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Abstract. A fundamental issue in several studies is the need for cost-effective sampling, particularly when measuring
a significant characteristic is expensive, uncomfortable, or time-consuming. In terms of precision achieved per unit of
sample, the ranked set sampling (RSS) approach offers a practical way to achieve observational economy. In the current
work, ten frequentist estimation strategies are considered for the reliability of the stress strength parameter A = P [T < Z],
where T and Z are independent random variables following the Burr III and Burr XII distributions, respectively, that
share the same shape parameter. Percentiles and weighted least squares, Anderson-Darling, maximum likelihood,
minimum spacing absolute log distance, least squares, Cram’er-von Mises, maximum product of spacing, right-tailed
Anderson-Darling, and minimum spacing absolute distance are some recommended estimation methods for the RSS
and simple random sample methods. The effectiveness of the proposed RSS-based approximations is evaluated using
simulation work employing certain accuracy standards. We conclude that the maximum product spacing and percentile
approaches are the lowest in the mean squared error values for the reliability estimate when compared to those of the
other alternatives. Two real data sets that trade share data and the prices of the 31 distinct children’s wooden toys are

used to provide further findings.
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1. INTRODUCTION

MclIntyre [1] initially proposed the idea of ranked set sampling (RSS) as a method for enhancing
the accuracy of the sample mean as an estimator of the population mean. Ranked Set Sampling
(RSS) is a suitable method when judging a collection of sampling units is fast, accurate, and cost-
free, as stated by McIntyre [1]. This approach involves choosing m sets of size m each at random
from a population and visually rating the units in each set, or using some other low-cost method.
The unit with the lowest ranking among the first m units is chosen for actual quantification. The
unit ranked second-lowest among the second batch of m units is selected for actual quantification.
The procedure is repeated until the unit with the highest ranking is picked from the gth set for
actual quantification. The RSS with size m] = mq is then obtained by repeating this method g
times. The characters “m” and ”q” stand for the set size and cycle count, respectively. The set size
m should be regarded as being essential to the RSS process. In order to get additional details about
the important variable, we would want to take the optimal value of m. Wolfe [2] mentioned that set
sizes larger than five would almost certainly result in too many ranking mistakes, and as a result,
they would not likely considerably improve the RSS’s effectiveness. The RSS is used in a variety
of fields, including medicine, agriculture, veterinary science, and forestry. A number of authors
have used RSS in a variety of scientific fields, including environment and ecology (Al-Saleh and
Al-Shrafat [3]; Tiwari and Pandey [4]). Application of RSS design in environmental investigations
for real data set ( Zamanzade and Mahdizadeh [5]), agriculture (McIntyre [1] and Husby et al. [6]),
quality control (Al-Omari and Haq [7]), fisheries research (Wang et al. [8]), forestry (Halls and
Dell [9]), medicine (Samawi and Al-Sagheer [10]), and engineering (Hassan et al. [11]).

The stress-strength (S-5) model, which was developed in reliability theory, represents the lifetime
of a component with random strength Z and random stress T. When a component is put under
more stress than it can handle, it breaks, and it works when T < Z. Hence, A = P[T < Z] is
a measure of component reliability. Numerous engineering and life testing issues have used it
successfully. The S-S model theory was initially put forward in Reference [12]. The S-S model’s
estimate for several independent distributions has been researched by numerous academics. For
instance, the exponential distribution (Beg [13]), the gamma distribution (Constantine et al. [14]),
the normal distribution (Downton ( [15]), the Burr distribution (Awad and Gharraf [16]), the
Weibull distribution (Kundu and Gupta [17]), the Frechet distribution ( Abbas and Tang [18]),
the generalized exponential distribution (Kundu and Gupta [19]), and the Exponentiated Weibull
distribution (Hassan and Al-Sulami [20]).

Recently, numerous scholars assessed the S-S model’s inference for several independent distri-
butions using RSS data and some of its modifications. In [21] and [22], the S-S reliability estimate
for independent exponential populations was examined. The estimate of S-S reliability for the
independent Weibull distributions was studied by [23]. The median RSS (MRSS) and RSS ap-
proaches were used in [24] to analyze the estimator of A for independent exponentiated Pareto

distributions. Reference [25] investigated the Bayesian and maximum likelihood (ML) estimates
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of the S-S reliability for the generalized exponential distribution. When stress and strength are
independently distributed as a generalized inverse exponential from the MRSS scheme, [26] exam-
ined the S-S reliability estimator. The reliability estimator ofA for a generalized Pareto distribution
has been provided by [27]. Reference [28] investigated the estimation of A based on extreme RSS
data when both stress and strength random variables have inverse Lomax distributions. Refer-
ence [29] examined the estimation of A based on extreme RSS data when both stress and strength
random variables have Burr XII distributions. The S-S reliability of the inverted Topp-Leone
distribution was estimated using Bayesian and non-Bayesian methods by [30]. In Ref. [31], the
estimate of A for the generalized exponential distribution using neotric and MRSS data was ex-
amined. When the stress and the strength are both independent Burr Type X random variables,
Reference [32] evaluated the point and interval estimate of @ based on RSS. Reference [33] looked
at the estimation of @ when the stress and strength random variables have the same or different
distributions. Reference [34] determined the unit Gompertz distribution’s S-S reliability using a
variety of estimation techniques based on RSS. Reference [35] investigated the S-S reliability for
the inverted Kumaraswamy distribution based on RSS. Reference [36] examined the S-S reliability
for the exponentiated exponential distribution based on advanced RSS designs.

In the literature, few publications have compared the ML technique with various classical
methods, in the context of RSS, as was the case for the simple random sample (SRS). This paper’s
primary objective is to examine and contrast the performance of the ML estimators in the setting of
RSS and SRS with nine other estimation methods, namely least squares (LS), the maximum product
of spacing (MXPS), the method of Cramer-von-Mises (CM), Anderson-Darling (AD), percentiles
(PC), minimum spacing absolute-log distance (MNSALD), right tail AD (RAD), minimum spacing
log distance (MNSLD), and weighted LS (WLS). When the stress and the strength are independent
Burr Type III (BIII) and Burr XII (BXII) random variables, respectively, our primary goal in this
work is to estimate A = P [T < Z| utilizing ten various methodologies. We carried out an in-
depth simulation analysis to evaluate the effectiveness of suggested estimates for various sample
sizes using some accuracy criteria. Based on our simulation research, we provide a set of useful
recommendations for selecting estimators when using RSS in the context of faulty ranking and
small sample sizes. The utility of the proposed estimators is explained through an analysis of
actual data sets.

The study has the following organizational structure: The significance of the BIII and BXII
distributions and their applications are explained in Section 2. In the same section, the reliability
parameterA formula is also introduced. The ML estimate (MLE) of 1 under RSS and SRS is given in
Section 3. Section 4 discusses the S-S reliability estimate based on maximum and minimum product
spacing methods. In Section 5, the AD, RTD, and CM techniques are used to get the S-S reliability
estimate. Section 6 provides the reliability estimate based on the LS, PC, and WLS approaches. In

Sections 7 and 8, simulation research and its application to real-world circumstances are explored,
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along with comparisons of RSS and SRS projections. The paper’s argument comes to an end in

Section 9.

