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A SPECTRAL ANALYSIS OF LINEAR OPERATOR PENCILS ON

BANACH SPACES WITH APPLICATION TO QUOTIENT OF

BOUNDED OPERATORS

BEKKAI MESSIRDI1,∗, ABDELLAH GHERBI2 AND MOHAMED AMOUCH3

Abstract. Let X and Y two complex Banach spaces and (A,B) a pair of
bounded linear operators acting on X with value on Y. This paper is con-

cerned with spectral analysis of the pair (A,B). We establish some properties
concerning the spectrum of the linear operator pencils A− λB when B is not

necessarily invertible and λ ∈ C. Also, we use the functional calculus for the

pair (A,B) to prove the corresponding spectral mapping theorem for (A,B).
In addition, we define the generalized Kato essential spectrum and the closed

range spectra of the pair (A,B) and we give some relationships between this

spectrums. As application, we describe a spectral analysis of quotient opera-
tors.

1. Introduction

Let L(X,Y ) be the Banach algebra of all bounded linear operators from one
complex Banach space X to another Y. If X = Y, then L(X,X) = L(X). For A ∈
L(X,Y ) we denote by R(A) its range, N(A) its null space and σ(A) its spectrum.
If A ∈ L(X), we denote by %(A) the resolvent set of A. Let IX (respectively IY )
denotes the identity operator in X (respectively in Y ). Recall that an operator
A ∈ L(X) is called nilpotent if Ap = 0 for some p ∈ N∗ and A is said to be quasi-
nilpotent if σ(A) = {0} . For a set M , let ∂M , M denote the boundary and the
closure of M , respectively. Let A− λB be a linear operator pencil, where A and B
are in L(X,Y ) and λ ∈ C. The operator B is not considered injective or surjective.

For the study of spectral properties of the quotient operators

A/B : Bx −→ Ax,defined by A/B(Bx) = Ax, where N(B) ⊂ N(A),

we need to consider the spectrum of the operator pencil A−λB where λ ∈ C. Fur-
thermore, many authors consider the generalized eigenvalue problems Ax = λBx
and discussed the spectra of quadratic operator pencils, see [2, 13, 22]. Note that,
in the finite dimensional case the generalized eigenvalue problems is one of the basic
problems in the control theory of linear systems with finite dimensional state space.
The solution of this problem is well-known as Rosenbrok’s theorem [29]. However,
in the infinite dimensional case, a complete description of the spectra of operators
A − λB is known when the pair (A,B) is exactly controllable, that is the matrix
operator [B,AB, ..., Ap−1B] ∈ L(Xp, Y ) is right invertible for some integer p. If
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B is self-adjoint, positive and invertible then the eigenvalue problem Ax = λBx
is equivalent to B−1Ax = λx or to B−1/2AB−1/2y = λy with y = B1/2x, and
the problem is also equivalent to a standard one for a self-adjoint operator where
the spectrum is real. Thus, the interesting case is when both A and B are not
sign-definite, the pencil spectrum can be non-real. In particular, if neither A nor B
is invertible, then the problem poses major difficulties. Typical problems include:
characterization of the spectrum of A − λB, localization of non-real eigenvalues,
asymptotic of real eigenvalues, dependence on parameters and often the use of
complex analysis. Similar problems, as well as some other related questions, have
been studied in a variety of situations in mathematical literature, see [9, 16, 32].
In physical literature, our problem appears in the study of electron waveguides in
graphene, see [18, 31] and many references there.

The objective of this paper is to investigate the spectrum of linear operator pen-
cils of type A− λB. Our work generalizes initially some results of [28] to the case
of operators defined on a Banach space X with values in another Banach space
Y which is not necessarily equal to X. Thereafter, we extend our study to some
different essential spectra. We state some basic results for linear operator pencils
with non-empty resolvent set. We present particularly a simple demonstration than
that obtained by Ditkin in [14] on the spectrum of (A − λB) when B is assumed
to be compact. The originality of our technique allows us to operate a functional
calculus on linear operator pencils. We also got a spectral characterization on quo-
tient operators through that we have established on linear operator pencils. The
obtained results bring quite information for the investigation of joint spectra and
in particular the spectra of quotients operators. The present work is organized as
follow: After the second section where several basic definitions and facts will be
recalled, in section 3, we study some basic spectral properties for linear operator
pencils. The fourth section is consecrated to the functional calculus of a pair of
bounded operators. In section five, we investigate the isolated points of the spec-
trum of a pair of bounded linear operators. We define various essential spectra of
linear operator pencils on a Banach space. We define the generalized Kato essential
spectrum of a pair of bounded operators, and we also give some relationships be-
tween this spectrums and the closed range spectra. The obtained results are finally
used in the last section to describe a spectral analysis of quotient operators.

2. Preliminaries

We begin this section by the following definitions.

Definition 2.1. For a pair (A,B) of operators in L(X,Y ), the spectrum σ(A,B)
of the linear operator pencil (A− λB), or of the pair (A,B), is defined by:

σ(A,B) = {λ ∈ C such that (A− λB) is not invertible }
= {λ ∈ C such that 0 ∈ σ(A− λB)} .

The resolvent set %(A,B) of the pair (A,B) is the complement of the set σ(A,B)
in C.
(2.1)
%(A,B) = C\σ(A,B) =

{
λ ∈ C such that Rλ(A,B) = (A− λB)−1 exists in L(X,Y )

}
Rλ(A,B) is called the resolvent of (A− λB). So

σ(A,B) = {λ ∈ C such that N(A− λB) 6= {0} or R(A− λB) 6= Y } .
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Thus, the spectrum σ(A,B) of (A−λB) is the set of all scalars λ in C for which the
operator (A−λB) fails to be an invertible element of the Banach algebra L(X,Y ).
From [33, Theorem 3.2.4], σ(A − λB) can be an unbounded set. Besides that the
spectrum σ(A,B) can be an empty set. According to the nature of such a failure,
σ(A,B) can be split into many disjoint parts. A classical partition comprises three
parts. The point spectrum of (A,B) defined by

(2.2) σp(A,B) = {λ ∈ C : (A− λB) is not injective} .

A complex number λ ∈ C is an eigenvalue of (A−λB) if there exists a nonzero vector
x in X such that Ax = λBx, then N(A − λB) 6= {0} . The algebraic multiplicity
of an eigenvalue λ is the dimension of the respective eigenspace N(A − λB). The
second parts is the set σc(A,B) of those λ for which (A−λB) has a densely defined
but unbounded inverse on its range;
(2.3)

σc(A,B) =
{
λ ∈ C : N(A− λB) = {0} , R(A− λB) = Y and R(A− λB) 6= Y

}
which is referred to as the continuous spectrum of (A−λB). The third parts is the
residual spectrum of (A−λB) is the set σr(A,B) of all scalars λ such that (A−λB)
has an inverse on its range that is not densely defined;

(2.4) σr(A,B) =
{
λ ∈ C : N(A− λB) = {0} and R(A− λB) ( Y

}
.

The collection {σp(A,B), σc(A,B), σr(A,B)} forms a partition of σ(A,B), which
means that they are pairwise disjoint and σ(A,B) = σp(A,B)∪σc(A,B)∪σr(A,B).

Remark 2.2. 1) If X = Y and B = IX , the spectrum of the linear operator pencil
A−λIX is the spectrum of A, ie σ(A, IX) = σ(A). %(A, IX) = %(A) and Rλ(A, IX) =
Rλ(A) = (A− λIX)−1 if λ ∈ %(A).
2) If X = Y is a finite dimensional vector space, dimX <∞, the spectrum σ(A−
λB) coincides with the complex plane or it contains no more than n points.

Example 2.3. Let X = Y = L2([0, 1]) and define the multiplication operators A
and B in L2([0, 1]) by Af(x) = (x + 1)f(x) and Bf(x) = xf(x). Then A and B
are bounded with ‖A‖ = 2, ‖B‖ = 1. If (A − λB)f(x) = [(1− λ)x+ 1] f(x) = 0,
then f = 0 in L2([0, 1]) when λ ∈ C\ {1} . Thus, (A − λB) has no eigenvalues if
λ ∈ C\ {1} . However, if λ = 1, (A − B)f(x) = f(x), thus 1 ∈ σp(A,B). Conse-
quently, σp(A,B) = {1} .
If xλ = 1

λ−1 or else λ ∈ C\ [2,+∞[ , then [(1− λ)x+ 1]
−1
f(x) ∈ L2([0, 1]) for any

f ∈ L2([0, 1]) because [(1− λ)x+ 1]
−1

is bounded on [0, 1]. Thus, C\ ({1} ∪ [2,+∞[)

is in %(A,B). If λ ∈ [2,+∞[ , then (A−λB) is not onto, because c [(1− λ)x+ 1]
−1

/∈
L2([0, 1]) for c 6= 0, so the nonzero constant functions c do not belong to the range of
(A−λB). However, The range of (A−λB) is dense. Indeed, for any f ∈ L2([0, 1]),
let

fn(x) =

{
f(x) if |x− xλ| ≥ 1

n
0 if |x− xλ| < 1

n .

Then, lim
n→+∞

fn = f in L2([0, 1]) and fn ∈ R(A− λB), since [(1− λ)x+ 1]
−1
fn ∈

L2([0, 1]), then it follows that σp(A,B) = {1}, σc(A,B) = [2,+∞[, σr(A,B) =
∅ and σ(A,B) = {1} ∪ [2,+∞[.
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Remark 2.4. If X∗ and Y ∗ are respectively the dual spaces of X and Y, and A∗, B∗ :
Y ∗ −→ X∗ are the adjoint of A and B respectively, then σ(A,B) = σ(A∗, B∗).

