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ABSTRACT. Amazon Web Services (AWS) Elastic Compute Cloud (EC2) instances offer scalable computing resources 

crucial for various applications. Accurate prediction of CPU utilization is essential for efficient resource management 

and cost optimization in cloud environments. This study investigates the performance of machine learning models, 

specifically Long Short-Term Memory (LSTM) networks and AutoRegressive Integrated Moving Average (ARIMA) 

models, for forecasting CPU utilization of AWS EC2 instances in both development and production environments. By 

employing historical data from both environments, the research aims to extend predictive horizons and improve 

forecasting accuracy. We evaluate and compare model performance using Mean Squared Error (MSE) and fitting times. 

Results reveal that ARIMA models consistently outperform LSTM models in terms of MSE and computational 
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efficiency, demonstrating superior performance in both environments. LSTM models, despite their potential, show 

higher variability and longer fitting times, especially with hyperparameter tuning. This paper highlights the critical 

role of model selection and tuning in enhancing forecasting capabilities and operational efficiency in cloud resource 

management. The findings contribute valuable insights for optimizing resource allocation and cost management in 

AWS cloud services. 

1. Introduction 

Cloud computing has transformed how businesses and individuals access computing 

power, storage, and services over the internet. Amazon Web Services (AWS) is a leading cloud 

platform that provides a wide range of on-demand services, including artificial intelligence, 

machine learning, and the Internet of Things (IoT) [1]. Alongside other major providers such as 

Google Cloud, Microsoft Azure, IBM Cloud, and Alibaba Cloud, AWS enables scalable and cost-

effective deployment of applications worldwide [2]. Cloud storage is increasingly popular for 

both individuals and businesses seeking efficient off-site data backup solutions [3, 4]. 

Research on cloud computing has evolved significantly, with early studies focusing on 

virtualization and distributed computing [5]. The concept gained widespread adoption in the 

early 2000s, and the launch of AWS in 2006 marked a turning point in the commercial viability of 

cloud services. Since then, research has explored various aspects, including performance 

optimization, scalability, and security [6, 7]. The shift toward cloud-based solutions has enabled 

organizations across industries to access extensive computing resources, often beyond what is 

feasible with local infrastructure [8-10]. However, effective management of these services requires 

specialized skills and precise resource analysis to avoid inefficiencies and excessive costs  [11-14]. 

Despite advancements, cloud resource management still presents challenges, especially 

in large-scale systems [15, 16]. Proper allocation of computational resources is essential to 

maintain performance and control expenses. AWS Elastic Compute Cloud (EC2) instances, which 

offer scalable computing capacity, require continuous monitoring and optimization. One key 

aspect is predicting CPU utilization, as accurate forecasts help prevent under-provisioning 

(which degrades performance) and over-provisioning (which increases costs) [17, 18]. Previous 

studies have shown that predicting CPU utilization is challenging [19]. While recurrent neural 

networks (RNNs) provide accurate short-term predictions, longer forecasts up to 30 minutes are 

necessary for proactive capacity adjustments [20, 21]. 

To address this, our research employs Long Short-Term Memory (LSTM) networks, 

known for their superior performance in time series forecasting. Additionally, we apply the 

AutoRegressive Integrated Moving Average (ARIMA) model to further enhance predictive 

accuracy. By analyzing historical data, these models help optimize AWS resource allocation and 

improve cost efficiency [20, 22, 23]. Our study also incorporates anomaly detection techniques 
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using Random Forest (RF) and Artificial Neural Networks (ANN) to identify inefficiencies in 

resource utilization. 

The novelty of our work lies in extending the predictive horizon for CPU utilization while 

improving accuracy. By leveraging established machine learning techniques, we provide 

practical insights for proactive resource management. This approach not only enhances AWS 

operational efficiency but also contributes to sustainable cloud computing practices. 

The primary motivations of this research are summarized as follows:  

i. To independently evaluate and compare the forecasting capabilities of ARIMA and LSTM 

models for CPU utilization prediction on AWS EC2 instances. 

ii. To investigate the impact of hyperparameter tuning on the performance of ARIMA and 

LSTM models, specifically focusing on optimizing prediction accuracy for CPU utilization 

in EC2 instances. 

iii. To implement data pre-processing techniques tailored for time series data, enhancing model 

performance and prediction reliability. 

iv. To conduct exploratory data analysis (EDA) to identify patterns, trends, and anomalies in 

the dataset, providing valuable insights for model selection and refinement. 

The structure of this paper is as follows: Section 2 provides a comprehensive literature 

review. Section 3 details the research methodology applied in this research, including the ARIMA 

and LSTM models, along with the mathematical formulations. Section 4 provides the results and 

discussion on the application of LSTM and ARIMA models for CPU utilization prediction. 