2. Burr Tyre XII anDp TypE III DisTRIBUTIONS

Reference [37] described the twelve different types of cumulative distribution functions (CDFs)
that make up the Burr system of distributions, which provide a wide range of density shapes.
The selection of the suitable Burr distribution parameters, as highlighted by [38], encompasses the
majority of the Pearson family’s curve-shape properties. Due to its numerous applications in areas
like reliability, failure time modeling, and acceptability sampling plans, the BXII model attracted
greater attention from researchers. It was used by [39] to simulate inpatient costs in English
hospitals. To create an economical statistical design of the control chart for the non-normally
distributed data, [40] employed the BXII distribution. The estimation techniques based on the
BXII distribution were provided by [41-47]. The probability density function (PDF) of the BXII
distribution with two shape parameters 9 > 0, and w; > 0, is given by:

f(z) = Swlz‘g_l(l + ZS)_wl_l, z>0. (2.1)

The CDF for the BXII distribution is given by

—w1

Fiz) =1-(1+42°) ", z>0. 2.2)

On the other side, the BIII distribution is the inverse of the BXII distribution. Its properties have
undergone thorough analysis and have been employed in a variety of scientific domains. In studies
of income, wage, and wealth distributions, it was referred to as the Dagum distribution [48]. In the
actuarial literature, it is referred to as the inverse Burr distribution [49]. In the field of meteorology,
it is known as the Kappa distribution [50]. Additionally, this distribution has been used in
financial, environmental, survivability, and reliability theory research [51-53]. The benefits and
characteristics of the BIII distribution have been highlighted by [38] and [54]. Several writers
gave the statistical inference of the BIII distribution, for instance, [55-57]. The PDF of the BIII
distribution with shape parameters 3 > 0, and w, > 0, is given by:

—wy—1
g(t) = Swpt 1+, >0, (2.3)
The CDF for the BIII distribution is given by
G =(1+°)",  t>0. (2.4)

Let Z ~ BXII (9, w1 ), and T ~BIII (9, w,), are independent random variables with CDF Fz(.) and
Gr(.). The S-S reliability expression of/ is then provided by

ff )Gr(z f Sw1z% (14 2%) et (1427%) " dz
0 (2.5)
Iw;+1)T(w2+1)
INwy + w2+ 1)

7

=wB(w+1,w) = [
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where I'(.) is the gamma function. The S-S parameter A depends on the shape parameters w; and

wy.

3. Maximum LikeLiHOOD ESTIMATOR OFA

This section provides the MLE of X when the strength and stress are independent random vari-
ables with BXII and BIII distributions for common shape parameter 8. The MLE of1 is established
based on RSS and SRS methods.

Let Zy, (hy)e, be the order statistics (OS) of the hi-th sample (3 = 1,2, ..., m;) of size m;, in the
ci-th cycle (c1 = 1,2, ...,4z) of size g, from BXII (w1, 9). Also, let Thy(1y)c, be the OS of the hy-th
sample (hy = 1,2,...,m;) of my, in the c-th cycle (c; = 1,2, ..., q¢) of size g; from BIII (w5, 9). Here,
my = qzmz, and m; = q;my, are the sample sizes of Zi (e and Thy(hy)err respectively, where m,, m;
are the set sizes and g, g; are the cycles number. In this study, we write Zj, ., and T}, instead of
using Zy, (u;)e, and T, (p,)c,, for simplified form. If the ranking of the observations is perfect, the
PDFs of Zj, ., and T}, are exactly the PDFs of h;-th and hy-th OS. Regarding this, the PDF of Zj, .,
for w1, 9, zy,, > 0, is as bellow:

m | hi=1 mz—h

th1c1 (Zh1C1) = (hl _ ) (mz _ hl) f(zhlcl)[F(zh1C1)] 1 [1 - P(Zh1C1)] 1
m ' a)lszh (4)1(711 h1+1) 1 w1 hl_l (31)

. 1C1 S - z - 9 —w

- (hl_ )( Z_hl)[(1+zh1€1) [1_(1+Zh161) ]
Similarly, the PDF of Ty, for ws, 9, t,., > 0, is given by
m,! a)zsth - ~(wahp+1) w, M2

. _9 2N 2

gThzfz (thC2) - (hz _ )( 2]’12)! (1 + tthz) [1 (1 + tthz) ] . (32)

In the case of the RSS approach with the perfect ranking assumption, the likelihood function (LF)

based on (3.1) and (3.2) is determined as follows:

e« T] H sz (120, ) T - (12, )

1= 1]’11

hi-1

(3.3)
qr my —h
—9-1 _y \(@2h2t1) _o @[T
X H 1—[ w2‘9thzﬁz (1 + thzcz) [1 B (1 + thzfz) ]
Czil hzil
Following that, the log-LF of (3.3) is given by:
z m;
trocmyn(dar) + Y Y {8 = 1)Inzye = [wi(m, —h +1)=1)In (142 )}
C1:1 h1—1
m; qt mi
—w1 " _9 \~@2
+ Z Y =Din|1= (142 )| main(sen) + YY" (= he)In|1- (14 6,2) ]
a=1mn=1 cr=1hy=1
qt - my
- Z Z {(\9 + 1) In thye, + (a)zhz + 1) In (1 + tﬁz‘iz)} .
C2:1 h2:1
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Assuming that the shape parameter 9 is known, we can derive the likelihood equations below by

taking the first derivative of (3.4) with respect to w1 and w>

*

log 1+z = Iz

351 my (AL hc1
1 _ 71 —h 1 :
or w1+qz_" 22‘1 (1) 1] clz‘u;‘ 1+ D)log(142) ), (35)
d
an m qe my hZ log(l_‘_th‘i)
2 Z mlog(1+65 )+ Y Z 2 (3.6)
c=1h= o=1h= [ (1—|—t_ ) ]

It is obvious that the solutions to (3.5) and (3.6) cannot be directly determined. As a result, we use
iterative techniques to obtain the MLE @, of w1, and @», of w;. Therefore, the MLEA ofA according
to the invariance property of the MLE is given by
Ao [F(d)l +1)I(@ + 1)]
[(01+a2+1)

After that, the MLEA of is obtained in the case of the SRS. Suppose that Zy , ki = (1,2,. ) and
ko= (1,2,.., mz) be a two independent SRS from BXII~ (w1, 9) and BIlI~ (w,, 9) respectlvely. The
LF in this situation is given by:

b= H Sz (1428 ) H St d (14 £7) (3.7)
ko=

The log-LF based on SRS is then supplied for (3.7) by

m
43 :milog(Swl)—f—(S—l) Y. logzi, — (w1 +1) Z log(l+z )+m§log(\9a}2)
=t fa=t (3.8)
—(8+1) z log ty, — (wy +1) z log (1 +£7).

k=1 ky=1
By determining the first derivative of (3.8) with respect to w1, w; and considering that the shape

parameter 3 is known, we can get the likelihood equations below:

e
oty My oty MM, : -9
— = 1 1 — =—-) log(1+1¢t7). 9
dwr Z og T Zk1 dwn ]Z‘l og( + 1, ) (3.9)
-
Setting the non-linear equations (3.9) above with zero and solved them using numerical method,
the MLE @1, of w1, and @», of wy, are presented as the results. Consequently, the MLERZ ofA using

SRS is obtained by putting @1, @2 in (2.5), according to the invariance property.

