
Int. J. Anal. Appl. (2025), 23:261

Received Jul. 25, 2025

2020 Mathematics Subject Classification. 62M10.

Key words and phrases. AWS EC2 instances; CPU utilization; cloud resource management; machine learning models;

ARIMA; LSTM; forecasting.

https://doi.org/10.28924/2291-8639-23-2025-261 © 2025 the author(s)

ISSN: 2291-8639

1

Optimizing AWS Cloud Resource Management: Predicting EC2 Instance CPU Utilization

using LSTM and ARIMA Models

Hanita Daud1, Nazleeni Samiha Haron2, Nor Farisha M Krishnan3, Sieow Yeek Tan4, Mohd

Amirul Faiz Abdul Wahab4, Ahmad Amirul Adlan Azhar4, Anis Zahirah Zubir1, Sofea Balqis

Sri Emirlee1, Diaa S. Metwally5, Ahmad Abubakar Suleiman6,*

1Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Seri Iskandar, Perak

32610, Malaysia

2Department of Computer and Information Sciences, Universiti Teknologi Petronas, Seri Iskandar, Perak

32610, Malaysia

3Centre for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, Perak

32610, Malaysia

4Exchange Square, Bursa Malaysia Berhad, Bukit Kewangan, 50200 Kuala Lumpur, Malaysia

5Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh

11432, Saudi Arabia

6Department of Statistics, Aliko Dangote University of Science and Technology, Wudil 713281, Nigeria

*Corresponding author: ahmadabubakar31@gmail.com

ABSTRACT. Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instances offer scalable computing resources

crucial for various applications. Accurate prediction of CPU utilization is essential for efficient resource management

and cost optimization in cloud environments. This study investigates the performance of machine learning models,

specifically Long Short-Term Memory (LSTM) networks and AutoRegressive Integrated Moving Average (ARIMA)

models, for forecasting CPU utilization of AWS EC2 instances in both development and production environments. By

employing historical data from both environments, the research aims to extend predictive horizons and improve

forecasting accuracy. We evaluate and compare model performance using Mean Squared Error (MSE) and fitting times.

Results reveal that ARIMA models consistently outperform LSTM models in terms of MSE and computational

https://doi.org/10.28924/2291-8639-23-2025-261

2 Int. J. Anal. Appl. (2025), 23:261

efficiency, demonstrating superior performance in both environments. LSTM models, despite their potential, show

higher variability and longer fitting times, especially with hyperparameter tuning. This paper highlights the critical

role of model selection and tuning in enhancing forecasting capabilities and operational efficiency in cloud resource

management. The findings contribute valuable insights for optimizing resource allocation and cost management in

AWS cloud services.

1. Introduction

Cloud computing has transformed how businesses and individuals access computing

power, storage, and services over the internet. Amazon Web Services (AWS) is a leading cloud

platform that provides a wide range of on-demand services, including artificial intelligence,

machine learning, and the Internet of Things (IoT) [1]. Alongside other major providers such as

Google Cloud, Microsoft Azure, IBM Cloud, and Alibaba Cloud, AWS enables scalable and cost-

effective deployment of applications worldwide [2]. Cloud storage is increasingly popular for

both individuals and businesses seeking efficient off-site data backup solutions [3, 4].

Research on cloud computing has evolved significantly, with early studies focusing on

virtualization and distributed computing [5]. The concept gained widespread adoption in the

early 2000s, and the launch of AWS in 2006 marked a turning point in the commercial viability of

cloud services. Since then, research has explored various aspects, including performance

optimization, scalability, and security [6, 7]. The shift toward cloud-based solutions has enabled

organizations across industries to access extensive computing resources, often beyond what is

feasible with local infrastructure [8-10]. However, effective management of these services requires

specialized skills and precise resource analysis to avoid inefficiencies and excessive costs [11-14].

Despite advancements, cloud resource management still presents challenges, especially

in large-scale systems [15, 16]. Proper allocation of computational resources is essential to

maintain performance and control expenses. AWS Elastic Compute Cloud (EC2) instances, which

offer scalable computing capacity, require continuous monitoring and optimization. One key

aspect is predicting CPU utilization, as accurate forecasts help prevent under-provisioning

(which degrades performance) and over-provisioning (which increases costs) [17, 18]. Previous

studies have shown that predicting CPU utilization is challenging [19]. While recurrent neural

networks (RNNs) provide accurate short-term predictions, longer forecasts up to 30 minutes are

necessary for proactive capacity adjustments [20, 21].

To address this, our research employs Long Short-Term Memory (LSTM) networks,

known for their superior performance in time series forecasting. Additionally, we apply the

AutoRegressive Integrated Moving Average (ARIMA) model to further enhance predictive

accuracy. By analyzing historical data, these models help optimize AWS resource allocation and

improve cost efficiency [20, 22, 23]. Our study also incorporates anomaly detection techniques

Int. J. Anal. Appl. (2025), 23:261 3

using Random Forest (RF) and Artificial Neural Networks (ANN) to identify inefficiencies in

resource utilization.

The novelty of our work lies in extending the predictive horizon for CPU utilization while

improving accuracy. By leveraging established machine learning techniques, we provide

practical insights for proactive resource management. This approach not only enhances AWS

operational efficiency but also contributes to sustainable cloud computing practices.

The primary motivations of this research are summarized as follows:

i. To independently evaluate and compare the forecasting capabilities of ARIMA and LSTM

models for CPU utilization prediction on AWS EC2 instances.

ii. To investigate the impact of hyperparameter tuning on the performance of ARIMA and

LSTM models, specifically focusing on optimizing prediction accuracy for CPU utilization

in EC2 instances.

iii. To implement data pre-processing techniques tailored for time series data, enhancing model

performance and prediction reliability.

iv. To conduct exploratory data analysis (EDA) to identify patterns, trends, and anomalies in

the dataset, providing valuable insights for model selection and refinement.

The structure of this paper is as follows: Section 2 provides a comprehensive literature

review. Section 3 details the research methodology applied in this research, including the ARIMA

and LSTM models, along with the mathematical formulations. Section 4 provides the results and

discussion on the application of LSTM and ARIMA models for CPU utilization prediction.

Finally, Section 5 concludes the paper with key findings and future directions.

2. Literature Review

This section reviews studies on CPU utilization prediction in cloud computing,

particularly on AWS. Accurate forecasting is crucial for optimizing resource allocation and

reducing costs. Borra [24] describes cloud computing as a flexible IT resource model, while Balaji,

et al. [25] emphasizes user-centric pricing strategies. AWS, as noted by Kaufman [26], provides

scalable, cost-effective cloud services that enhance operational efficiency, enabling global

deployment [27].