Finally, Section 5 concludes the paper with key findings and future directions. 

2. Literature Review 

This section reviews studies on CPU utilization prediction in cloud computing, 

particularly on AWS. Accurate forecasting is crucial for optimizing resource allocation and 

reducing costs. Borra [24] describes cloud computing as a flexible IT resource model, while Balaji, 

et al. [25] emphasizes user-centric pricing strategies. AWS, as noted by Kaufman [26], provides 

scalable, cost-effective cloud services that enhance operational efficiency, enabling global 

deployment [27]. 

Several studies compare predictive models for CPU utilization. Preetham, et al. [28] found 

that LSTM models outperform ARIMA in handling complex cloud workloads, improving 

resource management, and reducing SLA violations. Similarly, Nguyen, et al. [29] demonstrated 

that LSTM-based models significantly enhance prediction accuracy and adaptability compared 

to ARIMA. Osypanka and Nawrocki [30] proposed a cost-optimization approach combining 

machine learning, anomaly detection, and particle swarm optimization, achieving an 85% cost 
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reduction in Azure environments. Duggan, et al. [20] explored RNNs for CPU forecasting, 

showing superior performance in dynamic cloud environments compared to traditional methods. 

These studies collectively highlight the importance of machine learning techniques in 

optimizing cloud resource management, reducing costs, and improving operational efficiency. 

3. Methodology 

This section describes the approaches used to create and assess the time series forecasting 

models known as LSTM and ARIMA. Data collection, preprocessing, model creation, assessment 

measures, and implementation tools are all included in the methodology. 

3.1. Dataset 

The dataset for this study was sourced from Bursa Malaysia Berhad, a reliable and 

comprehensive data provider. However, due to confidentiality, the data is not publicly available. 

It consists of CPU utilization metrics from Amazon EC2 instances, collected from two distinct 

environments: production and development. The production environment comprises 11 

instances, spanning data from December 3, 2022, to March 1, 2024, while the development 

environment has 10 instances, covering the period from January 1, 2023, to November 30, 2023. 

These instances run on various operating systems, including Windows and Red Hat Enterprise 

Linux (RHEL). To ensure data integrity, a thorough preprocessing step was performed to address 

any missing values, enhancing the accuracy and reliability of the analysis.  

3.3.1. Data Preprocessing 

Data preprocessing ensures reliability and accuracy before model training or analysis. In 

this study, both production and development datasets contained missing values, representing 

periods of CPU inactivity. Instances with more than 50% missing data were excluded to maintain 

data integrity. For those with fewer missing values, mean imputation was applied, replacing 

missing values with the average of the observed data for that instance. This approach preserves 

dataset consistency without significantly altering its statistical properties. 

3.2.  Time Series Forecasting 

Forecasting is a critical process for businesses and governments, as it helps in developing 

future strategies based on scientifically calculated predictions. An effective forecast should be 

accurate, reliable, timely, easy to understand, cost-efficient, and as simple as possible [31]. 

Forecasting problems are generally categorized into short-term, medium-term, and long-term 

forecasts [32]. Short-term forecasts predict events over a few days, weeks, or months, while 

medium-term forecasts extend up to two years and are often used for operations management 

and budgeting [33]. Long-term forecasts, which span several years, are typically used for strategic 

planning. 

Short- and medium-term forecasting techniques focus on identifying patterns in historical 

data to make reliable predictions [34, 35]. This study explores ARIMA and LSTM models for stock 
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market movement prediction, as they are robust univariate forecasting methods capable of 

projecting future time series values. 

3.3. ARIMA Model 

The ARIMA model, also known as the Box-Jenkins model, is a widely used approach for 

time series forecasting. It consists of three components: Auto-Regressive (AR), which models a 

variable based on its past values; Integrated (I), which ensures stationarity by differencing 

observations; and Moving Average (MA), which captures dependencies between an observation 

and past errors [36, 37].  

Since most real-world time series data are non-stationary, ARIMA first ensures 

stationarity using the Augmented Dickey-Fuller (ADF) test before applying the model [37, 38]. It 

then converts non-stationary data into a stationary form through differencing. The Box-Jenkins 

approach, a variation of ARIMA, analyzes differences between consecutive values rather than 

absolute values, making it particularly useful for forecasting financial markets [36]. Figure 1 

shows the overall structure of Box-Jenkins. The figure highlights three important processes. 

 

FIGURE 1. Box Jenkins structure. 

The modeling process consists of two key stages: model identification and model 

estimation, as well as validation. If validation tests fail, the model is revised and reassessed; if 

they pass, the model is applied. 

