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Abstract. In order to forecast and process the behavior of noisy data, spectral analysis is a crucial area of study in data

analysis and interpretation. The goal of this study is to identify the optimal lag window to estimate the continuous-time

Ornstein-Uhlenbeck (OU) process’s spectrum. The equivalent difference equation of the OU process was derived,

and a consistent estimate of the spectral density function (SDF) was calculated using the most prominent lag window

functions in the different parameter cases and time interval segmentation. A parameterized novel lag window (NLW)

was proposed. The parameters can be changed to control the kurtosis and skewness of the NLW curve and reduce the

influence of the tails of the estimated autocorrelation function on the consistent estimate of the SDF. The simulation

results of comparing the SDF and the consistent estimate of the SDF with lag windows showed that the proposed NLW

outperformed all other lag windows in estimating the spectrum of the OU process in all parameter cases and in all

time-interval segmentation. The promising results of NLW can be used in signal processing and spectral analysis of

phenomena subject to the influence of noise.

1. Introduction

Stochastic processes are one of the most important stochastic dynamical systems that describe

many engineering, medical, financial, and natural phenomena [4, 6, 11]. An important mean-

reverting, continuous-time stochastic process is the Ornstein-Uhlenbeck (OU) process, which

describes the velocity of a massive Wiener particle under the influence of friction. Common

applications of the OU process include modeling interest rates and volatility in financial mathe-

matics [17], studying the motion of particles under friction in physical systems [10], studying the

spread of epidemics in medicine [9], and machine learning, such as data classification [2].

Stochastic process analysis is an introduction to understanding the behavior of the stochastic

process, analyzing their data, and thus predicting the future of the stochastic process to which

the phenomenon under study is subject. The stochastic process analysis is divided into the time
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domain analysis and the frequency domain or spectral analysis [13]. Spectral analysis is one of the

most prominent aspects of stochastic process analysis. It attributes differences or similarities in

the phenomenon data to their sources. The spectrum of a stochastic process represents how much

different frequencies contribute to the variance of the stochastic process [16].

The main tool for calculating the spectrum of a stochastic process is the spectral density function

(SDF), which is defined as the Fourier transform of the autocorrelation function of the stochastic

process [1].

In practice, the phenomena described by stochastic processes include noise or disturbances,

and often a limited sample of the phenomenon is studied, so the covariance function, as well as

the autocorrelation function, are unknown, which makes the spectral density function unknown;

it is necessary to find a consistent estimate of the actual spectral density function that describes

the behavior of the stochastic process in the frequency domain. One of the most important non-

parametric methods for estimating the spectral density function of a stochastic process with equal

time divisions is the Fourier transform of the autocorrelation function of the stochastic process [13].

One of the most important aspects on which the quality of the spectral density function estima-

tion depends is the appropriate lag window. The lag window function weights the autocorrelation

function. Researchers have proposed important formulas for delay windows and have used

them to estimate the spectrum of many phenomena and mathematical models that involve white

noise [1, 3, 12, 15].

The manuscript will introduce a new lag window to estimate the spectrum of the OU process.

The new lag window wraps the tails of the truncated autocorrelation function toward apeak,

which decreases as the lag increases, thus reducing the amount of data lost due to truncation. The

new lag window function makes the consistent estimate of the SDF closer to the actual SDF of the

Ornstein-Uhlenbeck process. The necessary statistical properties of the spectral density function

will be calculated, and the proposed lag window will be compared with the most prominent

classical lag window functions. The simulation will be performed in MATLAB, and the results

will be presented in tables and figures.

2. Theoretical Aspect

Consider a stochastic process Ot on a complete probability space (Ω, F, P), the stochastic differ-

ential equation with respect to a Wiener process Wt of the form

dOt = −ξOtdt + λdWt, t ∈ [t0, T] (2.1)

with friction parameter ξ > 0 and diffusion parameter λ > 0, is called the Ornstein-Uhlenbeck

(OU) equation (or "Langevin equation") [5]. The analytical solution of the OU equation (2.1) is

called the Ornstein-Uhlenbeck process, which is given by
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Ot = O0e−ξ(t−t0) + λ

∫ t

t0

e−ξ(t−τ) dWτ

O0 = Ot0

(2.2)

The statistical properties of the OU process (2.2) are required to calculate the spectral density

function (SDE), the expected is E(Ot) = O0e−ξ(t−t0), and var(Ot) =
λ2

2ξ

(
1− e−2ξ(t−τ)

)
.

