths of each model and
addressing their respective weaknesses. This approach may improve overall predictive

performance and offer a more comprehensive forecasting strategy.
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