4. PropucT OF SPACINGS ESTIMATORS OFA

In this section, three estimators of A, namely, MXPS estimate (MXPSE), MNSALD estimate
(MNSALDE), and MNSLD estimate (MNSLDE) are produced when Z and T are independent
random variables that follow the BXII and BIII distributions, respectively. These estimators are

offered using RSS and SRS techniques under the assumption that the shape parameter is known.
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A. The Maximum Product of Spacings
The MXPS approach was presented by [58,59] as an alternative for the ML technique for estimat-
ing the parameters of continuous distributions. They demonstrated that regardless of whether
ML estimation exists or not, the MXPE technique offers consistent and asymptotically efficient
estimators.

Let Z (1) Zom) s -oor Z (o) be an OS of RSS drawn from BXII distribution with sample size
m} = q.mz, where m; is set size and g is the cyclenumbers. The uniform spacings of size m] = g.m,
is defined as:

vi,(w1) = F(z(il:m;)) —F(Z(il—lzm;))/ ip = 1,2,...,m}, where F(z(():m;)) =0, F(Z(m;ﬂ:m;)) =1,

nr+1
such that f yi (1) = 1.

117

Similarly, suppose that T(l:ma), T(Zm;), ves T(m;:m;) be an OS of RSS drawn from BIII distribution
with sample size m} = gym;, where m; is set size and g; is the cycle numbers. The uniform spac-
ings of size m), = gq;my, is defined as y;, (w2) = G(t(izzm;)) - G<t(i2—1;m;))/ ip = 1,2,..,m;, where

my+1
G(t(&m;)) =0, G(t(m;+1:m;)) =1, such that Z Vi, (w2) = 1.

121

Suppose that the shape parameter ¥ is known, then the MXPSE c?)IlV[X of w1, and the MX-

PSE cf)g/lx of wy, is provided by maximizing the following geometric mean of the spac-

o1 1/(m;+1 1 1/(my+1
1
ing { IT vi (a)l)} { 11 y,z(a)z)} , or alternatively, by maximizing the function

il_l 12 1

mj T+1 +1
m +1 { Y, Infyi (w1)]p + i +1 { Y. In[y;,(w2)] ¢ . Thus, the MXPSE @ AMX of wy, and (f)g/lx of wy,
11—0 12—0

can also be obtained by numerically resolving the following nonlinear equations:

m;+1
1 \ 1 s
w1 Z;)yil(wl)[(1+z<ilzmz>) (120 ) = (5 2 )™ O+ )] =0,
n=
(4.1)
and
mi+1

\ 1 -8 -9 @2 -9
e Zﬁ%(wz) [(1+t(i2_1:m*)) In(l+ 60, ) = (1462, n (1+t(lzm2))] ~0.
=

(4.2)
Thus, it is possible to determine the MXPSEA™ of 1 inserting X and &YX produced from (4.1)
and (4.2) in (2.5).

In addition to above, the MXPSE A of 1 in case of SRS is obtained. Let Z1),Z2), ...,Z(m; )

be an OS of SRS drawn from BXII distribution with sample size m]. The uniform spacings is

defined as )71'1 (a)1) = F(Z(il)) _F(Z(il—l))I i1 = 1,2,..., m’i, where F(Z(O)) = 0, F(Z(m;—i-l)) = 1,
my+1

such that Z Vi (w1) = 1. Similarly, suppose that T y), T(), ..., T(s;) be an OS of SRS drawn from
11 =1
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BIII distribution with sample size m2;. The uniform spacings is defined as y;,(w2) = G(t(iz)) -
my+1
G(t(iz_l)), ip =1,2,...,m,, where G(t(o)) =0, G(t(mzﬂ)) = 1,suchthat }, 7;(w2) = 1.

12:1
Suppose that the shape parameter ¥ is known, then the MXPSE cl')Il‘/IX of wy, and d)g/lx of wy, is

1=

i +1 my+1
provided by maximizing the following ﬁ{ 120 ln[)?,-l(a)l)]} ﬁ { '220 In[y;, (a)z)]} Thus,
=

the MXPSE chlv[X and @)™ can also be obtained by numerically resolving the following nonlinear

equations:

m;+1

1 \ 1 —w —w
-ZE) l(HZ(Sil)) (1420, ) = (1425, ) " In(1 + 2 )] —0, (@43)
1=

my+1 Vir (@1) (1-1) (i-1)
and
1 my+1 1
-9 —w? -9 _ _9 —wy _s B
s+ 1 Za T (@2) [(1 +t(i2_1:m§)) In(1 +t(i2_1:m§)) (1+ t(z.Z:m;)) In(1 + t(izzm;))] —0.
=

(4.4)
Thus, it is possible to determine the MXPSE A of x by inserting chl\/[X and d)g/lx produced from
(4.3) and (4.4) in (2.5).
B. The Minimum Product of Spacings
Here, the S-S reliability estimators ofA based on the MNSLD and MNSALD methods are provided.
To do so, it must obtain the estimators of w; and w,. The idea for the minimal spacing distance
estimate method was first put out by [60]. These estimators are generated by minimizing the

following functions,

my+1 my+1
Z E[Vil(wl),Hl(mj)], E[ylz(wz),Hz(m2)],
n=1 =1

where E(aj,a) is suitable distance, H ](m;) = m%ﬂ, j = 1,2. Some choices are absolute distance
]

E(a1,a2) = |a1 — ap| and log absolute distance E(aq,a2) = |log 1 —log a2| . As a result, the MNSLDE

cf)IlVINA, cf)g/[NA can be obtained by minimizing the following functions with respect to w1, and w>

my+1 my+1

Y i) =Hm)], Y ya(@2) - Ha(m3)]. (4.5)
i1=1

=1

Equivalently to (4.5), the MNSADE cf)lleA, ®YNA is provided by solving the nonlinear equations

*
m1+

*

i (1) — Ha(m3)

i1=1 |7/i1 (wl) - Hl (ml

9 —w1 9 S —w1 9 _
|[(1+Z(ilzm;>) (14 2,,0) = (142, ) ln(1+z(i1_1:m;))]—0,

and

& ) “Ham) [ e ey
)|[(l+t(i2_1:m;)) (L4652 ) = (T £, (1 4+ 62,0 =0

&= |y (w2) = Ha(m;
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Equivalently, the MNSLDE @ AMNL ,ONMNL of w1, @, can be obtained by minimizing the following

2
functions
mj+1 my+1
Z llog yi, (1) —log Hy ()], Z [log i, (w2) —log Ha (). (4.6)
=1 =1

Alternative to (4.6), ®MNL @MNL can be obtained by minimizing the following equations:
1 2 y & g eq

9 @1 9 9 —w1 9
mil log iy (@n) ~log Fi (my) [(”Z(ilsm;)) (1420 ) = (L2 1) 1“(”2(1-1-1;"1;))] —0
= [log iy (wn —logH1< ) Vir (@1) /
and

-9 —w2 -9 _ -9 ) —9
M ) - Hy(m) [(1+t(i2_1:m;)) (L4 £, ) = (14 0,,) ln(l—i—t(iz:m;))] _0
& [log yiy (2 —10gHz( ) Vir(@2)

Hence, the MNSADE/fMNA and MSALDE/’EMNL are obtained as follows
FMNA _ [“WNA + DI (@)™A + 1>l VN _ lr(m?‘“ + 1T (@YNE + 1)}

T(@MA + oYNA 1 1) T(@MNE 1 )N+ 1)

To obtain the MNSADE A" and MNSLDE A"~ based on SRS, we apply the above procedure
by using the following OS of SRS Z 1), Z(2), ..., Z(m;) and T(1), T2y, -, T(m;)-

5. MinimuMm DistaNnces ESTIMATORS OFA

Three estimation techniques, namely, CM, AD, and RAD forA that are based on the minimization
of the goodness-of-fit statistics with respect to1 are shown in this section. The difference between
the estimated CDF and the empirical CDF serves as the foundation for this class of statistics.