In this study, the Augmented Dickey-Fuller (ADF) test serves as a crucial diagnostic tool 

for evaluating the stationarity of time series data. The decision to rely on p-values from the ADF 

test is based on its ability to detect unit roots, which indicate non-stationarity. This ensures that 

trends or spurious relationships are identified, improving the reliability of the forecasting models. 



6  Int. J. Anal. Appl. (2025), 23:261 

 

For model selection, the auto.arima function in Python automates the determination of 

the (p, d, q) parameters of the ARIMA model, where: 

i. ‘p’  is the number of lag observations included in the model (autoregressive part). 

ii. ‘d’ is the number of times that the raw observations are different (integrated part). 

iii. ‘q’ is the size of the moving average window. 

Once the parameters were determined, the ARIMA model was fitted to the training data. 

The residuals of the fitted model were analyzed to ensure no significant patterns were left 

unmodeled and to confirm the model’s adequacy. The Ljung-Box test was used to verify the white 

noise characteristics of the residuals, ensuring the model’s validity. A comprehensive flow chart 

detailing the ARIMA model approach for time series forecasting is presented in Figure 2. The 

ARIMA model can be represented by the following equation (1): 

   
1 1 2 2 1 1 2 2... ... ,t t t p t p t t q t q ty c y y y         − − − − − −= + + + + + + + + +            (1) 

where 

a. 
ty  is the value at time t . 

b. c  is a constant term. 

c. 
1 2, ,..., p    are the coefficients of the autoregressive part. 

d. 
1 2, ,..., q    are the coefficients of the moving average part. 

e. 
t  is the error term at time (white noise). 

 

FIGURE 2. The approach followed for forecasting using ARIMA. 
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3.4. LSTM Model 

Artificial neural networks (ANNs) are computational models inspired by biological 

neural networks, consisting of interconnected units called neurons organized in layers. A specific 

type of ANN, known as Recurrent Neural Networks (RNNs), is designed to process sequences of 

data where each value depends on previous ones. Long Short-Term Memory (LSTM) networks, 

a specialized form of RNNs, excel at remembering information over long periods [39]. These 

models are particularly effective for predicting, processing, and classifying time series data [40]. 

LSTM networks stand out for their ability to handle time-dependent data, thanks to their four 

interacting layers that communicate uniquely during data processing. The model's structure often 

takes the form of a chain. An analysis block diagram of the method used in our study to predict 

CPU utilization is shown in Figure 3. 

 

 

FIGURE 3. The approach followed for forecasting using LSTM. 

The main feature of LSTM networks is their ability to store and process information over 

long sequences. Each LSTM unit has four parts that work together, as shown in Figure 4.  

 

FIGURE 4. Structure of the RNN-LSTM algorithm 
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The line running through these units is called the cell state, which carries information 

through the LSTM network, updating it as needed. LSTM networks have three types of gates: the 

input gate, the forget gate, and the output gate. The process of identifying and excluding data in 

LSTM is controlled by the forget gate. The forget gate takes the output of the last LSTM unit 
1th −
 

at time 1t −  and the current input 
tX  at time t . The sigmoid function also determines which 

parts of the previous output should be discarded, producing a vector 
tf  with values ranging from 

0 to 1 for each element in the cell state 
1tC −
 (Figure 4). If the output is 1, the information is retained, 

and if it is 0, the information will be discarded. The equation for the forget gate is :  

                                                     ( )1. , ,t f t t ff W h X b −= +                                                  (2) 

where: 

a. 
fW  represents the weight matrix associated with the forget gate. 

b.  1,t th X−
 denotes the concatenation of the current input and the previous hidden state. 

c. 
fb  is the bias with the forget gate. 

d.   is the sigmoid activation function. 

The input gate adds useful information to the cell state. First, the input is regulated using 

the sigmoid function to filter the values to be remembered, using the inputs 
1th −
 and 

tX . Then, a 

vector is created using a tanh function, outputting values from -1 to 1, representing all possible 

values from 
1th −
 and 

tX . Finally, the values of the vector and the regulated values are multiplied 

to obtain the useful information. The equations for the input gate are:  

                                                         ( )1. , .t i t i ii W h X b −= +                                                      (3) 

                                                           ( )1tanh . , .t c t t cC W h X b−= +                                              (4) 

The previous state is multiplied by 
tf , disregarding the information chosen to be ignored. 