The spectra and sub-spectra of the pair (A,B) and its adjoint (A∗, B∗) are
related by the following relations:

Theorem 2.5. Let (A,B) a pair of operators in L(X,Y ), then the following hold:
(1) σr(A,B) ⊂ σp(A∗, B∗) ⊂ σr(A,B)∪ σp(A,B).
(2) σp(A,B) ⊂ σr(A∗, B∗)∪ σp(A∗, B∗).
(3) σc(A,B) ⊂ σr(A∗, B∗) ∪ σc(A∗, B∗).
(4) σc(A

∗, B∗) ⊂ σc(A,B).
(5) σr(A

∗, B∗) ⊂ σp(A,B) ∪ σc(A,B).

Proof. (1) Let λ ∈ σr(A,B), then R(A− λB) is not dense in Y. By the Hahn–
Banach theorem, there exists a non-zero y∗ ∈ Y ∗ that vanishes on R(A − λB).
Thus, for all x ∈ X,

〈(A− λB)x, y∗〉 = 〈x, (A∗ − λB∗)y∗〉 = 0.

Therefore (A∗ − λB∗)y∗ = 0 and λ ∈ σp(A∗, B∗). Next suppose that

(A∗ − λB∗)z∗ = 0 where z∗ 6= 0,

that is 〈x, (A∗ − λB∗)z∗〉 = 〈(A− λB)x, z∗〉 = 0 for all x ∈ X. If R(A − λB) is
dense, then z∗ must be the zero functional, which is a contradiction. The claim
is proved. In particular, when X and Y are reflexive Banach spaces, we have
σr(A

∗, B∗) ⊂ σp(A
∗∗, B∗∗) = σp(A,B). One shows (2) to (5) by the same argu-

ment.

There are some overlapping parts of the spectrum of linear operator pencils
which are commonly used. For instance, the compression spectrum σCP (A,B) and
the approximate point spectrum σAP (A,B), which are defined respectively by:

σCP (A,B) = {λ ∈ C : R(A− λB) is not dense in Y }(2.5)

σAP (A,B) = {λ ∈ C : (A− λB) is not bounded below} .
Let (A,B) a pair of operators in L(X,Y ), we list below some classical results
concerning σCP (A,B) and σAP (A,B).

Theorem 2.6. (1) The following assertions are pairwise equivalent.
(i) For every ε > 0, there is a unit vector xε ∈ X such that ‖(A− λB)xε‖Y < ε.

(ii) There is a sequence (xn)n∈N of unit vectors in X such that lim
n→+∞

‖(A− λB)xn‖Y =

0.
(iii) λ ∈ σAP (A,B).

(2) The approximate point spectrum σAP (A,B) is a closed subset of C and that
includes the boundary ∂σ(A,B) of the spectrum σ(A,B).
(3) If X and Y are reflexive Banach spaces, we have

σCP (A,B) = σp(A
∗, B∗) and σr(A,B) = σCP (A,B)\σp(A,B).

Proof. (1) Clearly (i) implies (ii). If (ii) holds, then there is no constant δ > 0
such that δ = δ ‖xn‖X ≤ ‖(A− λB)xn‖Y for all n ∈ N. Thus, (A − λB) is not
bounded below, and so (ii) implies (iii). Conversely, if (A − λB) is not bounded
below, then there is no constant δ > 0 such that δ ‖x‖X ≤ ‖(A− λB)x‖Y for all
x ∈ X or, equivalently, for every ε > 0 there exists a nonzero tε in X such that
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‖(A− λB)tε‖Y ≤ ε ‖tε‖X . Set xε = tε
‖tε‖X

, hence (iii) implies (ii).

(2) The quantity j(A − λB) = inf
‖x‖X

‖(A− λB)x‖Y is called the injective modulus

of the pair (A,B) at λ, and obviously by virtue of 1) we have j(A−λB) = 0 if and
only if λ ∈ σAP (A,B). Moreover, it is easy to show that

(2.6)

{
|j(A− λB)− j(A− µB)| ≤ |λ− µ| ‖B‖
j(A− λB) = ‖Rλ(A,B)‖−1

; for all λ ∈ %(A,B).

Since the function j(A − λB) is continuous at λ and σAP (A,B) is the inverse
image by j of 0, it follows that σAP (A,B) is closed. Now, let λ ∈ %(A,B), then

j(A− λB) = ‖Rλ(A,B)‖−1
> 0 and λ /∈ σAP (A,B). Hence σAP (A,B) ⊂ σ(A,B).

The case ∂σ(A,B) = ∅ is obvious. If λ ∈ ∂σ(A,B) = σ(A,B) ∩ %(A,B), then
there exists a sequence (λn)n∈N in %(A,B) such that lim

n→+∞
λn = λ. Since (A−λB)

is not bounded invertible, then there exists a subsequence of (λn)n∈N for which

lim
n→+∞

‖Rλn(A,B)‖ = +∞. Thus, lim
n→+∞

‖Rλn(A,B)‖−1
= lim

n→+∞
j(A− λnB) = 0.

By continuity of j(.), we deduce that j(A− λB) = 0 and then λ ∈ σAP (A,B).
(3) The proof of (3) is similar to the proof of (1) in the previous theorem.

The condition 0 ∈ %(A,B) is understood as the continuous reversibility of the
operator A, furthermore it is quite simple to see that

σ(A,B)\ {0} =

{
1

λ
: λ ∈ σ(B,A)

}
.

This result can be extended to 0 and ∞ by introducing the concept of extended

spectrum of a pair (A,B) of bounded operators from X to Y . Let C̃ = C ∪ {∞}
denote the Riemann sphere. C̃ is equipped with the following topology: U ⊆ C̃ is
open if and only if U ⊆ C and U is open in C or if U = V ∪ {∞} where V ⊆ C
such that C\V, the complement of V in C, is compact in C. Then C̃ is a compact
Hausdorff space.

Definition 2.7. The extended spectrum σ̃(A,B) of a pair (A,B) of bounded op-

erators from X to Y is a subset of C̃ which coincides with σ(A,B) if both functions

%(A,B) 3 λ −→ BRλ(A,B) : C̃ −→ L(Y ) and %(A,B) 3 λ −→ Rλ(A,B)B :

C̃ −→ L(X) are holomorphic at the point ∞ and coincide with σ(A,B) ∪ {∞}
otherwise. The set %̃(A,B) = C̃\σ̃(A,B) is called the extended resolvent set of the
pair (A,B). We set (A−∞B)−1 = 0.
For λ ∈ %(A,B) the two operatorsRλ,l(A,B) = BRλ(A,B) ∈ L(Y ) andRλ,r(A,B) =
Rλ(A,B)B ∈ L(X) are called the left and the right resolvent of the pair (A,B),
respectively. Note that they are also called pseudo resolvent (see [34]).

Through this definition we have then immediately σ̃(A,B) and σ̃(B,A) are com-

pact subsets of C̃ and

(2.7) σ̃(A,B) =

{
1

λ
: λ ∈ σ̃(B,A)

}
.
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For more details on the spectrum σ̃(A,B), let λ0 be a fixed point of %(A,B) and

define Φ0 : C̃ −→ C̃ by:

(2.8) Φ0(λ) =


1

λ−λ0
if λ 6= λ0, λ 6=∞

∞ if λ = λ0

0 if λ =∞.
Then, Φ0 is an homeomorphism, its inverse mapping is given by

(2.9) λ = Φ−1
0 (µ) =


1
µ + λ0 if µ 6= λ0, µ 6=∞
∞ if µ = 0
0 if µ =∞.

However,

A− λB = −µ−1(A− λ0B)[Rλ0,r(A,B)− µIX ]

= −µ−1[Rλ0,l(A,B)− µIY ](A− λ0B)

where µ = (λ−λ0)−1 6= 0. So, λ ∈ %(A,B) if and only if µ = Φ0(λ) ∈ %(Rλ0,j(A,B)),
j = r, l, then

Φ0(σ̃(A,B)) = σ(Rλ0,r(A,B)) = σ(Rλ0,l(A,B))(2.10)

σ̃(A,B) = Φ−1
0 (σ(Rλ0,j(A,B))), j = r, l.

We can also directly deduce that if λ ∈ %(A,B) then

(2.11) dist(λ, σ̃(A,B)) ≥ 1

‖Rλ,j(A,B)‖
; j = l, r.

3. Some basic spectral properties of linear operator pencils

In this section we give some spectral properties of the operator pencils (A−λB).
We begin by the following theorem.

Theorem 3.1. Let A,B ∈ L(X,Y ). Then the following assertions hold:
(1) σ(A,B) is a closed set in C.
(2) If %(A,B) 6= ∅, then A(N(B)) is closed in Y.
(3) If A is invertible, then (A− λB) is equivalent to the linear pencil IX − λA−1B
and hence %(A,B) = %(IX − λA−1B), σ(A,B) = σ(IX − λA−1B), σi(A,B) =
σi(IX − λA−1B), i = p, c, r, and λ ∈ %(A,B) for sufficiently small |λ| .
(4) The resolvent operator Rλ(A,B) for λ ∈ %(A,B) is holomorphic function on
%(A,B) with values in L(Y,X) and

dn

dλn
Rλ(A,B) = n!Rλ(A,B)Bn(Rλ(A,B))n(3.1)

= n!(Rλ(A,B))nBnRλ(A,B).

(5) If λ, µ ∈ %(A,B), then we have the equalities

Rλ(A,B)−Rµ(A,B) = (λ− µ)Rλ(A,B)BRµ(A,B)(3.2)

Rλ,j(A,B)−Rµ,j(A,B) = (λ− µ)Rλ,j(A,B)Rµ,j(A,B) ; j = l, r.

(6) If λ, µ ∈ %(A,B), then

(3.3) Rλ(A,B)BRµ(A,B) = Rµ(A,B)BRλ(A,B).

We say that the operators Rλ(A,B) and Rµ(A,B) commute modulo B.
(7) For all λ ∈ %(A,B), Rλ,l(A,B) and Rλ,r(A,B) have the same spectrum that is,
σ(Rλ,l(A,B)) = σ(Rλ,r(A,B)).
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(8) σ(A,B) = ∅ if and only if A is continuously invertible and A−1B is quasi-
nilpotent on X.