Let Z(l:m; )/Z(Z:m; ),...,Z(m;i:m;) be an OS of RSS drawn from BXII distribution with sample size

mz = (M.
Also, suppose that T, 5) T ) T( o) be an OS of RSS drawn from the BIII distribution
with sample size m; = gim;. The CM estimate (CME) @ ACM ,cf)gM of w1, wp are produced after

minimizing the following functions:

2

1 —or '
= 12 _Z[ (1+Zl ml)) —Hl(M1,Z1)],

1

%) 2
Nl 1o —|— Z [(1 —I—t_s ) —H’z(ﬂiz,iz)] P

j = 1,2. These estimates can also be achieved by simultaneously resolving

(5.1)

H

2j-1
2m
]

the following equations.

whereH;.(m]-, ij) =

.
1y

Y li- (1 e )_wl—H'l(ml,il) (1 420 )_ 11n(1 420 ):0, (5.2)
(i1:m}) (i1:m) (i1:m)

i=1
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and

m;,

o Y , A .
Z[(lﬂ(iz:m;)) —Hz(mz,zz)](l—i—t(iz:m;)) n(1+132,, ) =0 (5.3)

1221

The estimate A" based on CM approach is subsequently given after putting the findings of 6)1CM
and d)gM from (5.2) and (5.3) in (2.5).

Second, after minimizing the following functions: the AD estimate (ADE) cf)f AAD of w1, wy
are produced after minimizing the following functions:
1 G - ~a1
Q=-mj— m_; Z‘l (2i1—-1) [log[ (1 + Z(1 m1)) ] +log [(1 +Z(1+m i ’”1)) ” ,
n=
and
]_ m; . -9 —w3 _ —w?2
Q) = -m;, - m Z:l (2i —1) [log (1 + t(izzm;)) + log[ (1 + t(m Lo )) ”
=
Inserting ®1*P, ®5'P in (2.5), the reliability estimator A" based on AD method is generated.
Thirdly, the following functions are minimized to generate &X4P, OXAP of wq, w2
m m —w1 1 m —w1
:?— Z (1+sz ) m 2211— log[(l—i-z(mH llm)) ],
and
"G @ 1@ ~
/ — -3 ; -9
Q=5 - ZZ(l—i—t ) _m_;Z (212—1)[log[ (1—|—t(1+m Zmz)) H
=1

Inserting @ ARAD AEAD in (2.5), the reliability estimator/fRAD based on RAD method is generated.
Finally, the SRS procedure is used to create reliability estimators, AM 7(AD, and A" based on M,

AD, and RAD methods, which are produced in a manner similar to that described above.

6. OTHER ESTIMATORS

This section offers another three more estimators that are used to create the reliability estimator
of A utilizing the LS, WLS, and PC techniques.
Let Z(l:m; ),Z(Z:m; ),...,Z(mzzm;) be an OS of RSS drawn from BXII distribution with sample size
mj = g.mz. Also, suppose that T(l;m;)rT(z:m;)/---/ T(m;:m;) be an OS of RSS drawn from the BIII
distribution with sample size my = qgmy. The LS estimate (LSE) cf)% ,d)% of w1, w; are produced

after minimizing the following functions
"y

—wy i P " . e h P
Z[l (1+Z(1’”1)) _m;—l]' Z[(1+t(12’”)) _m;—l]'

ii=1 =1
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Hence, the LSE &% and &L is the solution of the following equations:
1 2 8 eq

.
1y

o g - -
Z [1 (1+z(l m1>) - m;—l](1+z(l ml)) ln(1+z(l ml)) =0, (6.1)
n=

and

-9 w2 _ i -9 2 ( -3 ) —
2_ [(1+t12m ) o 1}(1“@@) n(1+¢7,,)=0. (62)

Consequently, by inserting (6.1) and (6.2) in (2.5), one may determine the LSEA" of based on RSS.

By minimizing the following functions, the WLS estimator (WLSE) cf)‘lN of w1 and cbgv of wy are

generated

.
1y

Y i) 1- (1425, ) - S
141 (i1 ml) ’

i1=1

- (6.3)

_ .2
Y H (my,in) (1+t‘ ) [
‘ 7712/ 12 (12 m;) m* _ 1 4
12:1 2
(m;+1)2(m;+z)
i]'(m;—i]'+l)
Instead of (6.3), c?)‘lN and @} are created by solving non-linear equations

" e w1 i @1
Z,l H (ml,ll) [ (1 +Z(l ml)) - m] (1 +z(l ml)) ln(l +z(l ml)) =0, (6.4)
n=

where H(m;, ij) = ,j=1,2.

and

s Y __B -5 Y@ -\
Z H (3, i) [(1+t(lzm)) —m]( Fy) M(1HES,) =0 69

As aresult, by including (6.4) and (6.5) in (2.5), it is possible to calculate the WLSE/fW of A using RSS.

Furthermore, the PC estimate (PCE) aA)llj of w1 and cf)g of wy are generated by minimizing the

following functions and assuming that p;, = j = 1,2 is the estimate of F(z(ilzm; )) and

gl
m}+1 4

G (t(l2 - )) respectively,

m; " )
Py = Zi [Z(ilzm;) = ([1 = Pliyy) ™" = 1)1/9] , Pr= 2 [f(izzm;) ~((Pamy) ™2 = 1) 1/8]-
= =1

The PCEA" of7 is produced after inserting @} and &} in (2.5).
Finally, suppose that Z (1) Z (2)7 ++er Z (nr?) be an ordered SRS of size mi drawn from BXII distribution,

and T(y), T(2), s T(m;) be an ordered SRS of size m; drawn from BIII distribution. The LSE/TL, WLSE

A" and PCEA" are obtained using the above similar procedures.
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7. SIMULATION-BASED RESEARCH

This section performs a comprehensive simulation analysis to investigate the performance of
various reliability estimators employed in the proposed methodologies. The analysis utilizes a
suite of accuracy metrics, including mean, absolute bias (AB), mean squared error (MSE), and
relative absolute bias (RAB). In addition, the efficiency (Eff) of each estimator is calculated. The
simulation process itself follows a defined sequence of stages, which will be outlined in detail

hereafter.

e The true parameter values of (w1, wy, V) are selected as (1, 1, 3), (0.6,0.4,3), (0.7, 1, 3), (0.4,
0.5, 3), and (0.3, 0.3, 3). The corresponding true values of 1 are as follows: 0.5, 0.72, 0.731,
0.844, and 0.901. For all trials, the number of cycles is selected to be g, = q; = 10.

