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Abstract. An acceptance sampling plan is a statement of the sample size to be used and the associated acceptance or

rejection criteria for sentencing individual lots. An important measure of the performance of an acceptance sampling

plan, such as the operating characteristic curve, is related to probability distributions. This research investigates the effect

of binomial, Poisson and normal approximations to single and double acceptance sampling plans for attributes. For

single-sampling plans, type-A OC curves show that the binomial approximation tends to overestimate the probability

of acceptance Pa of the true hypergeometric distribution when the lot size is at most 10 times the sample size. The

single-sampling plan with type-B OC curve displays that the Pa from Poisson is a slight overestimate of the true

Pa for the binomial distribution with small n and large p, moreover, the Pa from normal approximation can be a

significant underestimation, exact value, or overestimation of the binomial, even with small p. On double-sampling

plans, the Poisson approximation results in a tiny overestimation, while the normal approximation appears to be a

major underestimation of the binomial. In rectifying inspection, the characteristics of AOQL are very similar to the

sampling plan.

1. Introduction

Statistical process control has been the centerpiece for modern statistical quality assurance,

acceptance sampling remains a useful tool for a company to control the quality of raw materials

or parts shipped from the suppliers, particularly when no company representatives are present at

the suppliers’ manufacturing facilities. There are a number of different ways to classify acceptance
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sampling plans, one major classification is by variables and attributes. Variables are quality

characteristics that are measured on a numerical scale such as length, width, height, diameter, etc.

A quality characteristic that cannot be measured on a numerical scale is expressed as an attribute,

a set of system functional and non-functional requirements used to evaluate system performance.

The attributes include performance, reliability, appearance, etc. This research deals with lot-by-lot

acceptance sampling plans for attributes.

Among the categories of single-, double-, multiple-, and sequential-sampling plans for at-

tributes, single-sampling plan is effective and the most popular. A single-sampling plan is defined

by lot size N, sample size n, acceptance number c, and the number of defective items d. If d ≤ c, the

lot will be accepted. On the other hand, if d > c then the lot will be rejected. For a double-sampling

plan, a random sample of n1 is selected from the lot, and the number of defectives in the sample

d1, is observed. If d1 ≤ c1 (acceptance number of the first sample), the lot is accepted on the first

sample. If d1 > c2 (acceptance number for both samples), the lot is rejected on the first sample. If

c1 < d1 ≤ c2, a second random sample of size n2 is drawn from the lot, and the number of defectives

in this second sample d2 is observed. If d1 + d2 ≤ c2, the lot is accepted, however, if d1 + d2 > c2,

the lot is rejected. A multiple-sampling plan is an extension of double-sampling in that more than

two samples can be required to sentence a lot. Sequential-sampling plans are often applied where

sample size is critical, so that a minimum sample must be taken. Under sequential sampling,

samples are taken one at a time until a decision is made on the lot or process sampled. After each

item is taken, a decision is made to: 1) accept; 2) reject; or 3) continue sampling. Samples are taken

until an accept or reject decision is made. Thus, the procedure is open-ended, the sample size not

being determined until the lot is accepted or rejected [1].

An important measure of the performance of an acceptance sampling plan is the operating

characteristic (OC) curve. The OC curve depicts the discriminatory power of an acceptance

sampling plan. The OC curve plots the probabilities of accepting a lot versus the fraction defective.

When the OC curve is plotted, the sampling risks are obvious. Two types of OC curves are

recognized: Type-A OC curve assumes that the sample is chosen from an isolated lot of finite

size, and the probability of accepting the lot is calculated based on a hypergeometric distribution;

Type-B assumes that the sample is chosen from a process (such as the producer’s process, which

produced the lot), and the binomial distribution is the exact probability distribution for calculating

the probability of lot acceptance.

In acceptance sampling plan, the consumers accept the lot if the acceptance criteria are satisfied,

otherwise, they reject the lot. This increases the process control producer’s risk. Rectifying

sampling plans are used to reduce the producer’s risk. In such a plan, the entire lot is not rejected,

instead, each and every unit/item of the lot is inspected. It means that 100% inspection of the

rejected lot is carried out and the defective units found in the lot are replaced by non-defective

units. This procedure is known as recti f ying or screening the rejected lots. Average outgoing quality

(AOQ) is widely used for the evaluation of a rectifying sampling plan and is the quality in the lot
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that results from the application of rectifying inspection. The maximum value of AOQ represents

the worst possible average quality that would result from the rectifying inspection program, and

this value is called the average outgoing quality limit (AOQL).

The probability distributions such as hypergeometric, binomial, Poisson, and normal have

proved useful in quality control and computing the probabilities associated with the OC curve and

other acceptance sampling characteristics. The binomial distribution can be used to approximate

the hypergeometric distribution when the sample size n is small compared to the lot size N, and

the approximation is good when n/N ≤ 0.1. The Poisson distribution is related to the binomial

distribution with parameters n and p, if n is large and p is close to 0, the Poisson distribution can be

used, with µ = np, to approximate binomial probabilities. The binomial distribution is also nicely

approximated by the normal distribution for p of approximately 1/2 and n > 10 or other values of

p and larger values of n.