Several studies compare predictive models for CPU utilization. Preetham, et al. [28] found

that LSTM models outperform ARIMA in handling complex cloud workloads, improving

resource management, and reducing SLA violations. Similarly, Nguyen, et al. [29] demonstrated

that LSTM-based models significantly enhance prediction accuracy and adaptability compared

to ARIMA. Osypanka and Nawrocki [30] proposed a cost-optimization approach combining

machine learning, anomaly detection, and particle swarm optimization, achieving an 85% cost

4 Int. J. Anal. Appl. (2025), 23:261

reduction in Azure environments. Duggan, et al. [20] explored RNNs for CPU forecasting,

showing superior performance in dynamic cloud environments compared to traditional methods.

These studies collectively highlight the importance of machine learning techniques in

optimizing cloud resource management, reducing costs, and improving operational efficiency.

3. Methodology

This section describes the approaches used to create and assess the time series forecasting

models known as LSTM and ARIMA. Data collection, preprocessing, model creation, assessment

measures, and implementation tools are all included in the methodology.

3.1. Dataset

The dataset for this study was sourced from Bursa Malaysia Berhad, a reliable and

comprehensive data provider. However, due to confidentiality, the data is not publicly available.

It consists of CPU utilization metrics from Amazon EC2 instances, collected from two distinct

environments: production and development. The production environment comprises 11

instances, spanning data from December 3, 2022, to March 1, 2024, while the development

environment has 10 instances, covering the period from January 1, 2023, to November 30, 2023.

These instances run on various operating systems, including Windows and Red Hat Enterprise

Linux (RHEL). To ensure data integrity, a thorough preprocessing step was performed to address

any missing values, enhancing the accuracy and reliability of the analysis.

3.3.1. Data Preprocessing

Data preprocessing ensures reliability and accuracy before model training or analysis. In

this study, both production and development datasets contained missing values, representing

periods of CPU inactivity. Instances with more than 50% missing data were excluded to maintain

data integrity. For those with fewer missing values, mean imputation was applied, replacing

missing values with the average of the observed data for that instance. This approach preserves

dataset consistency without significantly altering its statistical properties.

3.2. Time Series Forecasting

Forecasting is a critical process for businesses and governments, as it helps in developing

future strategies based on scientifically calculated predictions. An effective forecast should be

accurate, reliable, timely, easy to understand, cost-efficient, and as simple as possible [31].

Forecasting problems are generally categorized into short-term, medium-term, and long-term

forecasts [32]. Short-term forecasts predict events over a few days, weeks, or months, while

medium-term forecasts extend up to two years and are often used for operations management

and budgeting [33]. Long-term forecasts, which span several years, are typically used for strategic

planning.

Short- and medium-term forecasting techniques focus on identifying patterns in historical

data to make reliable predictions [34, 35]. This study explores ARIMA and LSTM models for stock

Int. J. Anal. Appl. (2025), 23:261 5

market movement prediction, as they are robust univariate forecasting methods capable of

projecting future time series values.

3.3. ARIMA Model

The ARIMA model, also known as the Box-Jenkins model, is a widely used approach for

time series forecasting. It consists of three components: Auto-Regressive (AR), which models a

variable based on its past values; Integrated (I), which ensures stationarity by differencing

observations; and Moving Average (MA), which captures dependencies between an observation

and past errors [36, 37].

Since most real-world time series data are non-stationary, ARIMA first ensures

stationarity using the Augmented Dickey-Fuller (ADF) test before applying the model [37, 38]. It

then converts non-stationary data into a stationary form through differencing. The Box-Jenkins

approach, a variation of ARIMA, analyzes differences between consecutive values rather than

absolute values, making it particularly useful for forecasting financial markets [36]. Figure 1

shows the overall structure of Box-Jenkins. The figure highlights three important processes.

FIGURE 1. Box Jenkins structure.

The modeling process consists of two key stages: model identification and model

estimation, as well as validation. If validation tests fail, the model is revised and reassessed; if

they pass, the model is applied.

In this study, the Augmented Dickey-Fuller (ADF) test serves as a crucial diagnostic tool

for evaluating the stationarity of time series data. The decision to rely on p-values from the ADF

test is based on its ability to detect unit roots, which indicate non-stationarity. This ensures that

trends or spurious relationships are identified, improving the reliability of the forecasting models.

6 Int. J. Anal. Appl. (2025), 23:261

For model selection, the auto.arima function in Python automates the determination of

the (p, d, q) parameters of the ARIMA model, where:

i. ‘p’ is the number of lag observations included in the model (autoregressive part).

ii. ‘d’ is the number of times that the raw observations are different (integrated part).

iii. ‘q’ is the size of the moving average window.

Once the parameters were determined, the ARIMA model was fitted to the training data.

The residuals of the fitted model were analyzed to ensure no significant patterns were left

unmodeled and to confirm the model’s adequacy. The Ljung-Box test was used to verify the white

noise characteristics of the residuals, ensuring the model’s validity. A comprehensive flow chart

detailing the ARIMA model approach for time series forecasting is presented in Figure 2. The

ARIMA model can be represented by the following equation (1):

1 1 2 2 1 1 2 2... ... ,t t t p t p t t q t q ty c y y y         − − − − − −= + + + + + + + + + (1)

where

a.
ty is the value at time t .

b. c is a constant term.

c.
1 2, ,..., p   are the coefficients of the autoregressive part.

d.
1 2, ,..., q   are the coefficients of the moving average part.

e.
t is the error term at time (white noise).

FIGURE 2. The approach followed for forecasting using ARIMA.

Int. J. Anal. Appl. (2025), 23:261 7

3.4. LSTM Model

Artificial neural networks (ANNs) are computational models inspired by biological

neural networks, consisting of interconnected units called neurons organized in layers. A specific

type of ANN, known as Recurrent Neural Networks (RNNs), is designed to process sequences of

data where each value depends on previous ones. Long Short-Term Memory (LSTM) networks,

a specialized form of RNNs, excel at remembering information over long periods [39]. These

models are particularly effective for predicting, processing, and classifying time series data [40].

LSTM networks stand out for their ability to handle time-dependent data, thanks to their four

interacting layers that communicate uniquely during data processing. The model's structure often

takes the form of a chain. An analysis block diagram of the method used in our study to predict

CPU utilization is shown in Figure 3.

FIGURE 3. The approach followed for forecasting using LSTM.

The main feature of LSTM networks is their ability to store and process information over

long sequences. Each LSTM unit has four parts that work together, as shown in Figure 4.

FIGURE 4. Structure of the RNN-LSTM algorithm

8 Int. J. Anal. Appl. (2025), 23:261

The line running through these units is called the cell state, which carries information

through the LSTM network, updating it as needed. LSTM networks have three types of gates: the

input gate, the forget gate, and the output gate. The process of identifying and excluding data in

LSTM is controlled by the forget gate. The forget gate takes the output of the last LSTM unit
1th −

at time 1t − and the current input
tX at time t . The sigmoid function also determines which

parts of the previous output should be discarded, producing a vector
tf with values ranging from

0 to 1 for each element in the cell state
1tC −
 (Figure 4). If the output is 1, the information is retained,

and if it is 0, the information will be discarded. The equation for the forget gate is :

  ()1. , ,t f t t ff W h X b −= + (2)

where:

a.
fW represents the weight matrix associated with the forget gate.

b.  1,t th X−
 denotes the concatenation of the current input and the previous hidden state.

c.
fb is the bias with the forget gate.

d.  is the sigmoid activation function.