e The RSS of Z and T, represented by Zy(1)c;, Z2(2)c1s -+ Zim,(my)e; 0 the c1-th cycle (1 =
1,2,...,9;) of size g, and T1(1)er T22)crr +++r Trng(my)er I the co-th cycle (c; = 1,2,...,q:) of size
g, where the set sizes are (m;,m;) = (3,3), (44) and (5,5). Hence, the sample sizes are
(my,m;) = (30,30), (40,40), (50, 50).

e Under the selected estimation procedures, the estimates of parameters as well as their
reliability estimatesﬁML,/fCM,/fL,/fw,ﬁMxﬁMNA,PEMNL,/fRADJA{AD and?fp are calculated.

e The mean, AB, RAB, MSE, and Eff of different S-S reliability estimates are calculated using

the following relations:

7

1000 1 1000 1 1000 £* i
~ LV AB= =Y [ ox, RAB= —— Y [
e = 1000 ; i 1000 sz fi 1000 121‘ ’A

1000 o

1 o \2 MSEQR)
MSE = —— CA)EFFN) = —— 2,
10001,Z;QT ) EffE) SE(F)

The estimation procedures’ results are presented in two sets of tables. Tables 1, 2, 3, 4, and 5

summarize the mean, AB, RAB, and MSE , and Eff for various estimation methods under RSS,

while Tables 6, 7, 8, 9, and 10 provide the same statistics for the estimation methods under SRS.
The efficiency of MSE estimates under RSS relative to the MSE estimates under SRS for different

S-S reliability estimates is listed in Table 11.

Based on the numerical results shown in Tables 1-11 and Figures 1, 2, 3 and 4, the following

conclusions can be drawn:

e The MSE of/fML atA = 0.5,0.731,0.844, and 0.901 for different set sizes have the highest
values as seen in Figures 1-4.

e Figure 2 and 4 show that the MSE of A" has the least values while the MSE of A" has the
highest values at different set sizes, forA = 0.731 and 0.844.

eIn most of the cases, as seen in Tables 1-5, the MSEs of
/fMLJfCMJfL,/fW,/fMX,/’fMNAJfMNL,/TRAD,/’fAD and /’fp decrease with increases wvalue of

A.
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o Tables 1-5 show that A" have the greatest RAB values among all other methods of esti-
mation for all values of X exceptA = 0.731 while£"" have the least mean values among all
other methods of estimation forA = 0.5, 072, 0.731, 0.844, 0.901.

e From Table 11 it can be deduced that S-S reliability estimates via RSS are more efficient

than the corresponding estimates under SRS based on their MSEs using different estimation

methods.
0.0120
0.0100
0.0080
0.0060
0.0040
0.0000
G,3) “.4) 5.5
= ML M MXPS “ILLS M WLS M CM M AD m RAD =m MINSAD mPC = MINSLD
»

Ficure 1. MSE of the reliability estimates based on RSS at different set sizes using

various methods of estimation atX = 0.5

gl

3,3 4.4 (5,5

0.0700
0.0600
0.0500
0.0400
0.0300
0.0200
0.0100

0.0000

EML =MXPS MLS “WLS ®CM ®AD ®mRAD ®MNSAD ®=PC ®=MNSLD
J

Ficure 2. MSE of the reliability estimates based on RSS at different set sizes using

various methods of estimation atA = 0.731
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Ficure 3. MSE of the reliability estimates based on RSS at different set sizes using

various methods of estimation atA = 0.844
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Ficure 4. MSE of the reliability estimates based on RSS at different set sizes using

various methods of estimation atX = 0.901



Int. J. Anal. Appl. (2025), 23:225

TaBLE 1. Statistical indicators of the estimate’s reliability for various techniques of

estimation based on RSS atA = 0.5
(m’i,m;) ML MXPS LS WLS CM AD RAD MNSAD PC MNSLD

AB 0.0897 0.02356 0.00232 0.0025 0.0007 0.00204 0.00011 0.01682 0.00994 0.02358

mean 0.4103 0.52356 0.50232 0.5025 0.4993 0.50204 0.49989 0.48318 0.49006 0.52358

(3,3) MSE 0.01064 0.0031 0.00289 0.00262 0.00288 0.0025 0.00297 0.00515 0.00165 0.00515

RAB 0.1794 0.04712 0.00464 0.005 1.02509 0.00407 0.00022 0.03364 0.01988 0.04716

AB 0.05779 0.01847 0.00173 0.00135 0.00058 0.0011 0.00017 0.01554 0.01244 0.0185

mean 0.44221 0.51847 0.50173 0.50135 0.49942 0.5011 0.49983 0.48446 0.51244 0.5185

(4,4) MSE 0.00499 0.00202 0.00175 0.00162 0.00174 0.00158 0.00189 0.00389 0.00106 0.00389

RAB 0.11559 0.03694 0.00346 0.0027 1.01446 0.00221 0.00034 0.03108 0.02488 0.037

AB 0.0379 0.01965 0.00338 0.00348 0.00154 0.00307 0.00152 0.01082 0.00403 0.01968

mean 0.4621 0.51965 0.50338 0.50348 0.50154 0.50307 0.50152 0.48918 0.50403 0.51968

(5,5) MSE 0.00246 0.00158 0.00108 0.001 0.00107 0.00098 0.00117 0.00257 0.001 0.00257

RAB 0.0758 0.0393 0.00675 0.00696 1.0023 0.00614 0.00304 0.02163 0.00806 0.03935

TabLE 2. Statistical indicators of the estimate’s reliability for various techniques of
estimation based on RSS atA = 0.72

(m;, mz) ML MXPS LS WLS CcM AD RAD MNSAD PC MNSLD

AB 0.02648 0.08526 0.07312 0.07364 0.07134 0.07315 0.07087 0.05786 0.05828 0.08526

mean 0.74602 0.8048 0.79265 0.79318 0.79087 0.79269 0.79041 0.77739 0.77782 0.8048

(3,3) MSE 0.00208 0.0081 0.00632 0.00632 0.00607 0.00622 0.00614 0.00524 0.00852 0.00524

RAB 0.03681 0.1185 0.10162 0.10235 0.16554 0.10167 0.0985 0.08041 0.081  0.1185

AB 0.04997 0.08405 0.07354 0.07364 0.07218 0.07339 0.07218 0.06205 0.06149 0.08405

mean 0.76951 0.80358 0.79308 0.79317 0.79172 0.79293 0.79172 0.78159 0.78102 0.80358

(4,4) MSE 0.0032 0.00761 0.00602 0.00599 0.00583 0.00594 0.00589 0.00521 0.0076 0.00521

RAB 0.06945 0.11681 0.10221 0.10234 0.16049 0.102 0.10032 0.08624 0.08546 0.11681

AB 0.06072 0.08212 0.07346 0.07332 0.07236 0.07324 0.07251 0.06564 0.06323 0.08211

mean 0.78026 0.80165 0.79299 0.79285 0.7919 0.79277 0.79205 0.78517 0.78277 0.80165