According to some useful approximations, this research studies the effect of approximate prob-

ability distributions on single- and double- acceptance sampling plans for attributes. The type-A
and type-B OC curves are constructed to display how approximate distribution affects the prob-

ability of acceptance. Moreover, the values of AOQL are investigated to consider the yield of

distribution approximations on rectifying inspection.

2. Acceptance Sampling

Generally, there are three approaches to lot sentencing: 1) accept with no inspection; 2) 100%

inspection; and 3) acceptance sampling. Acceptance sampling is a middle ground between the

extremes of 100% inspection and no inspection [2], and is concerned with inspection and decision-

making regarding products, one of the oldest aspects of quality assurance. Acceptance sampling

was popularized by Dodge and Romig [3] was originally applied by the U.S. military to the

testing of bullets during World War II. In the 1930s and 1940s, acceptance sampling was one of the

major components of the field of statistical quality control and was used primarily for incoming

or receiving inspection. In more recent years, it has become typical to work with suppliers to

improve their process performance through the use of statistical process control and designed

experiments, and not to rely as much on acceptance sampling as a primary quality assurance

tool. Al-Nasser and Alhroub [4] proposed new single acceptance sampling plans assuming that

the lifetime distribution is the Q-Weibull distribution of a product. For a finite population size,

they applied hypergeometric theory to compute the probability of acceptance, and the procedure

is used to compute the minimum sample size and the operating characteristics of the sampling

plans. Bilal, Mohsin and Abbas [5] proposed an acceptance sampling plan for the life length of a

product which follows Weibull-Rayleigh distribution and demonstrated the OC curves to derive

the efficiency of the proposed acceptance sampling plan.

2.1. Single-Sampling Plan for Attribute. A single-sampling plan is a lot-sentencing procedure

in which one sample of n items is selected at random from the lot, and the disposition of the lot
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is determined based on the information contained in that sample. For example, a single-sampling

plan for attributes would consist of a sample size n and an acceptance number c. The procedure

would operate as follows: 1) select n items at random from the lot; 2) if there are c or fewer defective

items (d) in the sample, accept the lot, and if there are more than c defective items in the sample,

reject the lot.

The probability of acceptance Pa is the probability that defective items d ≤ c. It is a probabilistic

measure, and the result can vary from 0 to 1.

2.2. Double-Sampling Plan for Attribute. A double-sampling plan is a procedure in which a

decision about the acceptance or rejection of a lot is based on two samples that have been inspected.

The double-sampling plan is defined by four parameters: n1 is the sample size of the first sample;

c1 is the acceptance number of the first sample; n2 is the sample size of the second sample; and c2

is the acceptance number for both samples.

In a double-sampling plan, the number of defective items d1 in an initial sample of size n1

is determined. There are then three possible courses of action: 1) immediately accept the lot if

d1 ≤ c1; 2) immediately reject the lot if d1 > c2; or 3) take a second sample of n2 items and reject

or accept the lot depending on the total number of defective items in both samples – accept the

lot if d1 + d2 ≤ c2 or reject the lot if d1 + d2 > c2. If PI
a and PII

a denote the probability of acceptance

on the first and second samples, respectively, and Pa denotes the probability of acceptance on the

combined samples, then

Pa = PI
a + PII

a .

However, it is customary to terminate inspection of the second sample if the number of defec-

tives is sufficient to justify rejection before all items have been examined. This is referred to as

curtailment in the second sample. Under curtailment, it can be shown that the expected number

of items inspected in double-sampling plan is smaller than the number of items examined in

single-sampling plan when the OC curves of the two plans are close to being identical [6].

2.3. Operating Characteristic Curve. The Operating characteristic (OC) curve is an important

measure of the performance of an acceptance-sampling plan. This curve plots the probability of

accepting the lot versus the lot fraction defective. Thus, the OC curve displays the discriminatory

power of the sampling plan. That is, it shows the probability that a lot submitted with a certain

fraction defective will be either accepted or rejected.

A type-A OC curve is based on the hypergeometric distribution and is used to calculate prob-

abilities of acceptance for an isolated lot of finite size. In the construction of the OC curve which

assumes that the samples come from a large lot or sampling from a stream of lots selected at ran-

dom from a process, in this situation, the binomial distribution is the exact probability distribution

for calculating the probability of lot acceptance. This OC curve is referred to as a type-B OC curve.

Some literature describes the OC curves based on their distributions. Schilling [7] introduced the

f -binomial distribution as a Poisson type finite analog to the hypergeometric distribution for use
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in constructing appropriate type-A OC curves for defects, moreover, the use of average run length

in characterizing type-B sampling plans was presented as a missing measure in the evaluation

of such plans. Samohyl [8] suggested the use of the hypergeometric distribution to calculate the

parameters of sampling plans to reduce the error caused by approximations from binomial or

Poisson distributions for finite lot size. In hypothesis testing, he evaluated the null hypothesis

statement from both producer’s and customer’s standpoints, considering the producer’s risk (the

probability of rejecting a good lot when it is not) and customer’s risk (the probability of accepting

a bad lot when it is not). The procedure was based on individual lot acceptance sampling plan

evaluation rather than the totality of lots produced by the producer.