The input gate adds useful information to the cell state. First, the input is regulated using

the sigmoid function to filter the values to be remembered, using the inputs
1th −
 and

tX . Then, a

vector is created using a tanh function, outputting values from -1 to 1, representing all possible

values from
1th −
 and

tX . Finally, the values of the vector and the regulated values are multiplied

to obtain the useful information. The equations for the input gate are:

  ()1. , .t i t i ii W h X b −= + (3)

  ()1tanh . , .t c t t cC W h X b−= + (4)

The previous state is multiplied by
tf , disregarding the information chosen to be ignored.

The updated candidate values
ti .

tC are then added, resulting in:

1. .t t t t tC f C i C−= + . (5)

From the current cell state, the output gate collects relevant information to display as

output. The tanh function is first used to build a vector. After that, the data is controlled by the

sigmoid function, which filters the values that need to be retained using the inputs
1th −
 and .tX

To send the values of the vector and the controlled values as output and input to the following

cell, they are finally multiplied. The equation for the output gate is:

  ()1. , .t o t t oO W h X b −= + (6)

Int. J. Anal. Appl. (2025), 23:261 9

These gates are essential for how LSTMs work. The input gate allows the network to learn

new patterns, the forget gate prevents old, irrelevant information from cluttering the cell state,

and the output gate ensures accurate predictions. By managing the flow of information with these

gates, LSTMs can capture long-term dependencies in data. This makes them useful for tasks like

time series forecasting and natural language processing, where understanding long-term patterns

is important.

To set up the LSTM model, the data must be transformed into sequences, each of which is

used to predict the next value. The dataset was split into training and testing subsets, as shown

in Figure 3. An optimization process was conducted to evaluate the results, improve performance,

and enhance accuracy by minimizing errors in the final forecasting. In the LSTM cell, the weight

matrices and biases for the sigmoid function are crucial components for the forget gate. This gate

determines and stores the input data from the new information
tX in the cell state and updates

it accordingly. The sigmoid layer then decides whether the new data should be retained or

discarded (0 or 1), while the tanh function assigns weights to the values based on the importance

(-1 to 1). The values are multiplied to update the new cell state, which is then combined with the

previous cell state
1tC −
 to form the new cell state

tC . Figure 5 illustrates the neuron processing

mechanism of the LSTM model [41, 42].

In this study, the LSTM was designed with two layers, each with 4 and 32 LSTM units, to

capture long-term dependencies in the data. To avoid overfitting, dropout layers with a rate of

0.0 - 0.2 were added. To assess the effectiveness of LSTM models, three different approaches were

compared: using hyperparameter tuning methods such as Grid Search and Random Search, and

a baseline model without hyperparameter tuning. Additionally, the training time for each model

was recorded to assess the computational efficiency of each approach.

The next step involves the cell states
1tC −
 and

tC at times 1t − and t , respectively. In the

final step, the value of
th is determined based on the output cell state

tO . A sigmoid layer decides

which parts of the cell state will contribute to the output. The output of the sigmoid gate
tO is

then multiplied by the new values created by the tanh layer from the cell state
tC , with values

ranging between -1 and 1.

10 Int. J. Anal. Appl. (2025), 23:261

FIGURE 5. Internal LSTM model process.

To ensure the reliability and accuracy of the models, a rolling forecasting origin approach

was used for model validation, evaluating their performance across various segments of the

dataset. This method helps confirm that the models can make accurate predictions in different

scenarios. The ARIMA and LSTM models were compared using performance metrics to identify

the best forecasting model. The evaluation focused on Mean Squared Error (MSE) and training

time. MSE was chosen as the key evaluation metric, as it measures the average squared error

between predicted and actual values, offering a comprehensive assessment of model accuracy. A

smaller MSE indicates better model performance [43].

 ()
2

1

1
,

N

i

i

MSE y y
N =

= − (7)

where N is the number of observations,
iy is the actual value and y is the predicted value.

For the LSTM model, we performed three categories of analysis:

1. Using default hyperparameters

This study introduces a hyperparameter optimization algorithm using a Multilayer

Perceptron (MLP) model to predict and refine hyperparameters, improving accuracy while

reducing training data. Innovations include the MLP Prediction Model for better efficiency,

Neighboring Value Perturbation inspired by genetic algorithms for exploring optimal solutions,

and a Stability Model to ensure precision and stability across multiple runs.

2. Using hyperparameters with grid search

Grid search is a powerful hyperparameter optimization technique for fine-tuning LSTM

models, improving their performance in time series forecasting. By systematically exploring

hyperparameter combinations like the number of layers, units, and learning rates, grid search

Int. J. Anal. Appl. (2025), 23:261 11

enhances the LSTM's ability to learn long-term dependencies and improve accuracy in forecasting

tasks [44].

3. Using hyperparameters with random search

Random search is more efficient than grid search for hyperparameter tuning in LSTM

models, requiring less computational effort while still finding optimal configurations. It can

explore a wider range of hyperparameter combinations, achieving similar or better performance

on various datasets. This efficiency, supported by empirical evidence, makes random search an

excellent baseline for optimizing LSTM models without the exhaustive search needed by grid

search [45].

4. Results and Discussion

4.1. LSTM Model Analysis

4.1.1. Default Hyperparameters

Table 1 displays the results of LSTM models with default hyperparameters in the

development environment, showing varied performances across different instances. The MSE

values reveal significant differences, indicating that the default parameters may not be optimal

for all datasets. Training times also vary, highlighting the computational demands of LSTM

models. Notably, EC2-Instance-DEV-04 achieves the lowest MSE (0.0048) with a moderate

training time of 4.3 seconds, suggesting a good balance of performance and efficiency. Figure 6

illustrates the predictive performance of these models across instances in the development

environment.

TABLE 1. Results of the LSTM models with default hyperparameters for the development

environment

Instance ID MSE Training Time (s)

EC2-Instance-DEV-01 0.0354 3.5

EC2-Instance-DEV-02 0.0285 5.5

EC2-Instance-DEV-03 0.0998 4.3

EC2-Instance-DEV-04 0.0048 4.3

EC2-Instance-DEV-05 0.0086 16.4

EC2-Instance-DEV-06 0.0050 5.4

EC2-Instance-DEV-07 0.4234 3.3

EC2-Instance-DEV-08 0.0884 4.7

EC2-Instance-DEV-09 3.2938 5.4

12 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 13

FIGURE 6. Predictive performance of the LSTM models with default hyperparameters for the

development environment.