The updated candidate values 
ti . 

tC   are then added, resulting in:  

                                                              
1. .t t t t tC f C i C−= + .                                                           (5) 

From the current cell state, the output gate collects relevant information to display as 

output. The tanh  function is first used to build a vector. After that, the data is controlled by the 

sigmoid function, which filters the values that need to be retained using the inputs 
1th −
 and .tX

To send the values of the vector and the controlled values as output and input to the following 

cell, they are finally multiplied. The equation for the output gate is:  

                                                          ( )1. , .t o t t oO W h X b −= +                                               (6) 
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These gates are essential for how LSTMs work. The input gate allows the network to learn 

new patterns, the forget gate prevents old, irrelevant information from cluttering the cell state, 

and the output gate ensures accurate predictions. By managing the flow of information with these 

gates, LSTMs can capture long-term dependencies in data. This makes them useful for tasks like 

time series forecasting and natural language processing, where understanding long-term patterns 

is important. 

To set up the LSTM model, the data must be transformed into sequences, each of which is 

used to predict the next value. The dataset was split into training and testing subsets, as shown 

in Figure 3. An optimization process was conducted to evaluate the results, improve performance, 

and enhance accuracy by minimizing errors in the final forecasting. In the LSTM cell, the weight 

matrices and biases for the sigmoid function are crucial components for the forget gate. This gate 

determines and stores the input data from the new information 
tX  in the cell state and updates 

it accordingly. The sigmoid layer then decides whether the new data should be retained or 

discarded (0 or 1), while the tanh  function assigns weights to the values based on the importance 

(-1 to 1). The values are multiplied to update the new cell state, which is then combined with the 

previous cell state 
1tC −
 to form the new cell state 

tC . Figure 5 illustrates the neuron processing 

mechanism of the LSTM model [41, 42].  

In this study, the LSTM was designed with two layers, each with 4 and 32 LSTM units, to 

capture long-term dependencies in the data. To avoid overfitting, dropout layers with a rate of 

0.0 - 0.2 were added. To assess the effectiveness of LSTM models, three different approaches were 

compared: using hyperparameter tuning methods such as Grid Search and Random Search, and 

a baseline model without hyperparameter tuning. Additionally, the training time for each model 

was recorded to assess the computational efficiency of each approach. 

The next step involves the cell states 
1tC −
 and 

tC  at times 1t −  and t , respectively. In the 

final step, the value of 
th  is determined based on the output cell state 

tO . A sigmoid layer decides 

which parts of the cell state will contribute to the output. The output of the sigmoid gate 
tO  is 

then multiplied by the new values created by the tanh  layer from the cell state 
tC , with values 

ranging between -1 and 1.  
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FIGURE 5. Internal LSTM model process. 

To ensure the reliability and accuracy of the models, a rolling forecasting origin approach 

was used for model validation, evaluating their performance across various segments of the 

dataset. This method helps confirm that the models can make accurate predictions in different 

scenarios. The ARIMA and LSTM models were compared using performance metrics to identify 

the best forecasting model. The evaluation focused on Mean Squared Error (MSE) and training 

time. MSE was chosen as the key evaluation metric, as it measures the average squared error 

between predicted and actual values, offering a comprehensive assessment of model accuracy. A 

smaller MSE indicates better model performance [43].  

                                                        ( )
2

1

1
,

N

i

i

MSE y y
N =

= −                                                     (7) 

where N  is the number of observations, 
iy  is the actual value and y  is the predicted value. 

For the LSTM model, we performed three categories of analysis: 

1. Using default hyperparameters 

This study introduces a hyperparameter optimization algorithm using a Multilayer 

Perceptron (MLP) model to predict and refine hyperparameters, improving accuracy while 

reducing training data. Innovations include the MLP Prediction Model for better efficiency, 

Neighboring Value Perturbation inspired by genetic algorithms for exploring optimal solutions, 

and a Stability Model to ensure precision and stability across multiple runs.  

2. Using hyperparameters with grid search 

Grid search is a powerful hyperparameter optimization technique for fine-tuning LSTM 

models, improving their performance in time series forecasting. By systematically exploring 

hyperparameter combinations like the number of layers, units, and learning rates, grid search 
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enhances the LSTM's ability to learn long-term dependencies and improve accuracy in forecasting 

tasks [44].  

3. Using hyperparameters with random search 

Random search is more efficient than grid search for hyperparameter tuning in LSTM 

models, requiring less computational effort while still finding optimal configurations. It can 

explore a wider range of hyperparameter combinations, achieving similar or better performance 

on various datasets. This efficiency, supported by empirical evidence, makes random search an 

excellent baseline for optimizing LSTM models without the exhaustive search needed by grid 

search [45]. 

4. Results and Discussion 

4.1.       LSTM Model Analysis 

4.1.1.   Default Hyperparameters 

Table 1 displays the results of LSTM models with default hyperparameters in the 

development environment, showing varied performances across different instances. The MSE 

values reveal significant differences, indicating that the default parameters may not be optimal 

for all datasets. Training times also vary, highlighting the computational demands of LSTM 

models. Notably, EC2-Instance-DEV-04 achieves the lowest MSE (0.0048) with a moderate 

training time of 4.3 seconds, suggesting a good balance of performance and efficiency. Figure 6 

illustrates the predictive performance of these models across instances in the development 

environment. 