Recent research from Alashaari and Alshammari [9] found that probability distributions such as

hypergeometric, binomial and Poisson can be incorporated into sampling plan to control the quality

of industrial products within production processes. Their research was conducted to investigate

some industries in the Middle East that were facing strong competition and better-quality products

from foreign counterparts. Also, their research was based on experiments using the defective ratio

in the samples taken as an approximation to the probability of defective units in the production

process. Chukhrova and Johannssen [10] presented a new binomial-type approximation for the

type-A OC function, derived its properties, and compared this approximation via an extensive

numerical study. They found that it can reduce the computational effort in relation to the type-A
OC function and strongly recommended it for calculating sampling plans. Dewi, Gunawan and

Alamsjah [11] considered two cases applicable to using the hypergeometric type-A OC curve;

non-returned sample for destructive inspection and returned sample. They found that for a non-

returned sample, a larger sample size n is required, even more than that of using the binomial

distribution’s sample size, which has traditionally been considered conservative. In addition,

the OC curve can be used to describe the ability of the control charts to detect shifts in process

quality. Nidsunkid, Budsaba and Duangsaphon [12] investigated the OC curves of the well-known

Shewhart x̄ chart when the normality assumption is violated and they found that a small size of

shift is more sensitive to departures from normality than the large one.

2.4. Rectifying Inspection. After inspection, accepted lots go to the consumer and rejected lots

may be handled as follows: destroyed; resubmitted; or screened. Acceptance sampling schemes

which incorporate 100% inspection or screening of rejected lots are called rectifying inspection schemes.

In a sampling inspection plan, the items manufactured by the producer are formed in lots. The

average quality level of the lots is set by the producer and the consumer through negotiation,

and the producer sends the lots to the consumer for inspection. The quality of the lots before

the inspection is known as incoming quality, and the quality of the lots which have been accepted

after the inspection is known as outgoing quality. In an acceptance sampling plan, the lots are

either accepted or rejected, so, the outgoing quality is the same as the incoming quality. However,

in a rectifying inspection, the rejected lots are rectified or screened, so the outgoing quality will

differ from the incoming quality. Therefore, the concept of average outgoing quality is particularly
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useful for the evaluation of a rectifying inspection. If the number of defective items in the sample

is less than the acceptance number, the lot is accepted by replacing all defective items found in the

sample with non-defective items. If the number of defective items is greater than the acceptance

number, each and every unit of the lot is inspected. It means that 100% inspection is carried out

for each rejected lot and all defective items found in the lot are replaced by non-defective items.

Therefore, these lots are accepted after 100% inspection with zero percent defective. As a result,

the accepted stores will consist of lots of varying quality level, ranging from quality levels lower

than the acceptance quality level to lots with zero defective. When all lots are considered together,

their average quality level may be considerably different from the incoming quality. The expected

quality of the lots after the application of sampling inspection is called the average outgoing quality

(AQL) and is defined as follows:

AOQ =
Number of defective items in the lot after inspection

Lot size
.

For single-sampling plan, the AOQ is calculated as follows:

AOQ =
Pap(N − n)

N
. (2.1)

When rectifying inspection is performed with double-sampling, the AOQ is given by:

AOQ =
[PI

a(N − n1) + PII
a (N − n1 − n2)]p

N
. (2.2)

Note that as the lot size N becomes large relative to the sample size n, we may write (2.1) and

(2.2) as:

AOQ = Pap.
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0.001
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Figure 1. The AOQ curve

The curve that plots average outgoing quality against incoming lot quality is called an AOQ
curve, which is shown in Figure 1. When the incoming quality is good, a large proportion of the

lots will be accepted by the rectifying sampling plan and only a smaller fraction will be screened,
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hence, the outgoing quality will be good. However, when the incoming quality is not good, a

large proportion of the lots will be screened. In such cases, the outgoing quality will also be good

because defective items will either be replaced or rectified. Between these extremes, the AOQ

increases up to a maximum and then decreases. The maximum value of AOQ represents the worst

possible average for the outgoing quality, and it is known as the average outgoing quality limit

(AOQL).

The AOQ and AOQL are particularly useful for the evaluation of a rectifying inspection. Salvia

[13] determined the acceptance probability and AOQ that were achieved by using the standard

stoplight rules, assuming that the measured characteristics were normally distributed and also

determined the AOQL for any distribution of the characteristic. Yen et al. [14] proposed a quality

cost model of repetitive sampling to develop a rectifying acceptance sampling plan based on the

one-sided process capability index and also used the AOQ curve and AOQL for describing their

proposed sampling plan.

3. Distribution Approximations

Probability distributions have an importance role in quality control and acceptance sampling.

Many manufacturing processes follow a normal distribution, the mean and standard deviation

of the process are used to set control limits to ensure that the process stays within acceptable

bounds. The hypergeometric distribution can be used when sampling defectives from a finite

lot without replacement and the binomial distribution can be applied when the defectives are

sampled from an infinite lot (very large lot size) or from a finite lot with replacement. In addition,

the operating characteristic curves for control chart for nonconformities (c chart) and control chart

for nonconformities per unit (u chart) can be obtained from the Poisson distribution.