(5,5) MSE 0.00411 0.00716 0.0058 0.00574 0.00564 0.00573 0.00569 0.00523 0.00731 0.00523

RAB 0.08439 0.11412 0.10209 0.1019 0.1603 0.10178 0.10078 0.09122 0.08788 0.11412
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TaBLE 3. Statistical indicators of the estimate’s reliability for various techniques of

estimation based on RSS atA = 0.731
(m’i, m;) ML MXPS LS WLS CM AD RAD MNSAD PC MNSLD

AB 0.24752 0.12309 0.14341 0.14286 0.14619 0.14329 0.14492 0.16516 0.15888 0.12309
mean 0.48398 0.6084 0.58808 0.58864 0.5853 0.58821 0.58657 0.56634 0.57261 0.6084
(3,3) MSE 0.06367 0.01709 0.02295 0.02256 0.02376 0.02256 0.02348 0.03184 0.03594 0.03184
RAB 0.33837 0.16827 0.19606 0.1953 0.02959 0.19588 0.19811 0.22578 0.2172 0.16828
AB 0.21057 0.12281 0.13974 0.13937 0.14186 0.14001 0.14158 0.15644 0.15283 0.12281
mean 0.52092 0.60869 0.59175 0.59213 0.58963 0.59148 0.58992 0.57505 0.57866 0.60869
(4,4) MSE 0.04567 0.01638 0.02086 0.02064 0.02146 0.02078 0.02144 0.02735 0.03141 0.02735
RAB 0.28787 0.16788 0.19104 0.19052 0.04001 0.19141 0.19354 0.21386 0.20893 0.16788

AB 01917 0.12462 0.13979 0.13974 0.14149 0.14002 0.14072 0.14835 0.14952 0.12462
mean 0.53979 0.60687 0.59171 0.59175 0.59 0.59148 0.59078 0.58315 0.58197 0.60688
(5,5) MSE 0.03765 0.01651 0.02047 0.02037 0.02095 0.02044 0.02081 0.02418 0.02911 0.02418
RAB 0.26207 0.17036 0.1911 0.19103 0.04264 0.19141 0.19237 0.2028 0.2044 0.17036

TabLE 4. Statistical indicators of the estimate’s reliability for various techniques of
estimation based on RSS atA = 0.844
(m;, m;) ML MXPS LS WLS CM AD RAD MNSAD PC MNSLD
AB  0.0953 0.01621 0.02716 0.02704 0.02879 0.02716 0.02883 0.04126 0.03803 0.01621
mean 0.74894 0.82804 0.81709 0.81721 0.81546 0.81708 0.81542 0.80299 0.80621 0.82804
(33) MSE 0.01022 0.00093 0.0015 0.00143 0.0016 0.0014 0.00167 0.00333 0.00549 0.00333

RAB 0.11289 0.0192 0.03217 0.03203 0.51719 0.03217 0.03414 0.04887 0.04505 0.0192

AB 0.07029 0.01745 0.02644 0.02648 0.02767 0.02661 0.02749 0.03669 0.03197 0.01745
mean 0.77395 0.8268 0.8178 0.81776 0.81658 0.81763 0.81676 0.80756 0.81227 0.8268
(4,4) MSE 0.00552 0.00073 0.00117 0.00113 0.00124 0.00112 0.00125 0.00239 0.00427 0.00239
RAB 0.08326 0.02067 0.03132 0.03137 0.52306 0.03152 0.03256 0.04345 0.03787 0.02067
AB 0.05737 0.01826 0.0262 0.02622 0.02718 0.02637 0.02675 0.03393 0.03289 0.01825
mean 0.78687 0.82599 0.81805 0.81802 0.81706 0.81788 0.81749 0.81032 0.81135 0.82599
(5,5) MSE 0.00368 0.00065 0.00103 0.001 0.00109 0.001 0.00108 0.00195 0.00462 0.00195
RAB 0.06796 0.02162 0.03103 0.03106 0.52306 0.03123 0.03169 0.04019 0.03896 0.02162
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TaBLE 5. Statistical indicators of the estimate’s reliability for various techniques of
estimation based on RSS atA = 0.901

(m3,

™5 ML MXPS

2)

LS WLS

cM

AD

RAD MNSAD

PC MNSLD

AB 0.03988 0.00671

0.00053 0.00033

0.00152

0.00042

0.00201

0.00756

0.00005

0.00671

mean 0.86157 0.90815

0.90091 0.90112

0.89992

0.90102

0.89944

0.89389

0.90149

0.90815

(3.3)

MSE 0.00208 0.00027

0.00028 0.00026

0.00028

0.00025

0.00032

0.00064

0.00014

0.00064

RAB 0.04424 0.00744

0.00059 0.00036

0.66457

0.00046

0.00222

0.00838

0.00005

0.00744

AB 0.02345 0.00592

0.00002 0.00013

0.00072

0.00005

0.00074

0.00606

0.00114

0.00592

mean 0.87799 0.90737

0.90146 0.90157

0.90072

0.9015

0.9007

0.89538

0.90031

0.90737

(44)

MSE 0.00079 0.00019

0.00019 0.00017

0.0002

0.00017

0.00021

0.00044

0.00015

0.00044

RAB 0.02601 0.00657

0.00002 0.00014

0.66555

0.00006

0.00082

0.00672

0.00126

0.00657

AB 0.01622 0.00492

0.00017 0.00006

0.00076

0.00019

0.00074

0.00521

0.00212

0.00492

mean 0.88523 0.90637

0.90128 0.90138

0.90069

0.90125

0.9007

0.89623

0.89933

0.90637

(5,5)

MSE 0.0004 0.00013

0.00012 0.0001

0.00012

0.0001

0.00013

0.0003

0.00011

0.0003

RAB 0.01799 0.00546

0.00019 0.00007

0.66581

0.00021

0.00082

0.00578

0.00235

0.00546

TaBLE 6. Statistical indicators of the estimate’s reliability for various techniques of
estimation based on SRS atA = 0.5

(m,

;5 ML MXPS

5)

LS WLS

cM

AD

RAD

MNSAD

PC

MNSLD

(30,30)

AB 0.0912 0.01792

0.0028 0.00269

0.00574

0.00265

0.00396

0.03204

0.00931

0.01792

mean 0.4088 0.51792

0.4972 0.49731

0.49426

0.49735

0.49604

0.46796

0.50931

0.51792

MSE 0.01119 0.00427

0.00527 0.00484

0.00529

0.00461

0.00553

0.00814

0.00403

0.00814

RAB 0.18241 0.03584

0.0056 0.00538

1.07837

0.00529

0.00792

0.06408

0.01862

0.03583

(40,40)

AB 0.07014 0.0161

0.0005 0.00063

0.00278

0.0007

0.00246

0.01725

0.0018

0.01609

mean 0.42986 0.5161

0.4995 0.49937

0.49722

0.4993

0.49754

0.48275

0.4982

0.51609

MSE 0.00635 0.00318

0.00399 0.00362

0.004

0.00348

0.00409

0.00543

0.00384

0.00543

RAB 0.14028 0.0322

0.001 0.00127

1.03455

0.0014

0.00491

0.03451

0.0036

0.03219

(50,50)