TABLE 1. Results of the LSTM models with default hyperparameters for the development 

environment 

Instance ID MSE Training Time (s) 

EC2-Instance-DEV-01 0.0354 3.5 

EC2-Instance-DEV-02 0.0285 5.5 

EC2-Instance-DEV-03 0.0998 4.3 

EC2-Instance-DEV-04 0.0048 4.3 

EC2-Instance-DEV-05 0.0086 16.4 

EC2-Instance-DEV-06 0.0050 5.4 

EC2-Instance-DEV-07 0.4234 3.3 

EC2-Instance-DEV-08 0.0884 4.7 

EC2-Instance-DEV-09 3.2938 5.4 
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FIGURE 6. Predictive performance of the LSTM models with default hyperparameters for the 

development environment. 

Table 2 shows the results of the LSTM models with default hyperparameters for the 

production environment. The result also exhibits variability in MSE and training times. The EC2-

Instance-PROD-07 stands out with an MSE of 0.0008 and a training time of 7.3 seconds, indicating 

excellent performance. However, EC2-Instance-PROD-03 has a higher MSE of 0.4672, suggesting 

that the LSTM model may struggle with certain datasets in the production environment. Figure 

7 displays the predictive performance of the LSTM models with default hyperparameter settings 

for the production environment across various instances. 

 

TABLE 2. Results of the LSTM models with default hyperparameters for the production 

environment 

  

  

  

Instance ID MSE Training Time (s) 

EC2-Instance-PROD-01 0.0278 10.1 

EC2-Instance-PROD-02 0.0278 6.5 

EC2-Instance-PROD-03 0.4672 6.8 

EC2-Instance-PROD-04 0.2613 5.6 

EC2-Instance-PROD-05 0.0120 9.7 

EC2-Instance-PROD-06 0.2639 4.4 

EC2-Instance-PROD-07 0.0008 7.3 

EC2-Instance-PROD-08 0.0005 7.9 

EC2-Instance-PROD-09 0.1053 4.1 
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FIGURE 7. Predictive performance of the LSTM models with default hyperparameters for the 

production environment. 

4.1.2 Grid Search Hyperparameters 

Table 3 illustrates the results of the grid search approach for the development 

environment, which optimizes hyperparameters, generally leads to improved MSE values 

compared to the default settings, albeit at the cost of increased training times. EC2-Instance-DEV-

04 retains a low MSE of 0.0048, with a training time extending to 5 minutes and 39.9 seconds. This 

suggests that the hyperparameter tuning process was effective in maintaining performance while 

extending the training duration. Figure 8 portrays the predictive performance of the LSTM 

models with grid search hyperparameter settings for the development environment across 

various instances. 

TABLE 3. Results of the LSTM models with grid search hyperparameters for the development 

environment 

Instance ID MSE Training Time (s) 

EC2-Instance-DEV-01 0.0321 338.2 

EC2-Instance-DEV-02 0.0758 331.8 

EC2-Instance-DEV-03 0.1244 348.7 

EC2-Instance-DEV-04 0.0048 339.9 

EC2-Instance-DEV-05 0.0279 360 

EC2-Instance-DEV-06 0.0058 378.6 

EC2-Instance-DEV-07 0.3694 434.8 

EC2-Instance-DEV-08 0.1005 560.6 

EC2-Instance-DEV-09 3.3271 688.9 
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FIGURE 8. Predictive performance of the LSTM models with grid search hyperparameters for 

the development environment. 

Table 4 demonstrates the results of the grid search optimization in varying improvements 

for the production environment. For example, EC2-Instance-PROD-05 achieves an MSE of 0.0033 

with a training time of 6 minutes and 8.7 seconds. However, EC2-Instance-PROD-03 has a 

significantly higher MSE of 0.8878, indicating that hyperparameter tuning may not always lead 

to better performance for all datasets. Figure 10 portrays the predictive performance of the LSTM 

models with grid search hyperparameters settings for the production environment across various 

instances. 

 

TABLE 4. Results of the LSTM models with grid search hyperparameters for the production 

environment 

 

 

 

 

Instance ID MSE Training Time (s) 

EC2-Instance-PROD-01 0.0443 322.9 

EC2-Instance-PROD-02 0.0423 324.9 

EC2-Instance-PROD-03 0.8878 332.3 

EC2-Instance-PROD-04 0.3053 385.8 

EC2-Instance-PROD-05 0.0033 368.7 

EC2-Instance-PROD-06 0.2513 355.0 

EC2-Instance-PROD-07 0.0029 428.2 

EC2-Instance-PROD-08 0.0212 525.0 

EC2-Instance-PROD-09 0.1749 793.4 



18  Int. J. Anal. Appl. (2025), 23:261 

 

     

     

     

     



Int. J. Anal. Appl. (2025), 23:261 19 

 

 

FIGURE 9. Predictive performance of the LSTM models with grid search hyperparameters for 

the production environment. 