The hypergeometric distribution is one of the important discrete probability distributions that

can be used to design acceptance sampling procedures. It is the appropriate probability model

for selecting a random sample of n items without replacement from a lot of N items of which D is

nonconforming or defective. In a random sample selected in such a way that all possible samples

have an equal chance of being chosen, let x represents the number of nonconforming items found in

the sample. Then x is a hypergeometric random variable with the probability distribution defined

as follows:

f (x) =
(D

x)(
N−D
n−x )

(N
n)

, x = 0, 1, 2, ..., min(n, D) . (3.1)

The mean and variance of the hypergeometric distribution are µ = nD
N and σ2 = nD

N

(
1− D

N

) (
N−n
N−1

)
,

respectively.

The binomial distribution is used frequently in the quality inspection. It is the appropriate

probability model for sampling from an infinitely large population, where p represents the frac-

tion of defective (or damage or dismatch or nonconforming) items in the population. In these

applications, x usually represents the number of defective items found in a random sample of

n items. When a production unit is selected randomly from the production process, either this
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unit is defective (non-matching with specifications) or is intact (matching with specifications). If

this process is repeated n times under the same circumstances with replacement, the results are

independent. Inspection with replacement confirms that the probability of success p or failure

1− p remain constant from one attempt to another. The random variable x, that we are interested

in is the number of defective items observed from the sample units of size n, has the binomial

distribution with parameters n and p, defined as follows:

f (x) =
(
n
x

)
px(1− p)n−x, x = 0, 1, 2, ..., n . (3.2)

The mean and variance of the binomial distribution are µ = np and σ2 = np(1− p), respectively.

The Poisson distribution can be applied in quality control as a model for the number of defects

or nonconformities that occur in a unit of product. In fact, any random phenomenon that occurs on

a per unit (or per unit area, per unit volume, per unit time, etc.) basis is often well approximated

by the Poisson distribution. This distribution is also used in preparing quality control charts for

samples and calculating probabilities for acceptance inspection plans. If the average number of

defects occurring in the unit is λ (λ > 0), then the random variable x representing the actual

number of defects occurring in the unit, is said to have a Poisson distribution with the probability

distribution defined as follows:

f (x) =
e−λλx

x!
, x = 0, 1, 2, ... . (3.3)

The mean and variance of the Poisson distribution are µ = λ and σ2 = λ, respectively.

For control charts for variables, the normal distribution is an important assumption that is used

to describe the behavior of variables or quality characteristics. If x is a normal random variable,

then the probability distribution of x is defined as follows:

f (x) =
1

σ
√

2π
e−

1
2 (

x−µ
σ )

2

, −∞ < x < ∞ .

The mean and variance of the normal distribution are µ (−∞ < µ < ∞) and σ2 > 0, respectively.

It is sometimes useful to approximate one probability distribution with another. This is partic-

ularly helpful in situations where the original distribution is difficult to handle analytically. These

approximations help to save time and effort in calculations, especially in cases which it is not

feasible to use the original distributions.

3.1. The binomial approximation to the hypergeometric. This approximation is useful in the

design of acceptance sampling plans. Recall that the hypergeometric distribution is the appropriate

model for the number of nonconforming items obtained in a random sample of n items from a

lot of finite size N. Thus, if the sample size n is small relative to the lot size N (often called the

sampling f raction is small or n/N ≤ 0.1), the binomial distribution with parameters p = D/N
and n is a good approximation to the hypergeometric, which usually simplifies the calculations

considerably.

Since D = Np, (D
x) =

D!
x!(D−x)! , (

N−D
n−x ) =

(N−D)!
(n−x)!((N−D)−(n−x))! and (N

n) =
N!

n!(N−n)! .
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From (3.1), we get

f (x) =
D!(N −D)!n!(N − n)!

x!(D− x)!(n− x)!((N −D) − (n− x))!N!

=
n!

x!(n− x)!
(Np)!(N −Np)!(N − n)!

(Np− x)!((N −Np) − (n− x))!N!

=
n!

x!(n− x)!
(Np)!(N(1− p))!(N − n)!

(Np− x)!(N(1− p) − (n− x))!N!

=
n!

x!(n− x)!
[Np(Np− 1) · · · (Np− x + 1)][N(1− p)(N(1− p) − 1) · · · (N(1− p) − (n− x) + 1)]

N(N − 1) · · · (N − n + 1)

=
n!

x!(n− x)!

[
Nxp

(
p− 1

N

)
· · ·

(
p− x−1

N

)] [
Nn−x(1− p)

(
(1− p) − 1

N

)
· · ·

(
(1− p) − n−x−1

N

)]
Nn

(
1− 1

N

)
· · ·

(
1− n−1

N

)
=

n!
x!(n− x)!

[
p
(
p− 1

N

)
· · ·

(
p− x−1

N

)] [
(1− p)

(
(1− p) − 1

N

)
· · ·

(
(1− p) − n−x−1

N

)](
1− 1

N

)
· · ·

(
1− n−1

N

)
→

(
n
x

)
px(1− p)n−x, as N→∞, or (3.2) which is the binomial distribution.