Proof. (1) Let (λn)n∈N be a sequence of elements in σ(A,B) such that (λn)n∈N
converges to α ∈ C. Then, (A− λnB)n∈N is a sequence of non-invertible operators
in L(X,Y ) which converges strongly to the operator (A − αB). We deduce that
(A−αB) can not be invertible in L(X,Y ) since the set of all non-invertible operators
in L(X,Y ) is closed. Consequently, α ∈ σ(A,B) and this shows that σ(A,B) is
closed set in C.
(2) Observe that for any λ ∈ C,

A(N(B)) = (A− λB)(N(B)).

Now, if λ ∈ %(A,B), the operator (A − λB) has a continuous inverse, so it maps
closed subspaces to closed subspaces. The claim is now proved since N(B) is closed
in X. The statements in (3) follow from the equality,

(A− λB) = A(IX − λA−1B)

and the fact that the set of all invertible operators in L(X,Y ) is open. Indeed,
select λ sufficiently small so that |λ|

∥∥A−1B
∥∥ < 1. Then (IX −λA−1B) is invertible

and (IX − λA−1B)−1 =
∑∞
n=0 λ

nA−nBn ∈ L(X). Therefore

(3.4) Rλ(A,B) =

∞∑
n=0

λnA−nBnA−1.

(4) Observe that

Rλ(A,B) = [(A−λ0B)− (λ− λ0)B]
−1

= Rλ0
(A,B) [IY − (λ− λ0)BRλ0

(A,B)]
−1
.

If |λ− λ0| < 1

‖Rλ0,l(A,B)‖ , then the second inverse above is given by a convergent

Neumann series:

(3.5) Rλ(A,B) = Rλ0
(A,B)

∞∑
n=0

Bn(Rλ0
(A,B))n(λ− λ0)n.

Thus, Rλ(A,B) is given by a convergent power series about any point λ0 ∈ %(A,B)
that is, the resolvent set %(A,B) is open, so Rλ(A,B) defines an L(Y,X) -valued
holomorphic function on the resolvent set %(A,B) of (A−λB). Note that from the
series one obtains that

dn

dλn
Rλ(A,B) |λ=λ0 = n!(Rλ0(A,B)Bn(Rλ0(A,B))n

= n!(Rλ0(A,B))nBnRλ0(A,B).

Hence, we obtain (3.1) for any λ ∈ %(A,B).
(5)

(A− λB)−1 − (A− µB)−1 = (A− λB)−1[(A− µB)− (A− λB)](A− µB)−1

= (λ− µ)Rλ(A,B)BRµ(A,B).



A SPECTRAL ANALYSIS OF LINEAR OPERATOR PENCILS 111

By the same method and (2.11) we obtain the identities for the left and the right
resolvent of the pair (A,B). Indeed if for example j = l,

Rλ,l(A,B)−Rµ,l(A,B) = B[Rλ(A,B)−Rµ(A,B)]

= (λ− µ)BRλ(A,B)BRµ(A,B)

= (λ− µ)Rλ,l(A,B)Rµ,l(A,B).

(6) By using (2.11) we have

(λ− µ) [Rλ(A,B)BRµ(A,B)−Rµ(A,B)BRλ(A,B)] = 0,

this proves the result.
(7) For all λ ∈ %(A,B), Rλ,l(A,B) and Rλ,r(A,B) are similar :

Rλ(A,B)Rλ,l(A,B) = Rλ,r(A,B)Rλ(A,B).

It is clear, that similar operators Rλ,l(A,B) and Rλ,r(A,B) have the same spectral
properties and, particularly, σ(Rλ,l(A,B)) = σ(Rλ,r(A,B)).
(8) If σ(A,B) = ∅, then Rλ(A,B) ∈ L(Y,X) for all λ ∈ C. In particular, A is
invertible with bounded inverse A−1 ∈ L(Y,X) and hence

σ(A,B) = σ(A(IX − λA−1B)) = σ((IX − λA−1B)).

If λ0 ∈ σ(A−1B)) and λ0 6= 0, then (λ0IX − A−1B) and (IX − 1
λ0
A−1B) are not

invertible in L(X), this gives 1
λ0
∈ σ(A,B), this is a contradiction. Since A−1B ∈

L(X), then σ(A−1B) 6= ∅, so λ0 = 0 and hence σ(A−1B) = {0} . Conversely,
suppose that λ0 ∈ σ(A,B) and A is invertible in L(X,Y ). Thus λ0 6= 0 and (A −
λ0B) = λ0A( 1

λ0
IX −A−1B). As (A− λ0B) is not invertible in L(X,Y ), we deduce

that ( 1
λ0
IX −A−1B) is not invertible in L(X). Hence, 1

λ0
∈ σ(A−1B).

Note that σ(A,B) is not necessarily bounded, see [33, Theorem 3.2.4]. The
following examples shows that σ(A,B) can be the whole complex plane and it can
be discrete. Moreover, it may be empty.

Example 3.2. 1) Let A =

(
2 2
0 3

)
and B =

(
1 0
0 0

)
. Then det(A − λB) =

3(2− λ) and σ(A,B) = {2} .

2) If A =

(
1 2
0 3

)
andB =

(
0 1
0 0

)
, then det (A−λB) = 3, σ(A,B) =

∅ and %(A,B) = C.

3) If A =

(
1 2
0 0

)
and B =

(
1 0
0 0

)
, then det (A−λB) = 0, σ(A,B) =

C and %(A,B) = ∅.
4) Let X = H2 (]0, 1[) ∩H1

0 (]0, 1[) be the Hilbert space of complex measurable
functions f on ]0, 1[ such that∫ 1

0

(|f(t)|2 + |f
′
(t)|2 + |f

′′
(t)|2)dt <∞,

< f, g >X=

∫ 1

0

(f(t)g(t) + f
′
(t)g′(t) + f

′′
(t)g′′(t))dt ; f, g ∈ X

and f(0) = f(1) = 0, where the derivatives are taken in the distribution sense. Let
Y = L2 (]0, 1[) be the Hilbert space of complex measurable functions on ]0, 1[ such
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that

< f, g >Y =

∫ b

a

f(t)g(t)dt and

∫ 1

0

|f(t)|2 dt <∞ .

Define A ∈ L(X,Y ) and B ∈ L(X,Y ) by setting{
Af(t) = f

′′
(t) + π2f(t)

Bf(t) = f(t).

For each g ∈ Y and λ ∈ C we wish to find f ∈ X to solve the differential equation

f
′′
(t) + (π2 − λ)f(t) = g(t).

With the above notations this equation can be written in the form (A−λB)f(t) =
g(t) and hence the solution is given, if λ /∈ σ(A,B), by f(t) = (A− λB)−1g(t). Set

ek(t) =
√

2 sin(kπt), k ∈ N∗, t ∈]0, 1[. It is well known that each f ∈ X can be
written as

f =

∞∑
k=1

fkek such that

∞∑
k=1

(
1 + k2π2

)2 |fk|2 <∞
and each g ∈ Y can be written as g =

∑∞
k=1 gkek such that

∑∞
k=1 |gk|

2
< ∞. It

is easy to see that (A − λB) is invertible in L(X,Y ). Indeed, by the equation of
coefficients in the respective Fourier series we obtain the solution of the differential
equation:

f1 = −g1

λ
and fk = − gk

λ+ (k2 − 1)π2
, k = 2, 3, ...

Thus,

f = −g1

λ
e1 −

∞∑
k=2

gkek
(k2 − 1)π2

(
1− λ

(k2 − 1)π2
+ ...

)
The expansion is a Laurent series of f with a pole of order 1 at 0. Hence, σ(A,B) =
σp(A,B) = {0}.

Even if A and B are self-adjoint operators on Banach spaces, the spectrum of
the pencil (A− λB) is often complex. For the finite-dimensional example consider

the hermitian matrices A =

(
1 i

√
2

−i
√

2 1

)
and B =

(
1 1
1 0

)
. Then

det(A− λB) = −λ2 − λ− 1 and σ(A,B) =

{
−1− i

√
3

2
,
−1 + i

√
3

2

}
.

For the infinite-dimensional case, this follows from the fact that the operator

T =

(
B IX
−A 0

)
is not self-adjoint on L(X) ⊕ L(X), knowing that under cer-

tain conditions the linear operator pencils (A− λB) is equivalent to the quadratic
operator pencils Mλ = A− λB + λ2IX (see e.g. [12], [4]).

Theorem 3.3. Let A,B ∈ L(X). If %(A,B) 6= ∅ and B is invertible, then

%(A,B) = %(AB−1) = %(B−1A),(3.6)

σ(A,B) = σ(AB−1) = σ(B−1A).
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Proof. Let λ ∈ %(A,B), then for all y ∈ Y,
B(A− λB)−1)(AB−1 − λIY )y = B(A− λB)−1)(A− λB)B−1y = y.

Thus, (AB−1 − λIY )Rλ,l(A,B) = Rλ,l(A,B)(AB−1 − λIY ), λ ∈ %(AB−1) and
Rλ,l(A,B) = (AB−1 − λIY )−1. By the same argument we have also λ ∈ %(B−1A)
and Rλ,r(A,B) = (B−1A−λIX)−1. This imply that %(A,B) ⊂ %(AB−1)∩%(B−1A).
Conversely, since B is invertible λ ∈ %(A,B) once λ ∈ %(B−1A) or λ ∈ %(AB−1).
Thus, %(A,B) = %(AB−1) ∩ %(B−1A). Equality (3.6) follows from σ(Rλ,l(A,B)) =
σ(Rλ,r(A,B)).

Corollary 3.4. If B is invertible, then Rλ,l(A,B) and Rλ,r(A,B) are resolvent
operators at λ respectively of AB−1 and B−1A.

Now it can be shown that under certain conditions any closed complex subspace
is the spectrum of a linear operator pencils (see [28]).