4.1.3   Random Search Hyperparameters 

Table 5 provides the results of the random search method for hyperparameter tuning for 

the development environment. EC2-Instance-DEV-04 achieves an MSE of 0.0051 with a training 

time of 8.3 seconds, indicating a slight increase in both MSE and training time compared to the 

default settings. Figure 10 shows the predictive performance of the LSTM models with random 

search hyperparameters settings for the development environment across various instances. 

TABLE 5. Results of the LSTM models with random search hyperparameters for the development 

environment 

 

 

 

Instance ID MSE Training Time (s) 

EC2-Instance-DEV-01 0.0302 8.3 

EC2-Instance-DEV-02 0.0276 8.2 

EC2-Instance-DEV-03 0.0982 7.9 

EC2-Instance-DEV-04 0.0051 8.3 

EC2-Instance-DEV-05 0.0061 8.3 

EC2-Instance-DEV-06 0.0059 8.4 

EC2-Instance-DEV-07 0.1709 8.5 

EC2-Instance-DEV-08 0.1041 8.0 

EC2-Instance-DEV-09 3.3068 8.6 
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FIGURE 10. Predictive performance of the LSTM models with random search hyperparameters 

for the development environment. 

Table 6 shows the results of a random search for the production environment, which 

shows mixed outcomes. For instance, EC2-Instance-PROD-07 achieves an MSE of 0.0009 with a 

training time of 8.5 seconds, which is an improvement over the default settings. However, EC2-

Instance-PROD-03 still has a high MSE of 0.4541, suggesting that random search may not be as 

effective in optimizing hyperparameters for this dataset. Figure 11 illustrates the predictive 

performance of the LSTM models with random search hyperparameters settings for the 

production environment across various instances. 

 

TABLE 6. Results of the LSTM models with random search hyperparameters for the production 

environment 

Instance ID MSE Training Time (s) 

EC2-Instance-PROD-01 0.0413 11.1 

EC2-Instance-PROD-02 0.0401 8.2 

EC2-Instance-PROD-03 0.4541 8.6 

EC2-Instance-PROD-04 0.2699 8.4 

EC2-Instance-PROD-05 0.0164 10.0 

EC2-Instance-PROD-06 0.2687 8.8 

EC2-Instance-PROD-07 0.0012 10.4 

EC2-Instance-PROD-08 0.0205 7.9 

EC2-Instance-PROD-09 0.0956 8.2 
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FIGURE 11. Predictive performance of the LSTM models with random search hyperparameters 

for the production environment. 

4.2       ARIMA Model Analysis 

Table 7 provides the results of the ARIMA models for the development environment, 

which exhibit lower MSE values and shorter fitting times compared to LSTM models. For 

instance, EC2-Instance-DEV-04 achieves an MSE of 0.0009 with a fitting time of 6.025 seconds, 

highlighting ARIMA's efficiency in handling this dataset. However, EC2-Instance-DEV-09 has a 

high MSE of 3.5406, indicating that ARIMA may struggle with certain datasets in the 

development environment. Figure 12 shows the predictive performance of the ARIMA models 

for the development environment across various instances. 

 

TABLE 7. Results of the ARIMA models for the development environment 

Instance ID MSE Fitting Time (s) 

EC2-Instance-DEV-01 0.0403 1.925 

EC2-Instance-DEV-02 0.0253 0.653 

EC2-Instance-DEV-03 0.0417 1.712 

EC2-Instance-DEV-04 0.0009 6.025 

EC2-Instance-DEV-05 0.0078 1.805 

EC2-Instance-DEV-06 0.0037 0.765 

EC2-Instance-DEV-07 0.3591 4.647 

EC2-Instance-DEV-08 0.1086 1.421 

EC2-Instance-DEV-09 3.5406 0.229 
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FIGURE 12. Predictive performance of the ARIMA models development environment. 

Table 8 presents the results of the  ARIMA models for the production environment, 

maintaining a consistent performance, with low MSE values and relatively fast fitting times. EC2-

Instance-PROD-07 achieves an MSE of 0.0016 with a fitting time of 0.409 seconds, demonstrating 

ARIMA's capability in quickly fitting models to data. However, EC2-Instance-PROD-03 has a 

higher MSE of 0.5739, indicating some variability in performance. Figure 13 shows the predictive 

performance of the ARIMA models for the production environment across various instances. 