3.2. The Poisson approximation to the binomial. For binomial distribution with parameters n
and p, if we let n approach infinity and p approach zero in such a way that np = λ is constant, then

the Poisson distribution results. It is possible to derive the Poisson distribution as a limiting form

of the binomial distribution [15].

From equation (3.2) and p = λ
n , consider

lim
x→∞

f (x) = lim
x→∞

(
n
x

)
px(1− p)n−x

= lim
x→∞

n!
x!(n− x)!

(
λ
n

)x (
1−

λ
n

)n−x

= lim
x→∞

n(n− 1)(n− 2) · · · (n− x + 1)
x!

(
λ
n

)x (
1−

λ
n

)n−x

= lim
x→∞

n
n
·

n− 1
n
· · ·

n− x + 1
n

·
λx

x!

(
1−

λ
n

)n (
1−

λ
n

)−x

=
λx

x!
lim
x→∞

(
1 +
−λ
n

)n
· lim

x→∞

(
1−

λ
n

)−x

=
λx

x!
e−λ(1)

(
since lim

x→∞

(
1 +
−λ
n

)n
= e−λ

)
=

e−λλx

x!
, or (3.3) which is the Poisson distribution.

3.3. The normal approximation to the binomial. With probability of success p, if the number of

trials n is large, then we may use the central limit theorem to justify the normal distribution with

mean np and variance np(1− p) as an approximation to the binomial [16]. That is,

f (x) =
(
n
x

)
px(1− p)n−x ∼

1√
2πnp(1− p)

e
−

1
2

(
x−np
√

np(1−p)

)2

.



10 Int. J. Anal. Appl. (2025), 23:235

Since the binomial distribution is discrete and the normal distribution is continuous, it is common

practice to use continuity corrections in the approximation, so that

P{x = a} � Φ

 a + 1
2 − np√

np(1− p)

−Φ

 a− 1
2 − np√

np(1− p)


where Φ denotes the standard normal cumulative distribution function. Other types of probability

statements are evaluated similarly, such as

P{a ≤ x ≤ b} � Φ

 b + 1
2 − np√

np(1− p)

−Φ

 a− 1
2 − np√

np(1− p)

 .

The normal approximation to the binomial is known to be satisfactory for p approximately 1/2

and n > 10. For other values of p, larger values of n are required. In general, the approximation is

not adequate for p < 1/(n + 1) or p > n/(n + 1), or for values of the random variable outside an

interval six standard deviations wide centered about the mean, i.e., the interval np± 3
√

np(1− p)
[17].

We may use the normal approximation for the sample fraction defective p̂ = x/n. The random

variable p̂ is approximately normally distributed with mean p and variance p(1− p)/n, so that

P{a ≤ p̂ ≤ b} � Φ

 b− p√
p(1− p)/n

−Φ

 a− p√
p(1− p)/n

 .

4. Research Scope

For a single-sampling plan, we consider the acceptance number c as 0, 1 and 2. For the type-A
OC curve, the probability of acceptance Pa is calculated based on hypergeometric and binomial

approximation with various lot fraction defective p. The sampling fraction n/N is defined as 0.20

(N = 500, n = 100 and N = 1, 000, n = 200), 0.10 (N = 500, n = 50 and N = 1, 000, n = 100) and

0.05 (N = 500, n = 25 and N = 1, 000, n = 50). Also, for the type-B OC curve, the Pa based on

binomial, Poisson approximation and normal approximation are performed with lot size N = ∞

and sample sizes n = 30, 50, 100, 200, 500 and 1,000.

In a double-sampling plan, the scope of acceptance number for the first sample c1 and acceptance

number for both sample c2 are: c1 = 0, c2 = 1; c1 = 1, c2 = 3; c1 = 2, c2 = 5; c1 = 3, c2 = 7;

c1 = 4, c2 = 9; and c1 = 5, c2 = 11. The sample size for the first sample n1 and the sample size for

the second sample n2 are inspected in two cases: n2 = n1; and n2 = 2n1, with n1 = 50, 100 and 200.

The AOQL values are investigated to show how sensitive the rectifying inspection procedure

based on single- and double-sampling plans is to approximate distributions.

5. Results and Discussion

The type-A OC curves for a single-sampling plan based on hypergeometric and binomial ap-

proximation with acceptance numbers c = 0, 1 and 2 are shown in Figure 2. Generally, as the size

of c increases, the probability of acceptance Pa increases for all lot fraction defective p > 0. At the

same sampling fraction, the OC curves with larger sizes of N and n tend to reach Pa = 0 more
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quickly than smaller ones. When the lot size is 5 times the sample size or the sampling fraction

n/N = 0.20, which are shown in Figures 2(a) and 2(b), the probabilities of acceptance from bi-

nomial approximation are always higher than the hypergeometric, exact probability distribution,

with zero acceptance numbers (c = 0); when c > 0, the values of Pa from binomial approximation

are smaller than hypergeometric with small p, however, Pa values from binomial approximation

are larger than hypergeometric as p increases. As the n/N = 0.20, the Pa when n/N = 0.10 in

Figures 2(c) and 2(d) have similar patterns and binomial approximation OC curves are quite close

to hypergeometric. If n/N = 0.05 in Figures 2(e) and 2(f), the OC curves based on hypergeometric

and binomial approximation are virtually indistinguishable.