Table 2 shows the results of the LSTM models with default hyperparameters for the

production environment. The result also exhibits variability in MSE and training times. The EC2-

Instance-PROD-07 stands out with an MSE of 0.0008 and a training time of 7.3 seconds, indicating

excellent performance. However, EC2-Instance-PROD-03 has a higher MSE of 0.4672, suggesting

that the LSTM model may struggle with certain datasets in the production environment. Figure

7 displays the predictive performance of the LSTM models with default hyperparameter settings

for the production environment across various instances.

TABLE 2. Results of the LSTM models with default hyperparameters for the production

environment

Instance ID MSE Training Time (s)

EC2-Instance-PROD-01 0.0278 10.1

EC2-Instance-PROD-02 0.0278 6.5

EC2-Instance-PROD-03 0.4672 6.8

EC2-Instance-PROD-04 0.2613 5.6

EC2-Instance-PROD-05 0.0120 9.7

EC2-Instance-PROD-06 0.2639 4.4

EC2-Instance-PROD-07 0.0008 7.3

EC2-Instance-PROD-08 0.0005 7.9

EC2-Instance-PROD-09 0.1053 4.1

14 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 15

FIGURE 7. Predictive performance of the LSTM models with default hyperparameters for the

production environment.

4.1.2 Grid Search Hyperparameters

Table 3 illustrates the results of the grid search approach for the development

environment, which optimizes hyperparameters, generally leads to improved MSE values

compared to the default settings, albeit at the cost of increased training times. EC2-Instance-DEV-

04 retains a low MSE of 0.0048, with a training time extending to 5 minutes and 39.9 seconds. This

suggests that the hyperparameter tuning process was effective in maintaining performance while

extending the training duration. Figure 8 portrays the predictive performance of the LSTM

models with grid search hyperparameter settings for the development environment across

various instances.

TABLE 3. Results of the LSTM models with grid search hyperparameters for the development

environment

Instance ID MSE Training Time (s)

EC2-Instance-DEV-01 0.0321 338.2

EC2-Instance-DEV-02 0.0758 331.8

EC2-Instance-DEV-03 0.1244 348.7

EC2-Instance-DEV-04 0.0048 339.9

EC2-Instance-DEV-05 0.0279 360

EC2-Instance-DEV-06 0.0058 378.6

EC2-Instance-DEV-07 0.3694 434.8

EC2-Instance-DEV-08 0.1005 560.6

EC2-Instance-DEV-09 3.3271 688.9

16 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 17

FIGURE 8. Predictive performance of the LSTM models with grid search hyperparameters for

the development environment.

Table 4 demonstrates the results of the grid search optimization in varying improvements

for the production environment. For example, EC2-Instance-PROD-05 achieves an MSE of 0.0033

with a training time of 6 minutes and 8.7 seconds. However, EC2-Instance-PROD-03 has a

significantly higher MSE of 0.8878, indicating that hyperparameter tuning may not always lead

to better performance for all datasets. Figure 10 portrays the predictive performance of the LSTM

models with grid search hyperparameters settings for the production environment across various

instances.

TABLE 4. Results of the LSTM models with grid search hyperparameters for the production

environment

Instance ID MSE Training Time (s)

EC2-Instance-PROD-01 0.0443 322.9

EC2-Instance-PROD-02 0.0423 324.9

EC2-Instance-PROD-03 0.8878 332.3

EC2-Instance-PROD-04 0.3053 385.8

EC2-Instance-PROD-05 0.0033 368.7

EC2-Instance-PROD-06 0.2513 355.0

EC2-Instance-PROD-07 0.0029 428.2

EC2-Instance-PROD-08 0.0212 525.0

EC2-Instance-PROD-09 0.1749 793.4

18 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 19

FIGURE 9. Predictive performance of the LSTM models with grid search hyperparameters for

the production environment.

4.1.3 Random Search Hyperparameters

Table 5 provides the results of the random search method for hyperparameter tuning for

the development environment. EC2-Instance-DEV-04 achieves an MSE of 0.0051 with a training

time of 8.3 seconds, indicating a slight increase in both MSE and training time compared to the

default settings. Figure 10 shows the predictive performance of the LSTM models with random

search hyperparameters settings for the development environment across various instances.

TABLE 5. Results of the LSTM models with random search hyperparameters for the development

environment

Instance ID MSE Training Time (s)

EC2-Instance-DEV-01 0.0302 8.3

EC2-Instance-DEV-02 0.0276 8.2

EC2-Instance-DEV-03 0.0982 7.9

EC2-Instance-DEV-04 0.0051 8.3

EC2-Instance-DEV-05 0.0061 8.3

EC2-Instance-DEV-06 0.0059 8.4

EC2-Instance-DEV-07 0.1709 8.5

EC2-Instance-DEV-08 0.1041 8.0

EC2-Instance-DEV-09 3.3068 8.6

20 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 21

FIGURE 10. Predictive performance of the LSTM models with random search hyperparameters

for the development environment.

Table 6 shows the results of a random search for the production environment, which

shows mixed outcomes. For instance, EC2-Instance-PROD-07 achieves an MSE of 0.0009 with a

training time of 8.5 seconds, which is an improvement over the default settings. However, EC2-

Instance-PROD-03 still has a high MSE of 0.4541, suggesting that random search may not be as

effective in optimizing hyperparameters for this dataset. Figure 11 illustrates the predictive

performance of the LSTM models with random search hyperparameters settings for the

production environment across various instances.

TABLE 6. Results of the LSTM models with random search hyperparameters for the production

environment

Instance ID MSE Training Time (s)

EC2-Instance-PROD-01 0.0413 11.1

EC2-Instance-PROD-02 0.0401 8.2

EC2-Instance-PROD-03 0.4541 8.6

EC2-Instance-PROD-04 0.2699 8.4

EC2-Instance-PROD-05 0.0164 10.0

EC2-Instance-PROD-06 0.2687 8.8

EC2-Instance-PROD-07 0.0012 10.4

EC2-Instance-PROD-08 0.0205 7.9

EC2-Instance-PROD-09 0.0956 8.2

22 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 23

FIGURE 11. Predictive performance of the LSTM models with random search hyperparameters

for the production environment.

4.2 ARIMA Model Analysis

Table 7 provides the results of the ARIMA models for the development environment,

which exhibit lower MSE values and shorter fitting times compared to LSTM models. For

instance, EC2-Instance-DEV-04 achieves an MSE of 0.0009 with a fitting time of 6.025 seconds,

highlighting ARIMA's efficiency in handling this dataset. However, EC2-Instance-DEV-09 has a

high MSE of 3.5406, indicating that ARIMA may struggle with certain datasets in the

development environment. Figure 12 shows the predictive performance of the ARIMA models

for the development environment across various instances.

TABLE 7. Results of the ARIMA models for the development environment

Instance ID MSE Fitting Time (s)

EC2-Instance-DEV-01 0.0403 1.925

EC2-Instance-DEV-02 0.0253 0.653

EC2-Instance-DEV-03 0.0417 1.712

EC2-Instance-DEV-04 0.0009 6.025

EC2-Instance-DEV-05 0.0078 1.805

EC2-Instance-DEV-06 0.0037 0.765

EC2-Instance-DEV-07 0.3591 4.647

EC2-Instance-DEV-08 0.1086 1.421

EC2-Instance-DEV-09 3.5406 0.229

24 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 25

FIGURE 12. Predictive performance of the ARIMA models development environment.