Theorem 3.5. There exists a pair of bounded operators (A,B) on a separable
Banach space X such that for every closed subspace M of C we have

σ̃(A,B) = M.

Proof. Let (zj)j∈N be a dense subset of M. If 0 /∈ M, then there exists δ > 0 such
that |zj | ≥ δ or each j ∈ N. Consider an arbitrary bounded invertible operator C
on H where H is assumed to be a separable Banach space, then

σ̃(C − (
1

zj
)λC) = {zj}.

Denote X =
⊕∞

j=0H, A =
⊕∞

j=0 C and B =
⊕∞

j=0( 1
zj

)C. Thus,

σ̃(A,B) =
∞⋃
j=0

σ̃(C − (
1

zj
)λC) = (zj)j∈N = M.

If 0 ∈M, there exists γ > 0, such that (zj)j∈N = (uk)k∈K ∪(vl)l∈L with K∪L = N,
K ∩ L = ∅, (uk)k ∩ (vl)l = ∅, |uk| ≤ γ for all k ∈ K and |vl| > γ for all l ∈ L.
Take now with the same previous considerations, Ã1 =

⊕∞
j=0 C, B̃1 =

⊕
k∈K ukC,

Ã2 =
⊕

l∈L

(
1
vl

)
C and B̃2 =

⊕∞
j=0 C. Then A = Ã1 ⊕ Ã2, B = B̃1 ⊕ B̃2 are

bounded on X and

σ̃(A,B) = σ̃(Ã1, B̃1) ∪ σ̃(Ã2, B̃2) = (uk)k∈K ∪ (vl)l∈L = (zj)j∈N = M.

4. Functional calculus on a pair of bounded operators

The functional calculus under consideration in this article is of Riesz-Dunford
type, but extended to unbounded spectra. Since σ(A,B) can be unbounded, it
is necessary to make some assumptions on A and B ∈ L(X,Y ). The first such
functional calculus was defined by Bade [5] for operators with spectrum in a strip.
But there are now several other classes of operators with similar functional calculus.
Let A,B ∈ L(X,Y ), where B is not necessarily invertible and let Ω an open set

of the extended complex plane C̃ containing the extended spectrum σ̃(A,B) of the
pair (A,B). Denoted by symbol H(Ω) the set of holomorphic functions on Ω with
topology of uniform convergent on compact subsets from Ω. H(Ω) is a commutative
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algebra. More precisely, let H̃(Ω) be the set of pairs (f, D̃), where D̃ is an open

subset of C̃ containing Ω and f is an analytic function on D̃. We introduce the

relation (f1, D̃1) ∼ (f2, D̃2) if and only if f1 = f2 in a neighborhood of Ω contained

in D̃1∩D̃2. We set H(Ω) = H̃(Ω)� ∼ . Let γ be a contour in a domain of f ∈ H(Ω)
that encircles σ̃(A,B) and consists of a finite number of rectifiable Jordan curves
with a positive orientation. Then similar to Dunford’s operator calculus we define
an operator-function f(A,B) of the pair of bounded operators (A,B) as follows:

(4.1) f(A,B) =
1

2πi

∫
γ

f(λ)Rλ(A,B)dλ

where f(A,B) is a well-defined continuous linear operator from H(Ω) to L(Y,X).
Note that f(A,B) is a bounded operator, by the de notion of the spectrum and
the properties of integration. It is also useful for our study to introduce the two
following operators fl(A,B) from H(Ω) to L(Y ) and fr(A,B) from H(Ω) to L(X)
by the formula:

(4.2) fj(A,B) =
1

2πi

∫
γ

f(λ)Rλ,j(A,B)dλ, j = r, l.

Note that if σ̃(A,B) is the whole Riemann sphere, then the functional calculus is

trivial, since H(C̃) coincides with constant functions. The first main result of this
section is the following:

Theorem 4.1. Let A,B ∈ L(X,Y ). For f, g ∈ H(Ω) and λ0 ∈ %(A,B) we have
the following assertions :
(1) If f∗(λ) = 1

(λ−λ0) , then Rλ0
(A,B) = f∗(A,B).

(2) fl(A,B) and fr(A,B) are continuous homomorphisms of algebra H(Ω) and
we have the following properties:
(i) fl(A,B) = Bf(A,B) and fr(A,B) = f(A,B)B.

(ii) fr(A,B)g(A,B) = g(A,B)fl(A,B).
(iii) fl(A,B)(A− µB) = (A− µB)fr(A,B).
(iv) f∗l (A,B) = BRλ0

(A,B) and f∗r (A,B) = Rλ0
(A,B)B.

(3) If X = Y, Cf(A,B)C−1 = f(CAC−1, CBC−1) holds for any bounded in-
vertible operator C in L(X).

Proof. (1) f∗ ∈ H(Ω) since f∗ is holomorphic on C\{λ0}. Thus,

(A− λ0B)f∗(A,B) =
1

2πi

∫
γ

(A− λ0B)

(λ− λ0)
Rλ(A,B)dλ

=
1

2πi

∫
γ

1

(λ− λ0)
[IY +BRλ(A,B)]dλ

=
1

2πi

∫
γλ0

dλ

(λ− λ0)
IY +

1

2πi
intΓBRλ(A,B)dλ = IY

where γλ0
is a closed curve having λ0 in its interior. Similarly we obtain the

equality f∗(A,B)(A − λ0B) = IX . Thus, (A − λ0B) is invertible in L(X,Y ) and
(A − λ0B)−1 = Rλ0

(A,B) = f∗(A,B). (2) It is clear that the maps f(A,B),
fl(A,B) and fr(A,B) are linear on H(Ω). Let us show that fl(A,B) and fr(A,B)
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are multiplicative. Let f, g ∈ H(Ω). Choose a contour γ2 around γ1 both in Ω.

− 1

4π2

∫
γ1

f(λ)Rλ,l(A,B)dλ

∫
γ2

g(µ)Rµ,l(A,B)dµ

= − 1

4π2

∫
γ1

∫
γ2

f(λ)g(µ)

(λ− µ)
[Rλ,l(A,B)−Rµ,l(A,B)]dλdµ

= − 1

4π2

∫
γ1

f(λ)Rλ,l(A,B)dλ

∫
γ2

g(µ)

(λ− µ)
dµ+

1

4π2

∫
γ2

g(µ)Rµ,l(A,B)dµ

∫
γ1

f(λ)

(λ− µ)
dλ.

But ∫
γ1

f(λ)

(λ− µ)
dλ = 0 and

∫
γ2

g(µ)

(λ− µ)
dµ = −2πig(λ).

Thus

fl(A,B)gl(A,B) = (fg)l(A,B).

By a similar calculation we obtain fr(A,B)gr(A,B) = (fg)r(A,B). Consequently,
fl(A,B) and gl(A,B) (resp. fr(A,B) and gr(A,B)) commute. Equalities in (i)
follow directly from commutation of bounded operators with integration. For (ii),

fr(A,B)g(A,B) = f(A,B)Bg(A,B) = f(A,B)gl(A,B)

= − 1

4π2

∫
γ1

∫
γ2

f(λ)g(µ)Rλ(A,B)BRµ(A,B)dλdµ

= − 1

4π2

∫
γ1

∫
γ2

f(λ)g(µ)Rµ(A,B)BRλ(A,B)dλdµ

= g(A,B)fl(A,B).

This, since Rλ(A,B) and Rµ(A,B) commute modulo B (see formula (3.3)).
(iii)

(A− µB)fr(A,B) =
1

2πi

∫
γ

f(λ)(A− µB)Rλ(A,B)Bdλ

=
1

2πi

∫
γ

(λ− µ)f(λ)BRλ(A,B)Bdλ

=
1

2πi

∫
γ

f(λ)BRλ(A,B)Adλ− µfl(A,B)B

= fl(A,B)A− µfl(A,B)B = fl(A,B)(A− µB).

(iv) By virtue of (i), we obtain:

f∗l (A,B) =
1

2πi

∫
γ

1

(λ− λ0)
BRλ(A,B)dλ = Bf∗(A,B) = BRλ0

(A,B),

f∗r (A,B) =
1

2πi

∫
γ

1

(λ− λ0)
Rλ(A,B)Bdλ = f∗(A,B)B = Rλ0

(A,B)B.

(3) Let X = Y,

Cf(A,B)C−1 =
1

2πi

∫
γ

f(λ)[C(A− λB)C−1]−1dλ

=
1

2πi

∫
γ

f(λ)[(CAC−1 − λCBC−1)]−1dλ

= f(CAC−1, CBC−1).
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Sahin and Ragimov gave in [30] a result on the absence of the point ∞ in the
extended spectrum σ̃(A,B) of a pair (A,B) of bounded linear operators in different
Banach spaces by considering a reducing decomposition of the pair (A,B). Precisely,
they showed that ∞ /∈ σ̃(A,B) if and only if (A,B) has the following reducing
decomposition : X = X1 ⊕ X2, Y = Y1 ⊕ Y2 in direct sums of their respectively
closed subspaces Xj , Yj such that AXj ⊂ Yj , BXj ⊂ Yj , Aj = A|Xj , Bj = B|Xj ,
j = 1, 2,

(4.3) (A,B) = (A1 ⊕A2, B1 ⊕B2) = (A1, B1)⊕ (A2, B2),

where the operators A2 and B1 are continuously invertible,

(A−1
2 B2)2 = 0 and σ̃(A,B) = σ(A,B) = σ(A1, B1).

Now we will prove the second main result of this section:

Theorem 4.2. Let A,B ∈ L(X,Y ), f ∈ H(Ω) and λ0 ∈ %(A,B). Then,
(1)

(4.4) σ(Rλ0,l(A,B)) = σ(Rλ0,r(A,B)) = { 1

λ− λ0
: λ ∈ σ̃(A,B)}.