The type-A OC curves ensure the theoretical fact that if the lot size is greater than 10 times

the sample size (sampling fraction n/N < 0.10), then the binomial distribution will be a good

approximation to the hypergeometric.

Figure 3 shows the type-B OC curve for a single-sampling plan based on binomial, Poisson

approximation, and normal approximation with acceptance numbers c = 0, 1 and 2. The probability

of acceptance Pa from Poisson distribution is very close to binomial, exact probability distribution

with small lot fraction defective p. When p is larger, the increasing sample sizes n can reduce the

difference of Pa between binomial and Poisson. For normal approximation, sampling plans with

c = 0 have OC curves that are smaller and more convex than binomial throughout small values of

p. As a result of this shape, the probability of acceptance begins to drop very rapidly. For c > 0 and

very tiny p values, the OC curves from normal approximation are lower than binomial, especially

with c = 2. However, once lot fraction defective p increases, the normal approximation curves

tend to be close to binomial curve and then lift from them. The rising of normal approximation

after attaching binomial is obviously seen for larger n.

These graphical results illustrate that, although the normal approximation is often justified by

the Central Limit Theorem (CLT) for large n, it may yield inaccurate estimates of Pa in acceptance

sampling contexts where small values of p and strict decision thresholds are involved. The CLT

assumes convergence in distribution as n→∞, but in practice, the accuracy of approximations like

normal or Poisson depends not only on n, but also on acceptance number c, lot fraction defective

p, and the sampling fraction n/N. Therefore, using normal approximation based solely on large

sample size may be misleading.

The graphical characteristics offer further insights into the behavior of different approximations.

The rapid early drop and pronounced convexity of the normal-based OC curves for c = 0 imply

that the normal approximation tends to be overly pessimistic in detecting small defect rates,

potentially rejecting lots too aggressively. This could result in unnecessary rejections in high-

quality manufacturing environments. For c > 0, the initial underestimation at low p followed

by overestimation at higher p reflects a non-uniform bias that varies depending on defect level.

In contrast, the smooth and gradual decline of binomial and Poisson OC curves suggests more

balanced detection performance across the entire range of p. These patterns reinforce the notion
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that normal approximation is not uniformly conservative or liberal, it may shift from under-to

overestimation depending on the region of p, which complicates risk assessment. Thus, the shape

and curvature of OC curves are not merely visual, they carry decision-theoretic implications for

producers and consumers alike.
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Figure 2. Type-A OC curve for single-sampling plan based on hypergeometric and binomial approx-

imation.
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Figure 3. Type-B OC curve for single-sampling plan based on binomial, Poisson approximation and

normal approximation.
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Figure 4. Type-B OC curve for double-sampling plan based on binomial, Poisson approximation and

normal approximation when n2 = n1.
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Figure 5. Type-B OC curve for double-sampling plan based on binomial, Poisson approximation and

normal approximation when n2 = 2n1.
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Table 1. The AOQL when rectifying inspection is performed with a single-sampling plan based on

hypergeometric and binomial approximation.

c = 0 c = 1 c = 2

p AOQL p AOQL p AOQL

N = 500, n = 100
hypergeometric 0.0100 0.0026 0.0140 0.0065 0.0220 0.0109

binomial approximation 0.0100 0.0037 0.0160 0.0084 0.0220 0.0137

N = 1, 000, n = 200
hypergeometric 0.0040 0.0013 0.0080 0.0032 0.0100 0.0054

binomial approximation 0.0040 0.0018 0.0080 0.0042 0.0100 0.0068

N = 500, n = 50
hypergeometric 0.0200 0.0062 0.0300 0.0148 0.0420 0.0245

binomial approximation 0.0200 0.0073 0.0300 0.0167 0.0420 0.0273

N = 1, 000, n = 100
hypergeometric 0.0100 0.0031 0.0160 0.0074 0.0220 0.0123

binomial approximation 0.0100 0.0037 0.0160 0.0084 0.0220 0.0137

N = 500, n = 25
hypergeometric 0.0400 0.0133 0.0600 0.0313 0.0900 0.0517

binomial approximation 0.0400 0.0144 0.0600 0.0332 0.0900 0.0546

N = 1, 000, n = 50
hypergeometric 0.0200 0.0067 0.0320 0.0157 0.0440 0.0259

binomial approximation 0.0200 0.0073 0.0320 0.0167 0.0440 0.0273

Table 2. The AOQL when rectifying inspection is performed with a single-sampling plan based on

binomial, Poisson approximation and normal approximation.