Table 8 presents the results of the ARIMA models for the production environment,

maintaining a consistent performance, with low MSE values and relatively fast fitting times. EC2-

Instance-PROD-07 achieves an MSE of 0.0016 with a fitting time of 0.409 seconds, demonstrating

ARIMA's capability in quickly fitting models to data. However, EC2-Instance-PROD-03 has a

higher MSE of 0.5739, indicating some variability in performance. Figure 13 shows the predictive

performance of the ARIMA models for the production environment across various instances.

TABLE 8. Results of the ARIMA models for the production environment

Instance ID MSE Fitting Time (s)

EC2-Instance-PROD-01 0.0046 0.512

EC2-Instance-PROD-02 0.0146 2.450

EC2-Instance-PROD-03 0.5739 0.643

EC2-Instance-PROD-04 0.0169 5.664

EC2-Instance-PROD-05 0.0025 0.557

EC2-Instance-PROD-06 0.4428 4.024

EC2-Instance-PROD-07 0.0016 0.409

EC2-Instance-PROD-08 0.0018 1.606

EC2-Instance-PROD-09 0.0865 5.533

26 Int. J. Anal. Appl. (2025), 23:261

Int. J. Anal. Appl. (2025), 23:261 27

FIGURE 13. Predictive performance of the ARIMA models production environment.

4.3 LSTM Model Performance

The LSTM model showed varied performance based on the hyperparameter tuning

methods applied.

Default Hyperparameters: The default configuration provided moderate performance

with relatively lower training times. In the production environment, instances such as EC2-

Instance-PROD-07 and EC2-Instance-PROD-08 achieved very low MSE values of 0.0008 and

0.0005, respectively, indicating high accuracy.

Grid Search Hyperparameters: This method generally improved the model accuracy at

the cost of significantly increased training times. The instance EC2-Instance-PROD-05 in the

production environment achieved the lowest MSE of 0.0033, suggesting effective hyperparameter

optimization.

Random Search Hyperparameters: This method provided a balance between accuracy

and training time. Notably, EC2-Instance-PROD-07 achieved an MSE of 0.0012 in the production

environment, with a reasonable training time of 10.4 seconds.

4.4. ARIMA Model Performance

The ARIMA model, known for its statistical robustness, performed differently across

instances:

In the development environment, instance EC2-Instance-DEV-04 achieved an

exceptionally low MSE of 0.0009, indicating high predictive accuracy with a fitting time of 6.025

seconds.

In the production environment, instance EC2-Instance-PROD-01 had the lowest MSE of

0.0046 with a fitting time of 0.512 seconds, demonstrating both accuracy and efficiency.

4.5. Comparison of LSTM and ARIMA

4.5.1. Model Performance in the Development Environment

28 Int. J. Anal. Appl. (2025), 23:261

In the development environment, ARIMA consistently outperforms all LSTM variants in

terms of MSE, particularly for Instance IDs EC2-Instance-DEV-04 (MSE: 0.0009) and EC2-

Instance-DEV-06 (MSE: 0.0037). This suggests ARIMA's robustness in handling time series data,

which may be attributed to its ability to capture linear patterns effectively.

The LSTM models, while offering competitive performance in some instances, exhibit

higher variability in MSE. For example, the LSTM default model achieves a low MSE of 0.0048

for Instance ID EC2-Instance-DEV-04, yet fails to generalize similarly across other instances, such

as EC2-Instance-DEV-09, where the MSE soars to 3.2938. The LSTM models with grid search and

random search tuning exhibit mixed results. While random search provides an improvement over

the default settings in several cases, such for instance ID EC2-Instance-DEV-07 (MSE: 0.1709), it

still falls short of ARIMA's performance. Grid search, on the other hand, often results in higher

MSE values, indicating potential overfitting or suboptimal parameter selection.

Fitting time is a critical consideration in model selection, especially in time-sensitive or

resource-constrained environments. ARIMA models consistently exhibit the shortest fitting times

across both environments, typically completing in under 10 seconds, apart from Instance ID EC2-

Instance-DEV-04 in the development environment, where the fitting time was slightly higher at

6.025 seconds. This makes ARIMA not only the most accurate but also the most computationally

efficient model in this study. The MSE and fitting times for each model in the development

environment are summarized in Table 9.

TABLE 9. Combined results for the development environment

Instance ID LSTM
Default

MSE

LSTM Grid
Search MSE

LSTM
Random

Search MSE

ARIMA
MSE

Fitting time (s)

EC2-Instance-DEV-01 0.0354 0.0321 0.0302 0.0403 5.1

EC2-Instance-DEV-02 0.0285 0.0758 0.0276 0.0253 3.8

EC2-Instance-DEV-03 0.0998 0.1244 0.0982 0.0417 4.6

EC2-Instance-DEV-04 0.0048 0.0048 0.0051 0.0009 6.025

EC2-Instance-DEV-05 0.0086 0.0279 0.0061 0.0078 4.1

EC2-Instance-DEV-06 0.0050 0.0058 0.0059 0.0037 4.4

EC2-Instance-DEV-07 0.4234 0.3694 0.1709 0.3591 9.3

EC2-Instance-DEV-08 0.0884 0.1005 0.1041 0.1086 7.9

EC2-Instance-DEV-09 3.2938 3.3271 3.3068 3.5406 8.6

Int. J. Anal. Appl. (2025), 23:261 29

4.5.2. Model Performance in the Production Environment

The production environment further corroborates ARIMA's superiority, with the model

consistently achieving the lowest MSE values across most instances. This indicates that ARIMA

outperforms the LSTM models for Instance ID EC2-Instance-PROD-01 (MSE: 0.0046) and EC2-

Instance-PROD-08 (MSE: 0.0018), demonstrating its efficacy in real-world forecasting tasks.

The LSTM default model shows moderate success in the production environment,

achieving an MSE of 0.0008 for Instance ID EC2-Instance-PROD-07. However, its performance is

inconsistent across other instances, and it often lags behind ARIMA. The LSTM grid search and

random search models similarly fail to consistently outperform the default LSTM or ARIMA,

with grid search yielding the highest MSE values in instances such as EC2-Instance-PROD-03

(MSE: 0.8878).

For fitting time, the LSTM models, particularly those with grid search, demonstrate

significantly longer fitting times. For instance, the grid search for Instance ID EC2-Instance-

PROD-09 in the production environment took an extensive 793.4 seconds, making it impractical

for scenarios requiring quick turnaround times. Even the LSTM models with random search,

although faster than grid search, cannot match the fitting efficiency of ARIMA. The MSE and

fitting times for each model in the production environment are summarized in Table 10.