 

TABLE 8. Results of the ARIMA models for the production environment 

Instance ID MSE Fitting Time (s) 

EC2-Instance-PROD-01 0.0046 0.512 

EC2-Instance-PROD-02 0.0146 2.450 

EC2-Instance-PROD-03 0.5739 0.643 

EC2-Instance-PROD-04 0.0169 5.664 

EC2-Instance-PROD-05 0.0025 0.557 

EC2-Instance-PROD-06 0.4428 4.024 

EC2-Instance-PROD-07 0.0016 0.409 

EC2-Instance-PROD-08 0.0018 1.606 

EC2-Instance-PROD-09 0.0865 5.533 
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FIGURE 13. Predictive performance of the ARIMA models production environment. 

4.3       LSTM Model Performance 

The LSTM model showed varied performance based on the hyperparameter tuning 

methods applied. 

Default Hyperparameters: The default configuration provided moderate performance 

with relatively lower training times. In the production environment, instances such as EC2-

Instance-PROD-07 and EC2-Instance-PROD-08 achieved very low MSE values of 0.0008 and 

0.0005, respectively, indicating high accuracy. 

Grid Search Hyperparameters: This method generally improved the model accuracy at 

the cost of significantly increased training times. The instance EC2-Instance-PROD-05 in the 

production environment achieved the lowest MSE of 0.0033, suggesting effective hyperparameter 

optimization. 

Random Search Hyperparameters: This method provided a balance between accuracy 

and training time. Notably, EC2-Instance-PROD-07 achieved an MSE of 0.0012 in the production 

environment, with a reasonable training time of 10.4 seconds. 

4.4.       ARIMA Model Performance 

The ARIMA model, known for its statistical robustness, performed differently across 

instances: 

In the development environment, instance EC2-Instance-DEV-04 achieved an 

exceptionally low MSE of 0.0009, indicating high predictive accuracy with a fitting time of 6.025 

seconds. 

In the production environment, instance EC2-Instance-PROD-01 had the lowest MSE of 

0.0046 with a fitting time of 0.512 seconds, demonstrating both accuracy and efficiency. 

4.5.       Comparison of  LSTM and ARIMA 

4.5.1. Model Performance in the Development Environment 
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In the development environment, ARIMA consistently outperforms all LSTM variants in 

terms of MSE, particularly for Instance IDs EC2-Instance-DEV-04 (MSE: 0.0009) and EC2-

Instance-DEV-06 (MSE: 0.0037). This suggests ARIMA's robustness in handling time series data, 

which may be attributed to its ability to capture linear patterns effectively. 

The LSTM models, while offering competitive performance in some instances, exhibit 

higher variability in MSE. For example, the LSTM default model achieves a low MSE of 0.0048 

for Instance ID EC2-Instance-DEV-04, yet fails to generalize similarly across other instances, such 

as EC2-Instance-DEV-09, where the MSE soars to 3.2938. The LSTM models with grid search and 

random search tuning exhibit mixed results. While random search provides an improvement over 

the default settings in several cases, such for instance ID EC2-Instance-DEV-07 (MSE: 0.1709), it 

still falls short of ARIMA's performance. Grid search, on the other hand, often results in higher 

MSE values, indicating potential overfitting or suboptimal parameter selection. 

Fitting time is a critical consideration in model selection, especially in time-sensitive or 

resource-constrained environments. ARIMA models consistently exhibit the shortest fitting times 

across both environments, typically completing in under 10 seconds, apart from Instance ID EC2-

Instance-DEV-04 in the development environment, where the fitting time was slightly higher at 

6.025 seconds. This makes ARIMA not only the most accurate but also the most computationally 

efficient model in this study.   The MSE and fitting times for each model in the development 

environment are summarized in Table 9. 

TABLE 9. Combined results for the development environment 

Instance ID LSTM 
Default 

MSE 

LSTM Grid 
Search MSE 

LSTM 
Random 

Search MSE 

ARIMA 
MSE 

Fitting time (s) 

EC2-Instance-DEV-01 0.0354 0.0321 0.0302 0.0403 5.1 

EC2-Instance-DEV-02 0.0285 0.0758 0.0276 0.0253 3.8 

EC2-Instance-DEV-03 0.0998 0.1244 0.0982 0.0417 4.6 

EC2-Instance-DEV-04 0.0048 0.0048 0.0051 0.0009 6.025 

EC2-Instance-DEV-05 0.0086 0.0279 0.0061 0.0078 4.1 

EC2-Instance-DEV-06 0.0050 0.0058 0.0059 0.0037 4.4 

EC2-Instance-DEV-07 0.4234 0.3694 0.1709 0.3591 9.3 

EC2-Instance-DEV-08 0.0884 0.1005 0.1041 0.1086 7.9 

EC2-Instance-DEV-09 3.2938 3.3271 3.3068 3.5406 8.6 
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4.5.2. Model Performance in the Production Environment 

The production environment further corroborates ARIMA's superiority, with the model 

consistently achieving the lowest MSE values across most instances. This indicates that ARIMA 

outperforms the LSTM models for Instance ID EC2-Instance-PROD-01 (MSE: 0.0046) and EC2-

Instance-PROD-08 (MSE: 0.0018), demonstrating its efficacy in real-world forecasting tasks. 