(2) Spectral mapping theorem of a pair of bounded linear operators:

(4.5) σ(fr(A,B)) = σ(fl(A,B)) = f(σ̃(A,B)) = {f(λ) : λ ∈ σ̃(A,B)}.

Proof. (1) If∞ /∈ σ̃(A,B), by virtue of the reduction (4.3) we can consider B = B1

invertible in L(X,Y ) and A = A1. By Theorem 3.1, we also have σ(Rλ0,l(A,B)) =
σ(Rλ0,r(A,B)). Therefore,

A− λB = (A− λ0B)[IX − (λ− λ0)Rλ0,r(A,B)]

= [IY − (λ− λ0)Rλ0,l(A,B)](A− λ0B).

Thus, λ0 6= λ ∈ %(A,B) if and only if 1
(λ−λ0) ∈ %(Rλ0,r(A,B)) (or 1

(λ−λ0) ∈
%(Rλ0,l(A,B))) which gives the equality (4.3). ∞ ∈ σ̃(A,B) means that Rλ0,l(A,B)
and Rλ0,r(A,B) are not invertible.
(2) Here we take the same constructs used by Sahin and Ragimov given through
the Gelfand representation theory developed in [19, Theorem 5.8.4]. Let Lr (resp.
Ll) be the closed subalgebra of L(X) (resp. L(Y )) containing the set {Rλ,r(A,B) :
λ ∈ %(A,B)} and IX (resp. {Rλ,l(A,B) : λ ∈ %(A,B)} and IY ) and Mr and
Ml are their spaces of maximal ideals respectively. Then there exists a continuous

C̃-valued function αj on Mj such that for all λ ∈ %(A,B) and m ∈Mj ,

Rλ,j(A,B)(m) =
1

(λ− αj(m))

Mj and αj(Mj) = {αj(m) : m ∈Mj} are holomorphic, j = r, l. Particularly, as
λ0 ∈ %(A,B), then according to (4.4), αj(Mj) = σ̃(A,B) and the space of maximal
ideals of algebras Lj are homeomorphic, j = r, l. Thus, for all m ∈Mj , j = r, l,

fj(A,B)(m) =
1

2πi

∫
γ

f(λ)Rλ,j(A,B)(m)dλ

=
1

2πi

∫
γ

f(λ)
1

(λ− αj(m))
dλ = f(αj(m)).
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Consequently, σ(fj(A,B)) is the range of the function f on αr(Mr) = αl(Ml) =
σ̃(A,B) and σ(fj(A,B)) = f(σ̃(A,B)), j = r, l.

The following result is well-known, it concerns linear operator pencils having a
discrete spectrum. It has been proved by Ditkin [14], we get here this result directly
as a consequence of the previous theorem. Indeed if λ0 ∈ %(A,B) and B is compact
it follows from (3.6) that σ̃(A,B) = Φ−1

0 (σ(Rλ0,j(A,B))). Since Rλ0,j(A,B) is
compact, σ(Rλ0,j(A,B))\ {0} consists of eigenvalues (µk)k with finite-dimensional
eigenspaces. The only possible point of accumulation of σ(Rλ0,j(A,B)) is 0, if (µk)k
is infinite, lim

k→+∞
µk = 0. Thus,

σ̃(A,B) = {Φ−1
0 (µk)}k ∪ {∞}.

Theorem 4.3. Let A,B ∈ L(X,Y ). Suppose that %(A,B) 6= ∅. Then,
(1) If B is of finite rank, σ(A,B) is of finite cardinal.
(2) If B is compact, then σ̃(A,B) is at most countable and consists only of eigen-
values of finite algebraic multiplicity which accumulate at most at infinity.

Proof. (1) Let λ0 ∈ %(A,B). σ̃(A,B) is homeomorphic to σ(Rλ,l(A,B)).Or, Rλl(A,B)
is of finite rank, thus σ̃(A,B) = σ(A,B) is a finite set.

(2) B is a limit of finite-rank operators Bn and σ̃(A,B) ⊆
⋃
n

σ(A,Bn) is at most

countable as a countable union of finite sets. If σ̃(A,B) = (λn)n is infinite and
lim

n→+∞
λn = λ, then there exists n0 ∈ N such that λ = λn0

since σ̃(A,B) is closed,

which necessarily implies that λ = λn0
=∞.

5. Isolated points of linear operator pencils

Let λ0 be an isolated point of σ̃(A,B), thus, λ0 6= ∞ and there exists δ0 > 0
such that {λ ∈ C : |λ− λ0| < δ0} ∩ σ̃(A,B) = {λ0} and γ0 ∩ σ(A,B) = ∅ if
γ0 = {λ ∈ C : |λ− λ0| = δ0} with clockwise orientation. The left and right Riesz
projectors corresponding to λ0 and the pair (A,B) are respectively defined in L(Y )
and L(X) by:

(5.1) Pλ0,j(A,B) = − 1

2πi

∫
γ0

Rλ,j(A,B)dλ ; j = l, r

which corresponds to f(λ) = −1 in the functional calculus formula 4.2.

In this section we investigate the isolated points of the spectrum of a pair of
bounded linear operators A,B ∈ L(X,Y ).

Theorem 5.1. Let A,B ∈ L(X,Y ) and λ0 an isolated point of σ̃(A,B). Then the
following hold:
(1) Pλ0,j(A,B), j = l(respectively, j = r) are projections operators in L(Y ) (re-
spectively, L(X)).
(2) The spaces X and Y can be written as a direct sum

X = R(Pλ0,r(A,B))⊕N(Pλ0,r(A,B)) and Y = R(Pλ0,l(A,B))⊕N(Pλ0,l(A,B)).

(3) APλ0,r(A,B) = Pλ0,l(A,B)A.
(4) Let X = Y, then we have N(A − λ0B) ⊂ R(Pλ0,r(A,B)) and if B commutes
with Rλ(A,B), then N(A− λ0B) ⊂ R(Pλ0,l(A,B)).
(5) If X = Y is a Hilbert space, λ0 ∈ R, A and B are self-adjoint, B is invertible
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and AB−1 = B−1A, then Pλ0,j(A,B) where j = l, r, are the orthogonal projections
onto N(A− λ0B). In particular, R(Pλ0,j(A,B)) = N(A− λ0B) where j = l, r.

Proof. (1) Let γ1 = {λ ∈ C : |λ− λ0| = δ1} such that δ0 < δ1, {λ ∈ C :
|λ− λ0| < δ1} ∩ σ̃(A,B) = {λ0} and γ1 ⊂ %(A,B). In view of the resolvent

identity (3.2) we obtain:

P 2
λ0,j(A,B) = − 1

4π2

∫
γ0

∫
γ1

[Rλ,j(A,B)−Rµ,j(A,B)]

(λ− µ)
dλdµ

=
1

4π2

∫
γ0

Rλ,j(A,B)[

∫
γ1

dµ

(µ− λ)
]dλ

− 1

4π2

∫
γ1

Rµ,j(A,B)[

∫
γ0

dλ

(µ− λ)
]dµ = Pλ0,j(A,B), j = l, r

because
∫
γ1

dµ
(µ−λ) = 2πi and

∫
γ0

dλ
(µ−λ) = 0.

(2) follows directly from (1).
(3)

APλ0,r(A,B) = − 1

2πi

∫
γ0

ARλ,r(A,B)dλ

= − 1

2πi

∫
γ0

λBRλ(A,B)Bdλ

= − 1

2πi

∫
γ0

BRλ(A,B)((λB −A) +A)dλ

= − 1

2πi

∫
γ0

Rλ,l(A,B)Adλ = Pλ0,l(A,B)A.

(4) Let x ∈ N(A − λ0B). Then for all λ ∈ γ0, (A − λB)x = (λ0 − λ)Bx or else
x = (λ0 − λ)(A− λB)−1Bx = (λ0 − λ)Rλ,r(A,B)x. Thus,

Pλ0,r(A,B)x = − 1

2πi

∫
γ0

dλ

(λ0 − λ)
x = x.

So x ∈ R(Pλ0,r(A,B)).Now ifB commutes withRλ(A,B), Pλ0,r(A,B) = Pλ0,l(A,B).
(5) We use now the parametrization λ = λ0 + δ0e

it, −π ≤ t ≤ π, of all point λ of
γ0, then

Pλ0,l(A,B) = − δ0

2π

∫ π

−π
B[A− (λ0 + δ0e

it)B]−1eitdt,

P ∗λ0,l(A,B) = − δ0

2π

∫ π

−π
[A− (λ0 + δ0e

−it)B]−1Be−itdt.

By the change s = −t, we obtain since λ0 is real

P ∗λ0,l(A,B) = − δ0

2π

∫ π

−π
B[A− (λ0 + δ0e

is)B]−1eisds = Pλ0,l(A,B).
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Similarly we obtain P ∗λ0,r
(A,B) = Pλ0,r(A,B). It remains now to show thatR(Pλ0,j(A,B)) ⊂

N(A− λ0B), j = l, r. Indeed,

(A− λ0B)Pλ0,j(A,B) = − 1

2πi

∫
γ0

(A− λ0B)(A− λB)−1Bdλ

= − 1

2πi

∫
γ0

(λ− λ0)B(A− λB)−1Bdλ

= − 1

2πi

∫
γ0

(λ− λ0)(AB−1 − λIX)−1Bdλ.

Now we can choose δ0 such that (λ − λ0)(AB−1 − λIX)−1 extends to analytic
function on {λ ∈ C : |λ− λ0| < δ0}. Hence by Cauchy’s theorem, the last integral
is identically zero which gives (A− λ0B)Pλ0,j(A,B) = 0.

Note also that if λ0 be an isolated point of σ̃(A,B), the Laurent series for the
resolvent (λB−A)−1 in a small neighborhood of the isolated singularity λ0 is given
by

(5.2) (λB −A)−1 =

+∞∑
n=−∞

(λ− λ0)nSn,

where

Sn = − 1

2πi

∫
γ0

1

(λ− λ0)n+1
Rλ(A,B)dλ , n ∈ Z.