TABLE 10. Combined results for the production environment

Instance ID LSTM
Default

MSE

LSTM Grid
Search
MSE

LSTM
Random

Search MSE

ARIMA
MSE

Fitting time (s)

EC2-Instance-PROD-01 0.0278 0.0443 0.0413 0.0046 5.4

EC2-Instance-PROD-02 0.0278 0.0423 0.0401 0.0146 5.2

EC2-Instance-PROD-03 0.4672 0.8878 0.4541 0.5739 10.1

EC2-Instance-PROD-04 0.2613 0.3053 0.2699 0.0169 4.1

EC2-Instance-PROD-05 0.0120 0.0033 0.0164 0.0025 7.9

EC2-Instance-PROD-06 0.2639 0.2513 0.2687 0.4428 8.6

EC2-Instance-PROD-07 0.0008 0.0029 0.0012 0.0016 7.3

EC2-Instance-PROD-08 0.0005 0.0212 0.0205 0.0018 7.1

EC2-Instance-PROD-09 0.1053 0.1749 0.0956 0.0865 793.4

The varied performance between production and development environments suggests

that the operating system and the specific configurations of EC2 instances may influence the

effectiveness of the forecasting models. Further analysis is required to identify the exact factors

30 Int. J. Anal. Appl. (2025), 23:261

contributing to these differences. The findings of this research are crucial for optimizing resource

allocation and predictive maintenance in cloud computing environments. By selecting

appropriate forecasting models and tuning methods, organizations can enhance the performance

and reliability of their EC2 instances, leading to improved cost efficiency and service delivery.

5. Conclusion

This study presents the analysis of LSTM networks and ARIMA models for forecasting

CPU utilization of AWS EC2 instances in both development and production environments. By

analyzing a comprehensive dataset from these environments, the research evaluates the

effectiveness of these machine learning models in predicting CPU utilization accurately and

efficiently. The findings reveal that ARIMA models consistently outperform LSTM networks in

several key aspects. ARIMA demonstrates superior predictive accuracy with significantly lower

MSE values across various instances. Additionally, ARIMA models achieve shorter fitting times

compared to LSTM models, highlighting their efficiency in processing and forecasting time series

data. This efficiency is attributed to ARIMA’s ability to effectively capture linear patterns within

the data, making it a robust choice for forecasting tasks that require both accuracy and

computational efficiency. In contrast, while LSTM models have shown potential in time series

forecasting, they tend to exhibit higher variability in MSE values. This variability indicates that

LSTM models may not consistently generalize well across different instances. The extended

fitting times associated with LSTM models, particularly when employing hyperparameter tuning

techniques such as grid search and random search, pose practical challenges.

Future research should focus on several key areas to build upon these findings and

enhance forecasting capabilities. Firstly, exploring advanced hyperparameter optimization

techniques, such as Bayesian optimization, could significantly improve LSTM model

performance by more efficiently finding the optimal set of parameters, leading to greater accuracy

and reliability. Additionally, investigating ensemble methods that combine multiple forecasting

models could provide a more robust solution by leveraging the strengths of each model and

addressing their respective weaknesses. This approach may improve overall predictive

performance and offer a more comprehensive forecasting strategy.

Funding: This research was financially supported by the University Internal Research Funding

(URIF) in collaboration between Universiti Teknologi PETRONAS (UTP) and Bursa Malaysia,

with cost centers of 015LB0-093 and 015LB0-095, respectively.

Acknowledgement: The authors extend their deepest gratitude to UTP and Bursa Malaysia for

their invaluable support and facilitation during the implementation of this research. Their

commitment and assistance were instrumental to the success of this study. The authors deeply

Int. J. Anal. Appl. (2025), 23:261 31

appreciate their contributions and collaborative efforts, which significantly enriched the research

process.

Data Availability Statement: The dataset used in this study was obtained from the Malaysia

Stock Exchange, Bursa Malaysia Berhad. The data are confidential and were provided exclusively

for research purposes. They are not intended for public distribution or sharing, and any use

beyond this study is strictly prohibited without the explicit permission of Bursa Malaysia Berhad.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] P.P. Ray, An Introduction to Dew Computing: Definition, Concept and Implications, IEEE Access 6

(2018), 723-737. https://doi.org/10.1109/access.2017.2775042.

[2] S. Goyal, Public Vs Private Vs Hybrid Vs Community - Cloud Computing: A Critical Review, Int. J.

Comput. Netw. Inf. Secur. 6 (2014), 20-29. https://doi.org/10.5815/ijcnis.2014.03.03.

[3] A. Suleiman, A. Usman, H. Daud, F.A. Idris, R. Sokkalingam, et al., A Voting Regressor Ensemble

Model for Crude Oil Price Prediction, J. Stat. Sci. Comput. Intell. 1 (2025), 61-72.

https://doi.org/10.64497/jssci.4.

[4] U. Danjuma Maiwada, R. Yusuf Zakari, A.A. Janisar, Distribution Function-Driven Handover

Solutions for 5g Mobile Networks, J. Stat. Sci. Comput. Intell. 1 (2025), 46-60.

https://doi.org/10.64497/jssci.1.

[5] A.A. Suleiman, H. Daud, N.S.S. Singh, M. Othman, A.I. Ishaq, et al., A Novel Odd Beta Prime-Logistic

Distribution: Desirable Mathematical Properties and Applications to Engineering and Environmental

Data, Sustainability 15 (2023), 10239. https://doi.org/10.3390/su151310239.

[6] J. George, Comparing Scalable Serverless Analytics Architecture on Amazon Web Services and Google

Cloud, Int. J. Nov. Res. Dev. 9 (2024), a689-a696.

[7] M. Zubair, A.A. Suleiman, A.K. Yousafzai, T. Alazemi, Prediction of Oxide Glass Refractive Index

Using a Novel Deep Learning Architecture, Dualnet (U-Net and ANN) with Hybrid Loss Function,

Opt. Quantum Electron. 57 (2025), 387. https://doi.org/10.1007/s11082-025-08300-2.

[8] S. Nabi, M. Ibrahim, J.M. Jimenez, DRALBA: Dynamic and Resource Aware Load Balanced Scheduling

Approach for Cloud Computing, IEEE Access 9 (2021), 61283-61297.

https://doi.org/10.1109/access.2021.3074145.

[9] M. Zubair, H.B. Rais, F. Ullah, A.A. Suleiman, Enhancing Image Reconstruction Fidelity in Low-Dose

CT Scans: A Comprehensive MPS-UNet Framework, in: Lecture Notes in Electrical Engineering,

Springer Nature Singapore, Singapore, 2025: pp. 59-70. https://doi.org/10.1007/978-981-96-5848-0_6.