AB 0.0053 0.01415

0.00089 0.00099

0.00271

0.00074

0.00287

0.01521

0.00464

0.01415

mean 0.4947 0.51415

0.49911 0.49901

0.49729

0.49926

0.49713

0.48479

0.49536

0.51415

MSE 0.00249 0.00262

0.0032 0.00291

0.00321

0.00283

0.00329

0.00437

0.00275

0.00437

RAB 0.01061 0.02831

0.00178 0.00199

1.03069

0.00147

0.00575

0.03041

0.00928

0.0283




18 Int. ]. Anal. Appl. (2025), 23:225

TaBLE 7. Statistical indicators of the estimate’s reliability for various techniques of

estimation based on SRS atA = 0.72
(m’i, m;) ML MXPS LS WLS CM AD RAD MNSAD PC MNSLD

AB 0.06717 0.08374 0.07094 0.07128 0.06918 0.07133 0.06965 0.05451 0.06155 0.08374
mean 0.7867 0.80327 0.79047 0.79081 0.78871 0.79086 0.78918 0.77405 0.78108 0.80327
(30,30) MSE 0.00611 0.00843 0.00706 0.00693 0.00683 0.00688 0.00696 0.00588 0.00949 0.00588
RAB 0.09335 0.11638 0.09859 0.09906 0.14385 0.09913 0.09679 0.07576 0.08554 0.11638
AB 0.06863 0.08216 0.07182 0.07181 0.07047 0.0719 0.07003 0.06067 0.06134 0.08216
mean 0.78816 0.80169 0.79136 0.79134 0.79001 0.79143 0.78957 0.78021 0.78088 0.80169
(40,40) MSE 0.00584 0.00777 0.00669 0.00655 0.00651 0.00649 0.00652 0.00559 0.00859 0.00559
RAB 0.09538 0.11418 0.09982 0.0998 0.14706 0.09992 0.09733 0.08432 0.08525 0.11418

AB 0.06964 0.08117 0.07154 0.07171 0.07046 0.07182 0.07035 0.06313 0.06284 0.08117
mean 0.78917 0.80071 0.79107 0.79125 0.79 0.79135 0.78988 0.78266 0.78237 0.8007
(50,50) MSE 0.00568 0.00736 0.00623 0.00614 0.00608 0.00612 0.00612 0.00544 0.00801 0.00544
RAB 0.09678 0.11281 0.09943 0.09966 0.15801 0.09981 0.09777 0.08774 0.08733 0.11281

TabLE 8. Statistical indicators of the estimate’s reliability for various techniques of
estimation based on SRS atA = 0.731
(m;, m;) ML  MXPS LS WLS CcM AD RAD MNSAD PC MNSLD
AB 0.24852 0.12836 0.1484 0.14817 0.15115 0.14808 0.14973 0.17032 0.16085 0.12836
mean 0.48297 0.60313 0.58309 0.58332 0.58034 0.58342 0.58177 0.56117 0.57064 0.60313
(30,30) MSE 0.06404 0.01993 0.02686 0.02643 0.0277 0.02619 0.02717 0.03543 0.03781 0.03543

RAB 0.33974 0.17548 0.20287 0.20256 0.01093 0.20243 0.20469 0.23284 0.21989 0.17548

AB 0.21542 0.12798 0.14378 0.14381 0.14584 0.14347 0.14605 0.1623 0.15594 0.12798
mean 0.51607 0.60351 0.58771 0.58769 0.58565 0.58803 0.58544 0.56919 0.57555 0.60351
(40,40) MSE 0.04789 0.019 0.024 0.02375 0.0246 0.02355 0.02474 0.03108 0.03417 0.03108
RAB 0.2945 0.17496 0.19656 0.19659 0.02922 0.19613 0.19967 0.22188 0.21319 0.17496
AB 01932 0.12915 0.14352 0.14344 0.1452 0.14319 0.14469 0.15688 0.1525 0.12916
mean 0.5383 0.60234 0.58797 0.58805 0.58629 0.5883 0.5868 0.57461 0.579 0.60234
(50,50) MSE 0.03828 0.01878 0.02339 0.02313 0.02388 0.02299 0.02375 0.02827 0.03211 0.02827
RAB 0.26411 0.17656 0.19621 0.1961 0.02675 0.19575 0.1978 0.21447 0.20847 0.17657
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TaBLE 9. Statistical indicators of the estimate’s reliability for various techniques of
estimation based on SRS atA = 0.844

(my,ms) ML

MXPS LS

WLS

CM

AD

RAD MNSAD

PC

MNSLD

AB 0.0947

0.01895 0.03002

0.02992

0.03164

0.02992

0.03151

0.04521

0.04145

0.01895

mean 0.74955

0.8253 0.81423

0.81433

0.81261

0.81433

0.81273

0.79903

0.80279

0.8253

(30,30) MSE 0.01036

0.00147 0.00257

0.00242

0.00269

0.00234

0.00265

0.00443

0.00732

0.00443

RAB 0.11217

0.02244 0.03555

0.03544

0.51087

0.03544

0.03733

0.05355

0.0491

0.02244

AB 0.07463

0.02057 0.03033

0.03008

0.03155

0.03006

0.03083

0.04331

0.0366

0.02058

mean 0.76962

0.82367 0.81392

0.81417

0.81269

0.81418

0.81341

0.80093

0.80765

0.82367

(40,40) MSE 0.00626

0.00131 0.00218

0.00205

0.00227

0.00202

0.0022

0.00357

0.00508

0.00357

RAB 0.08839

0.02437 0.03592

0.03562

0.5108

0.03561

0.03652

0.0513

0.04335

0.02437

AB 0.05979

0.01927 0.02785

0.02788

0.02883

0.02751

0.02859

0.03665

0.03674

0.01927

mean 0.78446

0.82498 0.8164

0.81637

0.81542

0.81673

0.81566

0.80759

0.80751

0.82498

(50,50) MSE 0.0039

0.00105 0.00173

0.00165

0.00179

0.00159

0.00182

0.00258

0.00554

0.00258

RAB 0.07082

0.02282 0.03299

0.03302

0.51894

0.03259

0.03386

0.04341

0.04352

0.02282

TasLE 10. Statistical indicators of the estimate’s reliability for various techniques of
estimation based on SRS atA = 0.901