c = 0 c = 1 c = 2

p AOQL p AOQL p AOQL

n = 30

binomial 0.0320 0.0121 0.0540 0.0277 0.0740 0.0455

Poisson approximation 0.0320 0.0123 0.0540 0.0280 0.0740 0.0457

normal approximation 0.0320 0.0081 0.0500 0.0227 0.0680 0.0407

n = 50

binomial 0.0200 0.0073 0.0320 0.0167 0.0440 0.0273

Poisson approximation 0.0200 0.0074 0.0320 0.0168 0.0440 0.0274

normal approximation 0.0200 0.0048 0.0320 0.0135 0.0420 0.0243

n = 100

binomial 0.0100 0.0037 0.0160 0.0084 0.0220 0.0137

Poisson approximation 0.0100 0.0037 0.0160 0.0084 0.0220 0.0137

normal approximation 0.0100 0.0024 0.0150 0.0068 0.0220 0.0121

n = 200

binomial 0.0040 0.0018 0.0075 0.0042 0.0115 0.0068

Poisson approximation 0.0040 0.0018 0.0075 0.0042 0.0115 0.0069

normal approximation 0.0040 0.0012 0.0075 0.0034 0.0115 0.0060

n = 500

binomial 0.0020 0.00074 0.0028 0.0017 0.0038 0.0027

Poisson approximation 0.0020 0.00074 0.0028 0.0017 0.0038 0.0027

normal approximation 0.0020 0.00048 0.0028 0.0013 0.0038 0.0024

n = 1, 000

binomial 0.0010 0.00037 0.0016 0.00084 0.0020 0.0014

Poisson approximation 0.0010 0.00037 0.0016 0.00084 0.0020 0.0014

normal approximation 0.0011 0.00024 0.0015 0.00067 0.0020 0.0012
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Table 3. The AOQL when rectifying inspection is performed with a double-sampling plan based on

binomial, Poisson approximation and normal approximation for n2 = n1.

n1 = n2 = 50 n1 = n2 = 100 n1 = n2 = 200
p AOQL p AOQL p AOQL

c1 = 0, c2 = 1
binomial 0.0200 0.0100 0.0090 0.0050 0.0050 0.0025

Poisson approximation 0.0200 0.0101 0.0090 0.0050 0.0050 0.0025
normal approximation 0.0150 0.0067 0.0080 0.0034 0.0040 0.0017

c1 = 1, c2 = 3
binomial 0.0330 0.0220 0.0170 0.0110 0.0080 0.0055

Poisson approximation 0.0330 0.0221 0.0170 0.0111 0.0080 0.0055
normal approximation 0.0300 0.0183 0.0150 0.0091 0.0080 0.0046

c1 = 2, c2 = 5
binomial 0.0480 0.0351 0.0240 0.0176 0.0120 0.0088

Poisson approximation 0.0480 0.0352 0.0240 0.0176 0.0120 0.0088
normal approximation 0.0460 0.0318 0.0240 0.0158 0.0120 0.0079

c1 = 3, c2 = 7
binomial 0.0640 0.0490 0.0320 0.0245 0.0160 0.0122

Poisson approximation 0.0640 0.0489 0.0320 0.0245 0.0160 0.0122
normal approximation 0.0620 0.0462 0.0320 0.0229 0.0160 0.0114

c1 = 4, c2 = 9
binomial 0.0940 0.0782 0.0480 0.0390 0.0240 0.0195

Poisson approximation 0.0940 0.0777 0.0480 0.0389 0.0240 0.0194
normal approximation 0.0920 0.0764 0.0480 0.0379 0.0240 0.0189

c1 = 5, c2 = 11
binomial 0.0800 0.0634 0.0400 0.0316 0.0200 0.0158

Poisson approximation 0.0800 0.0632 0.0400 0.0316 0.0200 0.0158
normal approximation 0.0760 0.0611 0.0400 0.0303 0.0200 0.0151

Table 4. The AOQL when rectifying inspection is performed with a double-sampling plan based on

binomial, Poisson approximation and normal approximation for n2 = 2n1.

n1 = 50, n2 = 100 n1 = 100, n2 = 200 n1 = 200, n2 = 400
p AOQL p AOQL p AOQL

c1 = 0, c2 = 1
binomial 0.0160 0.0083 0.0080 0.0042 0.0040 0.0021

Poisson approximation 0.0160 0.0084 0.0080 0.0042 0.0040 0.0021
normal approximation 0.0150 0.0057 0.0070 0.0028 0.0030 0.0014

c1 = 1, c2 = 3
binomial 0.0290 0.0183 0.0150 0.0092 0.0070 0.0046

Poisson approximation 0.0290 0.0184 0.0150 0.0092 0.0070 0.0046
normal approximation 0.0270 0.0153 0.0130 0.0076 0.0070 0.0038

c1 = 2, c2 = 5
binomial 0.0440 0.0293 0.0220 0.0146 0.0100 0.0073

Poisson approximation 0.0440 0.0293 0.0220 0.0147 0.0100 0.0073
normal approximation 0.0420 0.0265 0.0220 0.0132 0.0100 0.0066

c1 = 3, c2 = 7
binomial 0.0560 0.0409 0.0280 0.0204 0.0140 0.0102

Poisson approximation 0.0560 0.0409 0.0280 0.0204 0.0140 0.0102
normal approximation 0.0540 0.0385 0.0280 0.0192 0.0140 0.0096

c1 = 4, c2 = 9
binomial 0.0700 0.0531 0.0360 0.0265 0.0180 0.0132

Poisson approximation 0.0700 0.0529 0.0360 0.0256 0.0180 0.0132
normal approximation 0.0680 0.0512 0.0340 0.0255 0.0180 0.0127

c1 = 5, c2 = 11
binomial 0.0860 0.0657 0.0420 0.0328 0.0220 0.0163

Poisson approximation 0.0860 0.0654 0.0420 0.0327 0.0220 0.0163
normal approximation 0.0840 0.0643 0.0400 0.0319 0.0200 0.0159
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To investigate the effect of approximate probability distributions on double-sampling plans, the

results are revealed in Figures 4 and 5. The Poisson distribution is still a productive approximation

of the binomial distribution, often yielding a slightly larger Pa than the original. Nevertheless, the