The coefficients Sn are bounded operators and satisfies the following properties:
(i) SnBSm = (1−τn−τm)Sn+m, where τn = 1 if n ≥ 0 and τn = 0 if n < 0. Indeed,
assume that λ0 = 0, since 0 is an isolated point of σ̃(A,B), then there exists δ > 0
such that {λ ∈ C : |λ| < δ} ∩ σ̃(A,B) = {0}. Denote γr = {λ ∈ C : |λ| = r} for
0 < r < δ. Let r < r1, we have by using the resolvent identities that

SnBSm =
1

(2πi)2

∫
γr

∫
γr1

λ−n−1µ−m−1Rλ(A,B)BRµ(A,B)dλdµ

=
1

(2πi)2

∫
γr

∫
γr1

λ−n−1µ−m−1

(µ− λ)
[(λB −A)−1 − (µB −A)−1]dλdµ.

By computing the double integral on the right in any order and the fact that

1

2πi

∫
γr

λ−n−1

(λ− µ)
dλ = −τnµ−n−1

1

2πi

∫
γr1

µ−m−1

(λ− µ)
dµ = (τm − 1)λ−m−1.

We obtain

SnBSm =
(1− τn − τm)

2πi

∫
γr

λ−n−m−2(λB −A)−1dλ(5.3)

= (1− τn − τm)Sn+m+1.

(ii) Multiplying (5.3) on the left and the right by (λB −A), we obtain

(λB −A)

+∞∑
n=−∞

(λ− λ0)nSn = IY and

+∞∑
n=−∞

(λ− λ0)nSn(λB −A) = IX .
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Thus,

IY =

+∞∑
n=−∞

(λ− λ0)n[BSn−1 + (λ0B −A)Sn],

IX =

+∞∑
n=−∞

(λ− λ0)n[Sn−1B + Sn(λ0B −A)].

The uniqueness of the Laurent series expansion yields IX = S−1B + S0(λ0B −A),
IY = BS−1 + (λ0B −A)S0 and Sn−1B + Sn(λ0B −A) = 0, BSn−1 + (λ0B −A)Sn
for all n 6= 0. Then, 

S−1B = IX − S0(λ0B −A)
BS−1 = IY − (λ0B −A)S0

Sn−1B = Sn(A− λ0B) , n 6= 0
BSn−1 = (A− λ0B)Sn , n 6= 0.

From the standard terminology of the complex theory, we call the operator S−1 in
the Laurent series (5.2) the residue operator at λ0. By taking n = m = −1 in (5.3),
BS−1 and S−1B are projections which coincide respectively with the left and right
Riesz projectors Pλ0,l(A,B) and Pλ0,r(A,B) at λ0.

Definition 5.2. Let X = Y and A,B ∈ L(X) are with non empty resolvent
set %(A,B). We say that A and B commute in the sense of resolvent if for all
λ ∈ %(A,B),

Rλ,l(A,B) = Rλ,r(A,B).

Remark 5.3. If A and B commute in the sense of resolvent then for all λ ∈ %(A,B),
we deduce that

ARλ(A,B) = Rλ(A,B)A

BRλ(A,B)B = B2Rλ(A,B) = Rλ(A,B)B2

ABRλ(A,B) = Rλ(A,B)AB = Rλ(A,B)BA = BARλ(A,B).

Then, Pλ0,l(A,B) = Pλ0,r(A,B) = Pλ0
(A,B), APλ0

(A,B) = Pλ0
(A,B)A, BPλ0

(A,B) =
Pλ0

(A,B)B and SnB = BSn for all n ∈ Z, if A and B commute in the sense of
resolvent. By setting Rλ,B(A,B) = −Rλ,l(A,B) = −Rλ,r(A,B), D = S−2B =
BS−2 and E = −BS0 = −S0B, the relation (SnBSm) gives

BS−k = Dk−1 for k ≥ 2

BSk = −Ek+1 for k ≥ 0.

The Laurent series (5.2) around λ0 is equivalent to

(5.4) Rλ,B(A,B) =

+∞∑
n=1

Dn

(λ− λ0)n+1
+
Pλ0

(A,B)

(λ− λ0)
−

+∞∑
n=1

(λ− λ0)nEn+1.

Thus, 
Rλ,B(A,B)Pλ0(A,B) =

+∞∑
n=1

Dn

(λ−λ0)n+1 +
Pλ0 (A,B)

(λ−λ0)

Rλ,B(A,B)(IX − Pλ0
(A,B)) = −

+∞∑
n=1

(λ− λ0)nEn+1,
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where

(A− λ0B)Pλ0
(A,B) = (APλ0

(A,B)− λ0B)Pλ0
(A,B) = D

and

(A− λ0B)E = IX − Pλ0(A,B).

Hence

(5.5)


E = (A− λ0B)−1

|R(IX−Pλ0 (A,B))(IX − Pλ0
(A,B))

EPλ0
(A,B) = Pλ0

(A,B)E = 0
DE = ED = 0

D = DPλ0(A,B) = Pλ0(A,B)D.

Now suppose that λ0 is a pole of the resolvent (A− λB) of order m, then S−m 6= 0
and Sn = 0 for all n > m. Since BS−1 = S−1B = Pλ0(A,B), it follows that
(A− λB)m−1Pλ0

(A,B) = S−m 6= 0 and (A− λB)mPλ0
(A,B) = S−m−1 = 0, then

the operator D = (A− λ0B)Pλ0
(A,B) is nilpotent of order m.

Now, we give the following fundamental results:

Theorem 5.4. Let A,B ∈ L(X) such that A and B commute in the sense of
resolvent. If λ0 is an isolated point in the spectrum σ̃(A,B), then λ0 is a pole of
the resolvent of order m ∈ N∗. Laurent series around λ0 is given by (5.2) with
the residue operator BS−1 = S−1B coincides with the Riesz projection Pλ0(A,B)
associated to λ0 and the relations (5.5) are satisfied. On the other hand, the operator
D = (A− λ0B)Pλ0

(A,B) is nilpotent of order m.

The discrete spectrum of the pair (A,B) denoted σd(A,B) is the set of isolated
points λ ∈ C of the spectrum σ(A,B) such that the corresponding Riesz projectors
Pλ,j(A,B) are finite dimensional. Thus, σd(A,B) ⊂ σp(A,B). Define also the
essential spectra of the pair (A,B) by:

(5.6) σess(A,B) = σ̃(A,B)\σd(A,B).

The largest open set of C̃ on which the resolvent Rλ(A,B) is finitely meromorphic

is precisely %ess(A,B) = σd(A,B) ∪ %(A,B) = C̃\σess(A,B). Let X = Y, λ ∈
%ess(A,B) and let Pλ,j(A,B) be the corresponding finite rank Riesz projector,
j = l, r. Since R(Pλ,j(A,B)) and N(Pλ,j(A,B)) are Pλ,j(A,B)-invariant, j = l, r,
we may define the operators:

(5.7) Qλ,j(A,B) = (A− λB)(I − Pλ,j(A,B)) + Pλ,j(A,B) ; j = l, r.

With respect to the decomposition X = R(Pλ,j(A,B)) ⊕ N(Pλ,j(A,B)), j = l, r,
we can write:

(5.8) Qλ,j(A,B) = (A− λB)|N(Pλ,j(A,B)) ⊕ IX ; j = l, r.

Since σ((A − λB)|N(Pλ,j(A,B))) = σ̃(A,B)\{0}, Qλ,j(A,B) has bounded inverse
denoted by Rλ,j(A,B), j = l, r. Rλ,l(A,B) and Rλ,r(A,B) are called respectively
the left Browder and the right Browder resolvent operator of the pair (A,B), that
is,

Rλ,j(A,B) = ((A− λB)|N(Pλ,j(A,B)))
−1(I − Pλ,j(A,B)) + Pλ,j(A,B)(5.9)

j = l, r, λ ∈ %ess(A,B).
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This clearly extends the resolvent Rλ,j(A,B) from %(A,B) to %ess(A,B) and admits
the following properties for j = l, r :

Pλ,j(A,B)Rλ,j(A,B) = Rλ,j(A,B)Pλ,j(A,B),(5.10)

Pλ,j(A,B)Qλ,j(A,B) = Qλ,j(A,B)Pλ,j(A,B) = Pλ,j(A,B).

Proposition 5.5. Let A,B ∈ L(X) and λ, µ ∈ %ess(A,B), then for j = l, r,

Rλ,j(A,B)−Rµ,j(A,B) = (λ− µ)Rλ,j(A,B)BRµ,j(A,B)

+Rλ,j(A,B)Mj(λ, µ)Rµ,j(A,B)

where Mj(λ, µ) is a finite rank operator defined on X by:

Mj(λ, µ) = [(A− (λ+ 1)B)Pλ,j(A,B) − (A− (µ+ 1)B)Pµ,j(A,B)]

Proof. By computing Rλ,j(A,B)−Rµ,j(A,B), we directly obtain:

M(λ, µ) = [(A− λB − IX)Pλ,j(A,B)− (A− µB − IX)Pµ,j(A,B)] .

The Browder resolvent, through its properties mentioned above, can be used
to study the question of existence of solutions of boundary value problems with
singularities defined by a given boundary condition:{

Ax = λBx+ f
Γx = ϕ.

Where f ∈ X, Γ is a boundary operator and λ is a spectral parameter such that
λ−1 ∈ %ess(A,B). For more details one can consult [23].