(m7,m) ML

MXPS LS

WLS

cM

AD

RAD

MNSAD

PC

MNSLD

AB 0.03989

0.00332 0.00383

0.00373

0.00481

0.00355

0.00471

0.01179

0.00419

0.00332

mean 0.86156

0.90476 0.89762

0.89772

0.89663

0.89789

0.89674

0.88966

0.89725

0.90476

(30,30) MSE 0.00217

0.00045 0.0007

0.00064

0.00072

0.0006

0.0007

0.00101

0.00041

0.00101

RAB 0.04425

0.00368 0.00425

0.00414

0.65627

0.00394

0.00522

0.01308

0.00465

0.00368

AB 0.02427

0.00465 0.00094

0.00091

0.00167

0.00081

0.00138

0.00809

0.00014

0.00465

mean 0.87717

0.9061 0.9005

0.90054

0.89977

0.90063

0.90007

0.89336

0.90131

0.9061

(40,40) MSE 0.00084

0.00032 0.00046

0.00042

0.00047

0.0004

0.00049

0.00069

0.00029

0.00069

RAB 0.02693

0.00516 0.00105

0.00101

0.66173

0.0009

0.00153

0.00897

0.00015

0.00516

AB 0.00378

0.00372 0.00129

0.0013

0.00188

0.0012

0.00225

0.00697

0.00159

0.00372

mean 0.90522

0.90517 0.90015

0.90015

0.89956

0.90025

0.89919

0.89448

0.90303

0.90517

(50,50) MSE 0.00043

0.00024 0.00034

0.00031

0.00035

0.0003

0.00037

0.0005

0.00025

0.0005

RAB 0.00419

0.00413 0.00143

0.00144

0.66227

0.00133

0.0025

0.00773

0.00176

0.00413
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TasLe 11. Efficiency comparison of RSS vs. SRS for reliability estimation
A setsize ML MPS LS WLS CM AD RAD MNSAD PC MNSLD
(33) 0951 0.726 0.548 0.541 0.544 0542 0537 0633 0409 0.633
0.5 (44) 0786 0.635 0439 0448 0435 0454 0462 0716 0276 0.716
(5,50 0.988 0.603 0.338 0.344 0.333 0.346 0356 0.588 0364  0.588
(33) 034 0961 0895 0912 0.889 0.904 0.882 0.891  0.898  0.891
072 (44) 0548 0979 09 0915 0896 0.915 0903 0932 0.885 0.932
(5,5 0724 0973 0931 0.935 0.928 0.936 0.93 0961 0913  0.961
(33) 0994 0.858 0.854 0.854 0.858 0.861 0.864 0.899 0951 0.899
0731 (44) 0954 0862 0869 0.869 0.872 0.882 0.867 0.88 0.919 0.88
(5,5 0984 0.879 0875 0.881 0.877 0.889 0.876  0.855 0907  0.855
(33) 0986 0.633 0.584 0.591 0.595 0.598 0.63 0.752 0.75 0.752
0.844 (4,4) 0.882 0557 0537 0.551 0.546 0.554 0.568 0.669 0.841  0.669
(5,5) 0944 0.619 0595 0.606 0.609 0.629 0.593  0.756  0.834 0.756
33) 0959 06 04 0406 0.389 0417 0457 0.634 0341 0.634
0901 (44) 094 0594 0413 0405 0426 0425 0429 0.638 0517  0.638
(b5) 093 0542 0353 0.323 0.343 0.333 0.351 0.6 0.44 0.6

8. APPLICATION

This section provides an application using two data sets to show how the stress-strength esti-
mation using BXII and BIII distributions can be applied effectively in practice. In this application,
the model parameters are estimated using the RSS approach using the following methods: ML,
MXPS, LS, WLS, CM, AD, RAD, MNSAD, PC, and MNSLD. For visual comparison, the plots of
the fitted PDFs, CDFs, Probability—Probability (P-P), and Quantile-Quantile (Q-Q) of the BXII and
BIII distributions are shown, respectively. The required computations are carried out using the R
software.

The first data set refers to trade share data from [61]. The prices of the 31 distinct children’s

wooden toys that were offered for sale in an April 1991 craft store in Suffolk comprised the second
data set studied by [62]. The data sets considered are detailed as follows:
Data set I: (n = 61) 0.1405, 0.15662, 0.1577, 0.16041, 0.16082, 0.22146, 0.29941, 0.31307, 0.32461,
0.324750.32948, 0.33002, 0.33788, 0.33971, 0.35232, 0.35886, 0.39325, 0.4176, 0.42584, 0.43558 0.44214,
0.44438, 0.45055, 0.45577, 0.46835, 0.47326, 0.4846, 0.48895, 0.50959, 0.51767 0.52777, 0.53469,
0.54334, 0.54424, 0.55081, 0.55272, 0.56064, 0.56075, 0.56713, 0.57528 0.58281, 0.60304, 0.60503,
0.61362, 0.62608, 0.63948, 0.64691, 0.6512, 0.68156, 0.69943 0.70482, 0.72923, 0.74297, 0.7455, 0.77985,
0.79838, 0.81471, 0.82296, 0.83024, 0.8342, 0.97936.

Data set II: (n = 31) 4.2,1.12,1.39, 2, 3.99, 2.15, 1.74, 5.81, 1.7, 2.85, 0.5, 0.99, 11.5, 5.12, 0.9, 1.99,
6.24,2.6,3,12.2,7.36,4.75,11.59, 8.69, 9.8, 1.85, 1.99, 1.35, 10, 0.65, 1.45.
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Ficure 5. Estimated PDF, CDF, QQ-plot, and PP-plot for Burr XII according to data

set]

Ficure 6. Estimated PDF, CDF, QQ-plot, and PP-plot for BIII according to data set II
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Before commencing analysis of data sets I and II, goodness-of-fit tests are conducted to ensure
they align well with the BXII and BIII distributions, respectively. The Q-Q plots are depicted in
Figures 5 and 6 to visually assess this fit for each dataset. Additionally, the Kolmogorov-Smirnov
test is computed for each dataset to obtain a statistical measure of the fit. The p-value for the first
data set is 0.9546, indicating a good fit to the BXII distribution, while the second data set yields
a p-value of 0.975, signifying a good fit to the BIII distribution. Using the previously described
estimation techniques, the mean for S-S reliability is calculated for various set sizes, as shown in
Table 12.

TaBLE 12. Mean of/TML /TCM /fL /fw,ifMXﬁMNA PEMNL ZRAD,PEAD and/fp based on RSS

atg, =q: =5
(mz,m;) ML MXPS LS WLS cM AD RAD MNSAD PC MNSLD

(33) 0.0936 0.0481 0.0535 0.0304 0.0305 0.0517 0.0004 0.025 0.0021 0.0222

(44) 0.077 0.1099 0.0147 0.0048 0.0075 0.0165 0.004 0.0049 0.0017  0.0273
(5,5) 0.0845 0.0188 0.017 0.0022 0.0098 0.0253 0.0035 0.009 0.00003  0.009

Building upon the theoretical findings, the application of the RSS approach to real-world datasets
where, the R package "RSSampling" is employed to generate the RSS design, which is then applied
to datasets I and II. The analysis assumes the strength Z ~ BXII(9, w1 ), and the stress T ~ BIII(9, wy),
where Z and T are independent. For each dataset and set size combination, the S-S estimates are
computed using ten different methods (ML, MXPS, LS, WLS, CM, AD, RAD, MNSAD, PC, and
MNSLD) across five analysis cycles.

9. CONCLUSION

This paper investigates S-S reliability A = P [T < Z] when stress (T) and strength (Z) are inde-
pendent random variables following Burr III and Burr XII distributions, respectively, and both
variables are drawn from an RSS design as well as SRS. Ten frequentist estimation methods are
compared to assess their performance in estimating reliability. A numerical analysis is conducted
to evaluate the behavior of these estimators based on metrics including the mean, AB, RAB, MSE,
and Eff. The results suggest that estimators based on maximum product spacing and percentiles
techniques provide the most reliable estimates under the RSS and SRS designs compared to other
methods. Furthermore, the analysis indicates that estimators based on RSS generally outperform
those based on SRS in terms of efficiency. Real-world data applications are presented to further
support these findings.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the
publication of this paper.
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