Pa of Poisson obviously differs from binomial when the sample sizes n1, n2 are not many and the

acceptance numbers c1, c2 are large, which are presented in Figures 4(e), 4(f), 5(e) and 5(f). At small

values of p, the normal approximation OC curves depart from binomial curves, however, with the

same sizes of n1, n2, an expansion of acceptance numbers c1, c2 can reduce these departures.

When the rectifying inspection is operated with a sampling plan, the average outgoing quality

limit, AOQL, is given by the maximum value of the average outgoing quality (AOQ). The AOQL

refers to the fact that no matter how poor the incoming quality is, on an average, the outgoing

quality will never be poorer than AOQL. For rectifying inspection, which is dealing with a single-

sampling plan, the AOQL values increase as acceptance number c increases. Table 1 shows that

the binomial approximation offers the larger AOQL than hypergeometric distribution at the same

or similar lot fraction defective p. Table 2 shows that AOQL values of Poisson approximation are

very close to binomial especially when sample size n tends to infinity, in contrast, AOQL values

from normal approximation are always smaller than binomial.

The graphical AOQL curves presented alongside the tabulated values reveal important behav-

ioral differences between the approximations. The AOQL curve based on normal approximation

typically lies below that of the binomial across most of the defect proportion range, indicating a

persistent underestimation of outgoing quality risk. This is particularly visible at low-to-moderate

defect levels, where normal approximation implies an overly optimistic outlook. In contrast,

Poisson-based AOQL curves tend to align more closely with the binomial, not only in magnitude

but also in shape, offering a consistent and stable representation of outgoing quality expectations.

From a strategic decision-making perspective, this has practical implications. A sampling plan

based on normal approximation may lead to overly strict quality control limits, increasing inspec-

tion costs or unnecessary rejections, especially when defect levels are already low. Conversely, if

Poisson approximation is selected, the resulting AOQL estimation is more in line with binomial-

based plans, helping ensure that the quality targets are realistic without being excessively lenient.

For producers operating under tight quality thresholds or regulatory limits, the choice of ap-

proximation directly affects the balance between producer’s risk and consumer’s risk. Hence,

careful attention should be paid not just to analytical convenience, but to the decision-theoretic

consequences shown in AOQL behavior.

The AOQL values when rectifying inspection is performed with a double-sampling plan, which

are indicated in Tables 3 and 4 show similar patterns to the AOQL when rectifying inspection is done

with a single-sampling plan based on binomial, Poisson approximation and normal approximation

in Table 2. These mean that Poisson approximation produces more suitable values of the worst

possible average for the outgoing quality than approximation by normal.
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6. Conclusions

The effect of approximate probability distributions on single- and double- acceptance sampling

plans for attributes are considered by the probability of acceptance from type-A and type-B OC

curves. The values of AOQL are also investigated to consider how distribution approximations

affect the rectifying inspection.

For single-sampling plan based on type-A OC curve, the binomial approximation tends to

provide larger probability of acceptance Pa than hypergeometric when the lot size is at most 10

times the sample size (n/N ≥ 0.10). For type-B OC curve of single-sampling plan, the Poisson

performs as a good approximate probability distribution to the binomial especially when n is large,

however, the Pa from Poisson is slightly overestimate of the true Pa for the binomial distribution

with small n and large p. The normal approximation is not appropriate to estimate type-B OC. The

Pa from normal approximation can be a significant underestimation, exact value, or overestimation

of the binomial, even with small values p.

For double-sampling plan, the Poisson approximation results in a tiny overestimation of bino-

mial, while the normal appears to be an inappropriate approximation because of the major lower

values of Pa than binomial. The size of acceptance numbers c1, c2 also have an influence on the

difference from exact distribution.

In rectifying inspection based on single-sampling plan, the AOQL from binomial approximation

is overestimate to hypergeometric. Also, when the rectifying inspection is performed with single-

and double-sampling plan, the AOQL from Poisson can be a nice approximation for binomial,

however, the AOQL from normal shows the results as being the underestimation.

Although the normal approximation is considered a standard approximation in statistical theory

and is widely used for binomial distributions in practice, particularly as justified by the Central

Limit Theorem (CLT), our study shows that Pa tends to be underestimated in acceptance sampling

plans, even when the sample size is large. In contrast, the Poisson approximation performs well,

particularly with small acceptance numbers and low defect rates.

These findings highlight the importance of considering not only the sample size n, but also

the proportion defective p, lot size N, and the structure of the sampling plan when selecting an

appropriate probability model. Using an inappropriate approximation may result in misleading

acceptance decisions and increased quality risk.
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