Remark 5.6. As the matter of fact, this decomposition is not “the simplest”; there
are many different definitions of σess(A,B) for A,B ∈ L(X,Y ) :
1) λ ∈ σess,1(A,B) if (A−λB) is not semi-Fredholm (T ∈ L(X,Y ) is semi-Fredolm if
R(T ) is closed in Y and N(T ) or the quotient space Y/R(T ) are finite-dimensional);
2) λ ∈ σess,2(A,B) if R(A − λB) is not closed in Y or N(A − λB) is infinite-
dimensional in X;
3) λ ∈ σess,3(A,B) if (A − λB) is not Fredholm (T ∈ L(X,Y ) is Fredolm if R(T )
is closed in Y and N(T ) and Y/R(T ) are finite-dimensional);
4) λ ∈ σess,4(A,B) if (A − λB) is not Fredholm with index zero (recall that
index(T ) = dimN(T )− dimY/R(T ) = dimN(T )− codimR(T ));
5) σess,5(A,B) is the union of σess,1(A,B) with all components of C\σess,1(A,B)
that do not intersect with the resolvent set %(A,B).

Note that,
(5.11)
σess,1(A,B) ⊂ σess,2(A,B) ⊂ σess,3(A,B) ⊂ σess,4(A,B) ⊂ σess,5(A,B) ⊂ σ̃(A,B)

and that the essential spectrum σess,i(A,B) is invariant under compact perturba-
tions for i = 1, 2, 3, 4, but not for i = 5. The case i = 4 gives the part of the
spectrum that is independent of compact perturbations, that is,

σess,4(A,B) =
⋂

lim
K∈∈K(X,Y )

σ(A+K,B)

where K(X,Y ) denotes the set of compact operators from X to Y. As a general-
ization of the usual notion of Wolf essential spectrum, the essential spectrum of
linear operator pencils was introduced by Faierman, Mennicken and Moller in [15].
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Note that if B = IX , we recover the usual definition of the essential spectra of a
bounded linear operator, that is, σess,i(A, IX) = σess,i(A), i = 1, ..., 4. We denote
the dimension of the null space or nullity of an operator T ∈ L(X,Y ) by n(T ) and
the codimension of the range or defect of T by d(T ). The ascent of T , α(T ), is the
smallest integer p such that N(T p) = N(T p+1), and the descent of T , β(T ), is the
smallest integer q such that R(T q) = R(T q+1). (It may happen that α(T ) = ∞
or β(T ) = ∞). One of the central questions in the study of the essential spectra
of bounded linear operators consists in showing when different notions of essen-
tial spectrum coincide and studying the invariance of σess,i(A,B) by some class of
perturbations. For a detailed study, see [1]. The following result is given in [20].

Proposition 5.7. Let A,B ∈ L(X,Y ). Then the following hold:
(1) σess,3(A,B) is closed subset of C.
(2) index(A− λB) is constant on any component of C\σess,3(A,B).
(3) n(A − λB) and d(A − λB) are constant on any component of C\σess,3(A,B)
except on a discreet set of points at which they have larger values.
(4) If C\σess,3(A,B) is connected and %(A,B) is not empty, then

σess,3(A,B) = σess,4(A,B).

The following result is a generalization of [24, Theorem 1].

Theorem 5.8. Let A,B ∈ L(X) such that A and B commute in the sense of
resolvent and λ ∈ σ(A,B). The following statements are equivalent:
(1) λ ∈ σess,2(A,B);
(2) λ is a pole of the resolvent Rλ(A,B) of finite rank;
(3) α(A− λB) = β(A− λB) <∞ and n(A− λB) <∞.

Proof. The equivalence of (1) and (2) can be obtained in the same manner as in the
proof of [11, Lemma 17]. (2) =⇒ (3). If λ is a pole of (A−λB)−1 of order m, then
N((A− λB)m) = N((A− λB)m+1). Indeed, as N((A− λB)m) ⊂ N((A− λB)m+1)
it suffices to prove the inverse inclusion. We proceed by contradiction. Let x ∈
N((A−λB)m+1) and x /∈ N((A−λB)m), that is, the vector y = (A−λB)mx 6= 0, it
follows that (A−λB)y = 0. This implies, by (4) of Theorem 5.1, that Pλ,l(A,B)y =
Pλ,r(A,B)y = Pλ(A,B)y = y. Consequently,

0 = (A− λB)mPλ(A,B)x = Pλ(A,B)(A− λB)mx = Pλ(A,B)y = y,

which is a contradiction. Hence, N((A − λB)m) = N((A − λB)m+1) and α(A −
λB) ≤ m. Now, notice that (A − λB)m−1Pλ(A,B) 6= 0 which guarantees the
existence of some vector x ∈ R(Pλ(A,B)) such that (A − λB)m−1x = (A −
λB)m−1Pλ(A,B)x 6= 0. From (A − λB)mx = (A − λB)mPλ(A,B)x = 0, it fol-
lows that

(5.12) N((A− λB)m) 6= N((A− λB)m−1).

This shows α(A − λB) ≥ m. Thus, α(A − λB) = m. Now if we consider the
decomposition σ̃(A,B) = {λ} ∪ (σ̃(A,B)\ {λ}), then (A − λB)n is invertible on
N(Pλ(A,B)) for all n ∈ N and (A−λB)mPλ(A,B) = 0 implies that (A−λB)m = 0
on R(Pλ(A,B)). Consequently, R((A−λB)m) = N(Pλ(A,B)) = R((A−λB)m+1).
Thus, (A − λB) has finite descent β(A − λB) = m. (3) =⇒ (1) Assume that
α(A − λB) = β(A − λB) = m < ∞. Then N(Pλ(A,B)) = R((A − λB)m) =
R((A− λB)n) and R(Pλ(A,B)) = N((A− λB)m) = N((A− λB)n) for all n ≥ m.
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It follows that Dn = (A − λB)nPλ(A,B) = 0 for all n ≥ m, and so λ is a pole of
the resolvent of order k with k ≤ m. But from (5.12), necessarily k = m.

Remark 5.9. If A,B ∈ L(X) commute in the sense of resolvent and λ is a pole of
order m of the resolvent, then λ ∈ σp(A,B) and

X = N((A− λB)n)⊕R((A− λB)n) for all n ≥ m.
Now, we introduce an important class of bounded operators which involves the

concept of semi-regularity see e.g. Muller [26] and Rakocevic [27] , Mbekhta and
Ouahab [25].

Definition 5.10. Let A ∈ L(X). The algebraic core C(A) of A is defined to be the
greatest subspace M of X for which A(M) = M . The reduced minimum modulus
of A is defined by

γ(A) =

{
inf

x/∈N(A)

‖Ax‖
dist(x,N(A)) if A 6= 0

∞ if A = 0.

A is said to be semi-regular if R(A) is closed and N(An) ⊆ R(A) for all n ∈ N. A is
said to admit a generalized Kato decomposition or A is of generalized Kato type,
if there exists a pair of closed subspaces (M,N) of X such that:
(i) X = M ⊕N.
(ii) A(M) ⊂M and A|M is semi-regular.
(iii) A(N) ⊂ N and A|N is quasi-nilpotent.

Note that if A ∈ L(X), R(A) is closed in X if and only if γ(A) > 0 and
γ(A) = γ(A∗). If A is semi-regular, then γ(An) ≥ (γ(A))n and An is semi-regular
for all n ∈ N, C(A) is closed and C(A) =

⋂
n∈N

R(An). A is semi-regular if and only

if A∗ is semi-regular. On the other hand if a pair of closed subspaces (M,N) of X
reduces A (X = M ⊕N, A(M) ⊂M and A(N) ⊂ N), then A is semi-regular if and
only if A|M and A|N are semi-regular. If A|N is nilpotent, A is said to be of Kato
type [22]. Semi-regular operators are of Kato type with M = X and N = {0} .
If 0 is an isolated point in σ(A), or equivalently 0 is a pole of the resolvent of
A, then A is of generalized Kato type [8]. Using rather direct technique different
from [3], we extend the results to semi-regular operators and those who admit a
generalized Kato decomposition. Indeed, an immediate and direct generalization
of [3, Theorem 1.31] we provided the following result:

Theorem 5.11. Let A,B ∈ L(X), A be semi-regular and BC(A) = C(A). Then

(A− λB) is semi-regular for all |λ| < γ(A)
‖B‖ .

For A,B ∈ L(X), let us define the generalized Kato spectrum for the pair (A,B)
as follows:

(5.13) σgk(A,B) = {λ ∈ C : (A− λB) is not of generalized Kato type}
σgk(A,B) is not necessarily non-empty. For example, each pair of quasi-nilpotent
(resp. nilpotent) operator A and B = IX has empty generalized Kato spectrum.
The next theorem is a generalization of Theorem 2.2 of [21].

Theorem 5.12. Let A,B ∈ L(X), A be of generalized Kato type and BC(A) =
C(A). Then there exists an open disc D(0, ε) for which (A − λB) is semi-regular
for all λ ∈ D(0, ε)\ {0} .
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Proof. B = IX corresponds to the Theorem 2.2 of [21]. If B 6= IX , note that
X = M ⊕ N, A(M) ⊂ M , A|M is semi-regular, A(N) ⊂ N and A|N is quasi-
nilpotent. If M = {0} , A is quasi-nilpotent and thus

(A− λB) = (A− λIX)
[
IX − λ(A− λIX)−1(B − IX)

]
is invertible if |λ| < 1

‖(A−λIX)−1‖‖B−IX‖ = η. This shows that (A − λB) is semi-

regular in D(0, η)\ {0} . If M 6= {0} , A =

(
A|M 0
0 A|N

)
and

(A− λB) =

(
(A− λB)|M 0
0 (A− λB)|N

)
.

Since A|N is quasi-nilpotent, (A − λIX) is invertible in L(X) for all λ non-zero
complex number. Then, (A − λB)|N is invertible and semi-regular for |λ| < η. As
A|M is semi-regular operator, then γ(A|M ) > 0 and by Theorem 29, (A − λB)|M

is semi-regular for all |λ| < γ(A|M )

‖B‖ . Consequently, (A− λB) is semi-regualar for all

|λ| < ε, where ε = min(η,
γ(A|M )

‖B‖ ).

We deduce in particular from this theorem that the generalized Kato spectrum
of a pair of bounded operators is a closed subset. The following result gives the
relation between the closed range spectrum σess,2(A,B) and the generalized Kato
spectrum σgk(A,B) of a pair (A,B) of bounded operators which extend some results
of [6, 7, 21].