The LSTM default model shows moderate success in the production environment, 

achieving an MSE of 0.0008 for Instance ID EC2-Instance-PROD-07. However, its performance is 

inconsistent across other instances, and it often lags behind ARIMA. The LSTM grid search and 

random search models similarly fail to consistently outperform the default LSTM or ARIMA, 

with grid search yielding the highest MSE values in instances such as EC2-Instance-PROD-03 

(MSE: 0.8878). 

For fitting time, the LSTM models, particularly those with grid search, demonstrate 

significantly longer fitting times. For instance, the grid search for Instance ID EC2-Instance-

PROD-09 in the production environment took an extensive 793.4 seconds, making it impractical 

for scenarios requiring quick turnaround times. Even the LSTM models with random search, 

although faster than grid search, cannot match the fitting efficiency of ARIMA. The MSE and 

fitting times for each model in the production environment are summarized in Table 10. 

TABLE 10. Combined results for the production environment 

Instance ID LSTM 
Default 

MSE 

LSTM Grid 
Search 
MSE 

LSTM 
Random 

Search MSE 

ARIMA 
MSE 

Fitting time (s) 

EC2-Instance-PROD-01 0.0278 0.0443 0.0413 0.0046 5.4 

EC2-Instance-PROD-02 0.0278 0.0423 0.0401 0.0146 5.2 

EC2-Instance-PROD-03 0.4672 0.8878 0.4541 0.5739 10.1 

EC2-Instance-PROD-04 0.2613 0.3053 0.2699 0.0169 4.1 

EC2-Instance-PROD-05 0.0120 0.0033 0.0164 0.0025 7.9 

EC2-Instance-PROD-06 0.2639 0.2513 0.2687 0.4428 8.6 

EC2-Instance-PROD-07 0.0008 0.0029 0.0012 0.0016 7.3 

EC2-Instance-PROD-08 0.0005 0.0212 0.0205 0.0018 7.1 

EC2-Instance-PROD-09 0.1053 0.1749 0.0956 0.0865 793.4 

The varied performance between production and development environments suggests 

that the operating system and the specific configurations of EC2 instances may influence the 

effectiveness of the forecasting models. Further analysis is required to identify the exact factors 
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contributing to these differences. The findings of this research are crucial for optimizing resource 

allocation and predictive maintenance in cloud computing environments. By selecting 

appropriate forecasting models and tuning methods, organizations can enhance the performance 

and reliability of their EC2 instances, leading to improved cost efficiency and service delivery. 

5. Conclusion 

This study presents the analysis of LSTM networks and ARIMA models for forecasting 

CPU utilization of AWS EC2 instances in both development and production environments. By 

analyzing a comprehensive dataset from these environments, the research evaluates the 

effectiveness of these machine learning models in predicting CPU utilization accurately and 

efficiently. The findings reveal that ARIMA models consistently outperform LSTM networks in 

several key aspects. ARIMA demonstrates superior predictive accuracy with significantly lower 

MSE values across various instances. Additionally, ARIMA models achieve shorter fitting times 

compared to LSTM models, highlighting their efficiency in processing and forecasting time series 

data. This efficiency is attributed to ARIMA’s ability to effectively capture linear patterns within 

the data, making it a robust choice for forecasting tasks that require both accuracy and 

computational efficiency. In contrast, while LSTM models have shown potential in time series 

forecasting, they tend to exhibit higher variability in MSE values. This variability indicates that 

LSTM models may not consistently generalize well across different instances. The extended 

fitting times associated with LSTM models, particularly when employing hyperparameter tuning 

techniques such as grid search and random search, pose practical challenges. 

Future research should focus on several key areas to build upon these findings and 

enhance forecasting capabilities. Firstly, exploring advanced hyperparameter optimization 

techniques, such as Bayesian optimization, could significantly improve LSTM model 

performance by more efficiently finding the optimal set of parameters, leading to greater accuracy 

and reliability. Additionally, investigating ensemble methods that combine multiple forecasting 

models could provide a more robust solution by leveraging the strengths of each model and 

addressing their respective weaknesses. This approach may improve overall predictive 

performance and offer a more comprehensive forecasting strategy. 
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