[10] A.I. Ishaq, A.U. Usman, H.N. Alqifari, A. Almohaimeed, H. Daud, et al., A New Log-Lomax

Distribution, Properties, Stock Price, and Heart Attack Predictions Using Machine Learning

Techniques, AIMS Math. 10 (2025), 12761-12807. https://doi.org/10.3934/math.2025575.

https://doi.org/10.1109/access.2017.2775042
https://doi.org/10.5815/ijcnis.2014.03.03
https://doi.org/10.64497/jssci.4
https://doi.org/10.64497/jssci.1
https://doi.org/10.3390/su151310239
https://doi.org/10.1007/s11082-025-08300-2
https://doi.org/10.1109/access.2021.3074145
https://doi.org/10.1007/978-981-96-5848-0_6
https://doi.org/10.3934/math.2025575

32 Int. J. Anal. Appl. (2025), 23:261

[11] L.C. George, Y. Guo, D. Stepanov, V.K. Reddy Peri, et al., Usage Visualisation for the AWS Services,

Procedia Comput. Sci. 176 (2020), 3710-3717. https://doi.org/10.1016/j.procs.2020.09.016.

[12] G.A.G. Mireles, M.A. Moraga, F. Garcia, M. Piattini, A Classification Approach of Sustainability Aware

Requirements Methods, in: 2017 12th Iberian Conference on Information Systems and Technologies

(CISTI), IEEE, 2017, pp. 1-6. https://doi.org/10.23919/cisti.2017.7975813.

[13] A.A. Suleiman, H. Daud, A.G. Usman, S.I. Abba, M. Othman, et al., A New Two-Parameter Half-

Logistic Distribution with Numerical Analysis and Applications, J. Stat. Sci. Comput. Intell. 1 (2025),

1-28. https://doi.org/10.64497/jssci.2.

[14] A.G. Usman, S. Mati, H. Daud, A.A. Suleiman, S.I. Abba, et al., Optimized Svr with Nature-Inspired

Algorithms for Environmental Modelling of Mycotoxins in Food Virtual-Water Samples, Sci. Rep. 15

(2025), 16569. https://doi.org/10.1038/s41598-025-99908-7.

[15] A.A. Suleiman, H. Daud, A.I. Ishaq, N.S.S. Singh, D.S. Metwally, et al., An Extension of the Gompertz

Distribution for Modeling Covid-19 Mortality Dynamics, Int. J. Anal. Appl. 23 (2025), 206.

https://doi.org/10.28924/2291-8639-23-2025-206.

[16] A.A. Suleiman, H. Daud, A.I. Ishaq, A.U. Farouk, A.S. Mohammed, et al., A New Statistical Model for

Advanced Modeling of Cancer Disease Data, Kuwait J. Sci. 52 (2025), 100429.

https://doi.org/10.1016/j.kjs.2025.100429.

[17] U. Panitanarak, A. Ismail Ishaq, A. Adewole Abiodun, H. Daud, A. Abubakar Suleiman, A New

Maxwell-Log Logistic Distribution and Its Applications for Mortality Rate Data, J. Niger. Soc. Phys.

Sci. (2025), 1976. https://doi.org/10.46481/jnsps.2025.1976.

[18] U. Panitanarak, A.I. Ishaq, N.S.S. Singh, A. Usman, A.U. Usman, et al., Machine Learning Models in

Predicting Failure Times Data Using a Novel Version of the Maxwell Model, Eur. J. Stat. 5 (2025), 1.

https://doi.org/10.28924/ada/stat.5.1.

[19] A.A. Suleiman, H. Daud, A.I. Ishaq, M. Othman, H.M. Alshanbari, et al., A Novel Extended

Kumaraswamy Distribution and Its Application to COVID‐19 Data, Eng. Rep. 6 (2024), e12967.

https://doi.org/10.1002/eng2.12967.

[20] M. Duggan, K. Mason, J. Duggan, E. Howley, E. Barrett, Predicting Host CPU Utilization in Cloud

Computing Using Recurrent Neural Networks, in: 2017 12th International Conference for Internet

Technology and Secured Transactions (ICITST), IEEE, 2017, pp. 67-72.

https://doi.org/10.23919/icitst.2017.8356348.

[21] U. Panitanarak, A.I. Ishaq, A.A. Suleiman, H. Daud, N.S.S. Singh, et al., A New Beta Distribution with

Interdisciplinary Data Analysis, AIMS Math. 10 (2025), 8495-8527.

https://doi.org/10.3934/math.2025391.

[22] S.S. Panwar, M.M.S. Rauthan, V. Barthwal, A Systematic Review on Effective Energy Utilization

Management Strategies in Cloud Data Centers, J. Cloud Comput. 11 (2022), 95.

https://doi.org/10.1186/s13677-022-00368-5.

[23] H. Daud, A.S. Mohammed, A.I. Ishaq, B. Abba, Y. Zakari, et al., Modeling and Prediction of Exchange

Rates Using Topp-Leone Burr Type X, Machine Learning and Deep Learning Models, Eur. J. Stat. 4

(2024), 11. https://doi.org/10.28924/ada/stat.4.11.

https://doi.org/10.1016/j.procs.2020.09.016
https://doi.org/10.23919/cisti.2017.7975813
https://doi.org/10.64497/jssci.2
https://doi.org/10.1038/s41598-025-99908-7
https://doi.org/10.28924/2291-8639-23-2025-206
https://doi.org/10.1016/j.kjs.2025.100429
https://doi.org/10.46481/jnsps.2025.1976
https://doi.org/10.28924/ada/stat.5.1
https://doi.org/10.1002/eng2.12967
https://doi.org/10.23919/icitst.2017.8356348
https://doi.org/10.3934/math.2025391
https://doi.org/10.1186/s13677-022-00368-5
https://doi.org/10.28924/ada/stat.4.11

Int. J. Anal. Appl. (2025), 23:261 33

[24] Praveen Borra, Advancing Artificial Intelligence with Aws Machine Learning: A Comprehensive

Overview, Int. J. Adv. Res. Sci. Commun. Technol. 4 (2024), 71-78. https://doi.org/10.48175/ijarsct-

18810.

[25] M. Balaji, C. Aswani Kumar, G.S.V. Rao, Predictive Cloud Resource Management Framework for

Enterprise Workloads, J. King Saud Univ. - Comput. Inf. Sci. 30 (2018), 404-415.

https://doi.org/10.1016/j.jksuci.2016.10.005.

[26] L.M. Kaufman, Data Security in the World of Cloud Computing, IEEE Secur. Priv. Mag. 7 (2009), 61-

64. https://doi.org/10.1109/msp.2009.87.

[27] A. Ates, K. Suppayah, Disciplined Innovation: A Case Study of the Amazon Working Backwards

Approach to Internal Corporate Venturing, Res. Manag. 67 (2024), 23-33.

https://doi.org/10.1080/08956308.2024.2326805.

[28] N. Preetham, S. Chhetri, S.R. Kini, G.G. Mishra, S. Kumar, Resource Provisioning in Cloud Using

Arima and LSTM Technique, in: 2022 IEEE 2nd Mysore Sub Section International Conference

(MysuruCon), IEEE, 2022, pp. 1-7. https://doi.org/10.1109/mysurucon55714.2022.9972689.