Theorem 5.13. Let A,B ∈ L(X) such that BC(A) = C(A).
(1) If λ ∈ σess,2(A,B) is non-isolated point then

λ ∈ σgk(A,B).
(2) The symmetric difference σgk(A,B)∆σess,2(A,B) is at most countable.

Proof. (1) Let λ ∈ σess,2(A,B) be a non-isolated point and assume that (A− λB)
is of generalized Kato type. Then by Theorem 29 there exists an open disc D(λ, ε)
such that (A− µB) is semi-regular in D(λ, ε)\ {λ} , so that R(A− µB) is closed in
X for all µ ∈ D(λ, ε)\ {λ} . This contradicts our assumption that λ is a non-isolated
point.
(2) We have

σgk(A,B)∆σess,2(A,B)

is equal to

(σgk(A,B) ∩ (C\σess,2(A,B))) ∪ (σess,2(A,B) ∩ (C\σgk(A,B))) .

Hence, from (1), the set (σess,2(A,B)\σgk(A,B)) is at most countable, we have

C\σess,2(A,B) =

∞⋃
m=1

{
λ ∈ C : γ(A− λB) ≥ 1

m

}
and

σgk(A,B) ∩ (C\σess,2(A,B)) =

∞⋃
m=1

σgk(A,B) ∩
{
λ ∈ C : γ(A− λB) ≥ 1

m

}
.

The set Am = σgk(A,B)∩
{
λ ∈ C : γ(A− λB) ≥ 1

m

}
is necessarily at most count-

able for all m ≥ 1. Indeed, let ζ be a non-isolated point of Am, then there exists
a sequence (λk)k∈N in Am such that lim

k→+∞
λk = ζ. Thus, γ(A − ζB) ≥ 1

m , since



126 MESSIRDI, GHERBI AND AMOUCH{
λ ∈ C : γ(A− λB) ≥ 1

m

}
is closed in C (see e.g. [6]), and ζ /∈ σgk(A,B) which

contradicts the closedness of σgk(A,B).

6. Spectrum of the quotient of two bounded operators

Let here X = Y be an infinite dimensional complex Hilbert space equipped with
the inner product 〈.; .〉 and the associated norm ‖.‖ . The quotient A/B of bounded
operators A and B on X, B 6= 0, is defined by the mapping Bx −→ Ax, x ∈ X
when N(B) ⊂ N(A) and A 6= B. If A = B, take A/B = IX . We note that the
quotient of two bounded operators is not necessarily bounded whose domain is R(B)
and its rang is R(A). The question of boundedness, compactness and invertibility
of quotient operators is very important and for the reader’s convenience, let us
summarize all what has been obtained in [17].

Theorem 6.1. [17] Let A,B ∈ L(X) such that N(B) ⊂ N(A). Then the following
hold:
(1) A/B is bounded if and only if R(A∗) ⊂ R(B∗).
(2) If R(B) is closed in X then A/B is bounded.
(3) If R(B) is closed in X and B is invertible, then A/B = AB−1.
(4) If A/B is compact then A is compact. Conversely, if R(B) is closed in X and
A is compact then A/B is also compact.
(5) If N(A) = N(B), then A/B is invertible and (A/B)−1 = B/A.
(6) If N(A) = N(B) and R(A) is closed in X, then A/B has a bounded inverse
B/A.
(7) A/B has an everywhere defined and bounded inverse if and only if the operator
A is invertible in L(X) and (A/B)−1 = B/A = BA−1.

The aim of this section is to give some fundamental characterizations of the
spectrum of quotient operators using the basic spectral properties of linear operator
pencils. Note here that this is the first time where the notion of the spectrum of a
quotient of two operators is studied by using the theory of linear operator pencils.

Remark 6.2. If N(B) ⊂ N(A) then N(B) ⊂ N(A−λB) and [(A/B)− λIX ] is well
defined by (A− λB)/B for all λ ∈ C, then by property (7) of Theorem 6.1, we can
write

% (A/B) = {λ ∈ C : (A− λB)/B is invertible in L(X)}(6.1)

= {λ ∈ C : (A− λB) is invertible in L(X)} = % (A,B)

and

(6.2) σ (A/B) = σ̃ (A,B)

Thus, if λ ∈ % (A/B) , then

(6.3) [(A/B)− λIX ]
−1

= B(A− λB)−1 = Rλ,l(A,B).

Using the results of the previous sections, we obtain the following properties on
the spectra of quotient operators through those previously established on a pair of
bounded linear operators.

Theorem 6.3. Let A,B ∈ L(X) such that N(B) ⊂ N(A). Then
(1) If 0 ∈ % (A) then 0 ∈ % (A,B) .
(2) If N(A) = N(B) and R(A) is closed in X, then 0 ∈ % (A,B) .
(3) If R(B) is closed in X and A is compact, then
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a) σ̃ (A/B) = {0} ∪ {λj : j ∈ J} , where either J = ∅, or J = N, or J = {1, ..., n}
for some n ∈ N.
b) σ̃ (A/B) \ {0} = σp (A,B) . Each λj is an eigenvalue having a finite multiplicity.
c) If J = N, then (λj) −→ 0 as j → ∞. This means that for all ε > 0, the set
σ (A/B) \D(0, ε) is finite where D(0, ε) = {λ ∈ C : |λ| < ε} .
(4) If B is compact and % (A/B) 6= ∅, then σ̃ (A/B) is at most countable and
consists only of eigenvalues of finite algebraic multiplicity which accumulate at most
at infinity.

Remark 6.4. This is a first attempt to establish the link between the spectral
theory of quotient operators and linear operator pencils. Our results give rise to
other interesting perspectives on the study of quotients operators.

References

[1] F. Abdmouleh, A. Ammar and A. Jeribi, Stability of the S-Essential Spectra on a Banach

Space, Math. Slovaca, 63, 2 (2013), 1-22.

[2] F. Aguirre and C. Conca, Eigenfrequencies of a Tube Bundle Immersed in a Fluid, Appl.
Math. Optim., 18, (1988), 1-38.

[3] P. Aiena, Fredholm and Local Spectral Theory, with Applications to Multipliers, Kluwer

Academic Pub., 2004.
[4] R. I. Andrushkiw, On the Spectral Theory of Operator Pencils in a Hilbert Space, Nonlinear

Math. Phys., 2, 3/4 (1995), 356-366.

[5] W.G. Bade, An operational calculus for operators with spectrum in a strip, Pacific J. Math.
3, (1953), 257-290.

[6] M. Benharrat and B. Messirdi, On the generalized Kato spectrum, Serdica Math. J., 37,

(2011), 283-294.
[7] M. Benharrat and B. Messirdi, Relationship between the Kato essential spectrum and a vari-

ant of essential spectrum, Gen. Math. Rev., 20, 4 (2012), 71-88.
[8] M. Benharrat and B. Messirdi, Essential spectrum a brief survey of concepts and applications,

Azerb. J. Math., 2, 1 (2012), 35-61.

[9] M. Sh. Birman, A. Laptev, Discrete spectrum of the perturbed Dirac operator, Mathematical
results in quantum mechanics (Blossin, 1993), 55-59. Oper. Theory Adv. Appl., 70, Birkhaus-

er, Basel, 1994.

[10] M. Sh. Birman and M. Z. Solomyak, Asymptotic behavior of the spectrum of pseudodifferential
operators with anisotropically homogeneous symbols, Vestn. Leningr. Univ., 1, (1977), 13-21.

[11] F. E. Browder, On the spectral theory of elliptic differential operators, I, Math. Ann.

142,(1961), 22-130.
[12] J. Bronski, M. Johnson and T. Kapitula, An instability index theory for quadratic pencils

and applications, Comm. Math. Physics 327, 2 (2014), 521-550.

[13] D. Chu and G. H. Golub, On a Generalized Eigenvalue Problem for Nonsquare Pencils,
SIAM J. Matrix Anal. Appl., 28, 3 (2006), 770-787.

[14] V. V. Ditkin, Certain spectral properties of a pencil of linear bounded operators, Mathematical
notes of the Academy of Sciences of the USSR, 31, 1 (1982), 39-41.

[15] M. Faierman, R. Mennicken and M. Moller, A boundary eigenvalue problem for a system of

partial differential operators occuring in magnetohydrodynamics, Math. Nachr., 173, (1995),
141–167.

[16] Gestztesy G., Gurarie D., H. Holden, M. Klaus, L. Sadun, B. Simon and P. Vogl, Trapping
and cascading of eigenvalues in the large coupling limit, Commun. Math. Phys. 118, (1988),
597-634.

[17] A. Gherbi, B. Messirdi and M. Benharrat, On the quotient of two bounded operators, Sub-

mitted, june 2014.
[18] R.R.Hartmann, N.J.Robinson and M.E.Portnoi Smooth electron waveguides in graphene,

Phys. Rev. B, 81, 24 (2010), 245-431.

[19] E. Hille and R. C. Phillips, Functional Analysis and Semi-Groups, Russian translation, IL,
Moscow (1962).



128 MESSIRDI, GHERBI AND AMOUCH

[20] A. Jeribi, N. Moalla and S. Yengui, S-essential spectra and application to an example of

transport operators, Math. Methods Appl. Sci., 37 (2012), 2341-2353.

[21] Q. Jiang and H. Zhong, Generalized Kato decomposition, single-valued extension property
and approximate point spectrum, J. Math. Anal. Appl. 356, (2009) 322-327.

[22] T. Kato, Perturbation theory for linear operators, Springer-Verlag, New York, (1995).

[23] N. Khaldi, M. Benharrat and B. Messirdi, On the spectral boundary value problems and bound-
ary approximate controllability of linear systems, Rend. Circ. Mat. Palermo, 63, (2014),141–

153.

[24] D. Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math.
Soc., 74, (1968), 246–248.
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