The covariance function Rv with a lag |v| ≤ T of the OU process (2.2) is,

Rv = Cov(Ot, Ot+v) =
λ2

2ξ
e−vξ

(
1− e−2ξ(t−t0)

)
(2.3)

The autocorrelation function ρv is defined as the normalization of the covariance function Rv, then

ρv for the OU process (2.2) is

ρv =
Rv

R0
=

λ2

2ξe−vξ
(
1− e−2ξ(t−t0)

)
λ2

2ξ

(
1− e−2ξ(t−t0)

) = e−vξ (2.4)

And the SDF f (ω) at each −∞ < ω < ∞ for the OU process (2.2) is

f (ω) =
1

2π

∫
∞

−∞

ρve−iωvdv =
1

2π

∫
∞

−∞

e−vξe−iωvdv (2.5)

where i =
√
−1. Since the OU process is a real-valued stochastic process, that is Re(Ot) = Ot and

the autocorrelation function ρv (2.4) is even at all lag values |v| ≤ T, the SDF (2.5) becomes

f (ω) =
1
π

∫
∞

0
e−vξ cos(ωv) dv =

1
π

Re
{∫

∞

0
e−v(ξ−iω) dv

}
(2.6)

Therefore, the SDF for the stationary OU process (2.2) is

f (ω) =
1
π

(
ξ

ξ2 +ω2

)
, ξ > 0 (2.7)

On the other hand, the consistent form to estimate the SDF of the continuous-time stochastic

process Ot at the lag |v| ≤ T is given by

f̂ (ω) =
1

2π

∫
∞

−∞

ρ̂v λT(v) cos(vω) dv (2.8)

where the angular frequency ω = 2πv
T , and ρ̂v is the consistent form to estimate the autocorrelation

function of Ot (2.4) on the time interval [t0, T], which is given by

ρ̂v =

∫ T−|v|

t0

(Ot − Ōt)(Ot+|v| − Ōt) dt∫ T

t0

(Ot − Ōt)
2 dt

(2.9)

where Ōt is the mean value of the data Ot, and λT(v) is the lag window [13]. The most famous lag

window functions with lag |v| ≤ T are collected in Table 1.
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Window Form of λT(v) Notes

Bartlett–

Hanning

α1 − α2
∣∣∣ v
T − α3

∣∣∣− α4 cos
(
π|v|
T

)
α1 = 0.62, α2 = 0.48, α3 = 0.5,

α4 = 0.38

Blackman α1 + α2 cos
(
π|v|
T

)
+ α3 cos

(
2π|v|

T

)
α1 = 0.42, α2 = 0.5, α3 = 0.08

Blackman–

Harris

α1 − α2 cos
(
π|v|
T

)
+ α3 cos

(
2π|v|

T

)
− α4 cos

(
3π|v|

T

)
α1 = 0.35875, α2 = 0.48829,

α3 = 0.14128, α4 = 0.01168

Bohman
(
1− |v|T

)
cos

(
π|v|
T

)
+ 1

π sin
(
π|v|
T

)
Cauchy 1

1+(αv/T)2 α = 3.0

Cosine sin
(
π|v|
T

)
Exponential 0.1|v|/T

Flat-top α1 − α2 cos
(
π|v|
T

)
+ α3 cos

(
2π|v|

T

)
− α4 cos

(
3π|v|

T

)
+

α5 cos
(

4π|v|
T

) α1 = 0.21557895,

α2 = 0.41663158,

α3 = 0.27726316,

α4 = 0.08357895, α5 = 0.00694737

Gaussian e−
1
2 (

α v
T )2

α = 2.5

Hamming α1 + α2 cos
(
π|v|
T

)
α1 = 0.54, α2 = 1− α1

Hanning α+ α cos
(
π|v|
T

)
α = 0.5

Hanning–

Poisson

0.5[1 + cos
(
πv
T

)
]e−

α|v|
T α = 2

Parzen

1− 6
(
|v|
T

)2 (
1− |v|T

)
, |v| ≤ T

2

2
(
1− |v|T

)3
, T

2 < |v| ≤ T

Poisson e−α
v
T α = 2, e = 2.71828

Fejer 1− |v|T

Riesz 1− ( |v|T )
2

Table 1. Most Popular Lag Window Functions [1, 7, 8, 13, 16].

3. Novel LagWindow (NLW)

The lag window function λT(v) is recognized to weight the estimated autocorrelation function

ρ̂v [16] in the consistent estimate of the SDF form f̂ (ω) (4.2).