[29] T. Nguyen, T. Do, K. Le, S. Go, S. Na, et al., An Lstm-Based Approach for Predicting Resource

Utilization in Cloud Computing, in: The 11th International Symposium on Information and

Communication Technology, ACM, New York, NY, USA, 2022, pp. 173-179.

https://doi.org/10.1145/3568562.3568647.

[30] P. Osypanka, P. Nawrocki, Resource Usage Cost Optimization in Cloud Computing Using Machine

Learning, IEEE Trans. Cloud Comput. 10 (2022), 2079-2089.

https://doi.org/10.1109/tcc.2020.3015769.

[31] Y. Yu, Y. Jia, M.A. Alshahrani, O.A. Alamri, H. Daud, et al., Adopting a New Sine-Induced Statistical

Model and Deep Learning Methods for the Empirical Exploration of the Music and Reliability Data,

Alex. Eng. J. 104 (2024), 396-408. https://doi.org/10.1016/j.aej.2024.07.104.

[32] A.A. Suleiman, A.K. Yousafzai, M. Zubair, Comparative Analysis of Machine Learning and Deep

Learning Models for Groundwater Potability Classification, 4th Int. Electron. Conf. Appl. Sci. (2023),

249. https://doi.org/10.3390/asec2023-15506.

[33] A.I. Ishaq, A.A. Abiodun, A.A. Suleiman, A. Usman, A.S. Mohammed, et al., Modelling Nigerian

Inflation Rates from January 2003 to June 2023 Using Newly Developed Inverse Power Chi-Square

Distribution, in: 2023 4th International Conference on Data Analytics for Business and Industry

(ICDABI), IEEE, 2023, pp. 644-651. https://doi.org/10.1109/icdabi60145.2023.10629442.

[34] S.F. Salleh, A.A. Suleiman, H. Daud, M. Othman, R. Sokkalingam, et al., Tropically Adapted Passive

Building: A Descriptive-Analytical Approach Using Multiple Linear Regression and Probability

Models to Predict Indoor Temperature, Sustainability 15 (2023), 13647.

https://doi.org/10.3390/su151813647.

[35] A.A. Suleiman, H. Daud, M. Othman, A. Husin, A.I. Ishaq, et al., Forecasting the Southeast Asian

Currencies Against the British Pound Sterling Using Probability Distributions, Data Sci. Insights 1

(2023), 31-51. https://doi.org/10.63017/jdsi.v1i1.5.

https://doi.org/10.48175/ijarsct-18810
https://doi.org/10.48175/ijarsct-18810
https://doi.org/10.1016/j.jksuci.2016.10.005
https://doi.org/10.1109/msp.2009.87
https://doi.org/10.1080/08956308.2024.2326805
https://doi.org/10.1109/mysurucon55714.2022.9972689
https://doi.org/10.1145/3568562.3568647
https://doi.org/10.1109/tcc.2020.3015769
https://doi.org/10.1016/j.aej.2024.07.104
https://doi.org/10.3390/asec2023-15506
https://doi.org/10.1109/icdabi60145.2023.10629442
https://doi.org/10.3390/su151813647
https://doi.org/10.63017/jdsi.v1i1.5

34 Int. J. Anal. Appl. (2025), 23:261

[36] A.A. Suleiman, M. Othman, H. Daud, M.L. Abdullah, E.A. Kadir, et al., Forecasting the Volatility of

Real Residential Property Prices in Malaysia: A Comparison of Garch Models, Real Estate Manag.

Valuat. 31 (2023), 20-31. https://doi.org/10.2478/remav-2023-0018.

[37] M. Othman, R. Indawati, A.A. Suleiman, M.B. Qomaruddin, R. Sokkalingam, Model Forecasting

Development for Dengue Fever Incidence in Surabaya City Using Time Series Analysis, Processes 10

(2022), 2454. https://doi.org/10.3390/pr10112454.

[38] A.A. Suleiman, A. Suleiman, U.A. Abdullahi, S.A. Suleiman, Estimation of the Case Fatality Rate of

COVID-19 Epidemiological Data in Nigeria Using Statistical Regression Analysis, Biosaf. Health 3

(2021), 4-7. https://doi.org/10.1016/j.bsheal.2020.09.003.

[39] D. Janardhanan, E. Barrett, CPU Workload Forecasting of Machines in Data Centers Using LSTM

Recurrent Neural Networks and ARIMA Models, in: 2017 12th International Conference for Internet

Technology and Secured Transactions (ICITST), IEEE, 2017.

https://doi.org/10.23919/icitst.2017.8356346.

[40] X. Le, H.V. Ho, G. Lee, S. Jung, Application of Long Short-Term Memory (lstm) Neural Network for

Flood Forecasting, Water 11 (2019), 1387. https://doi.org/10.3390/w11071387.

[41] X. Le, H.V. Ho, G. Lee, S. Jung, Application of Long Short-Term Memory (LSTM) Neural Network for

Flood Forecasting, Water 11 (2019), 1387. https://doi.org/10.3390/w11071387.

[42] S. Phawandee, N. Sangurai, N. Putpuek, N. Cooharojananone, A Comparative Analysis of Deep

Learning Approaches for Fire Hotspots Prediction in Thailand, in: 2024 23rd International Symposium

on Communications and Information Technologies (ISCIT), IEEE, 2024, pp. 134-139.

https://doi.org/10.1109/ISCIT63075.2024.10793656.

[43] M. Ayitey Junior, P. Appiahene, O. Appiah, Forex Market Forecasting with Two-Layer Stacked Long

Short-Term Memory Neural Network (LSTM) and Correlation Analysis, J. Electr. Syst. Inf. Technol. 9

(2022), 14. https://doi.org/10.1186/s43067-022-00054-1.

[44] H. Alibrahim, S.A. Ludwig, Hyperparameter Optimization: Comparing Genetic Algorithm Against

Grid Search and Bayesian Optimization, in: 2021 IEEE Congress on Evolutionary Computation (CEC),

IEEE, 2021, pp. 1551-1559. https://doi.org/10.1109/cec45853.2021.9504761.

[45] A. Nugroho, H. Suhartanto, Hyper-parameter Tuning Based on Random Search for Densenet

Optimization, in: 2020 7th International Conference on Information Technology, Computer, and

Electrical Engineering (ICITACEE), IEEE, 2020, pp. 96-99.

https://doi.org/10.1109/icitacee50144.2020.9239164.

https://doi.org/10.2478/remav-2023-0018
https://doi.org/10.3390/pr10112454
https://doi.org/10.1016/j.bsheal.2020.09.003
https://doi.org/10.23919/icitst.2017.8356346
https://doi.org/10.3390/w11071387
https://doi.org/10.3390/w11071387
https://doi.org/10.1109/ISCIT63075.2024.10793656
https://doi.org/10.1186/s43067-022-00054-1
https://doi.org/10.1109/cec45853.2021.9504761
https://doi.org/10.1109/icitacee50144.2020.9239164