The integration in the estimated form of the SDF (4.2) at all lag values |v| ≤ T produces an

inconsistent estimate of the SDF, and when |v| → T, then ρ̂v is not a good estimate to ρv, and thus

the influence of the tails of the estimated autocorrelation functionρv from the data increases, and the

estimated autocorrelation function is truncated. A good lag window λT(v) weights the estimated

autocorrelation function ρ̂v to include the truncated data, resulting in a consistent estimate of the

SDF.

The autocorrelation curve has a unique maximum value at lag v = 0, then it slopes downward

as the lag values v move towards T, meaning that the amount of variation in the phenomenon data
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increases. More precisely, increasing the lag v leads to decreasing values of the autocorrelation

function.

We will propose a lag window that vanishes the effect of the tails of the estimated autocorrelation

function ρ̂v that move away from the peak ρ̂0, called a novel lag window (NLW), and is defined

by the following form.

λT(v) =


α

2
√
πβ

exp

− (
πβv

T

)2 , |v| ≤ T

0, |v| > T

(3.1)

where the parameters α, β ≥ 0 control the amount of kurtosis and skewness in the NLW curve

along |v| ≤ T. Fig. 1 illustrates the NLW curves at different values of the parameters α, β.

Figure 1. NLW curves with different control parameters

4. Methodology

Spectral analysis of stochastic processes falls within computational techniques that deal

with discrete-time mathematical processes. The simulation of spectral analysis techniques for

continuous-time stochastic processes is increasingly complex because it requires segmentation of

the time interval [t0, T] of the process and transforming the parameters from the continuous to

discrete state. Continuous-time processes can be treated by their equivalent difference equations

on sufficiently small time sub-intervals.

To evaluate the stochastic integral in the OU process (2.2), the statistical properties are

E(λ
∫ t

t0
e−ξ(t−τ) dWτ) = 0 and var(λ

∫ t
t0

e−ξ(t−τ) dWτ) =
λ2

2ξ (1− e−2ξ(t−τ))

For a sufficiently small ∆t→ 0, the OU process (2.2) at each sub-interval [t, t + ∆t] is given by,

Ot+∆t = Ote−ξ∆t + λ

√
1− e−ξ∆t

2ξ
N[0, 1]
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Therefore, the equivalent OU difference equation of the OU process (2.2) is given by the form

Oti = Oti−1e−ξ∆t + λ

√
1− e−ξ∆t

2ξ
εti

Ot0 = O0

(4.1)

where εt is the White noise with N[0, 1].

The difference equation form (4.1) represents a linear Markov process that is described by one-

step dependence, that is, the value of the process Oti at time ti depends at least linearly on the

value of Oti−1 at time ti−1. If we choose the truncated point N, the consistent form to estimate the

SDF of the discrete-time OU process (4.1) at the lag v = 0,±1, . . . , N is given by,

f̂ (ω) =
1

2π

N∑
v=−N

ρ̂v λT(v) cos(vω) (4.2)

where ω = 2πv
N and ρ̂v is the consistent form to estimate the autocorrelation function of the

discrete-time OU process Ot (4.1) which given by,

ρ̂v =

T−|v|∑
t=t0

(Ot − Ōt)(Ot+|v| − Ōt)

T∑
t=t0

(Ot − Ōt)
2

(4.3)

where Ot =
∑n

1
Ot
n is the mean of observations.

5. Numerical Aspect

To achieve the manuscript goals, which are to determine the best lag window to estimate the

spectrum of the OU process, the simulation will be performed in MATLAB and includes the

following.

• Generate White noise εt with mean zero and variance 1, and calculate the discrete form

of the OU process (4.1) with an initial value O0 = Ot0 . To determine the effect of the

parameters ξ,λ on the spectrum of the OU process, different values of the parameters will

be considered as in Table 2.

ξ 1 1 1.5 2

λ 1 1.5 1 2

Table 2. Different Values of the OU Process Parameters

• To determine the effect of the time interval segmentation [t0, T] on the calculation of the

estimated SDF, the time step size ∆t will be studied with values 2−7, 2−9, 2−11.

• To test the stability of the simulation results, the number of simulation generations (number

of simulation iterations) R = 1000 was chosen.

• The range of values for ω is [−π,π], where ω is divided by the step size ∆ω = 2−11.
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• The autocorrelation function ρv and the SDF f (ω) for the OU process (2.2) are calculated

according to the formulas (2.4) and (2.7), respectively.

• The estimated formulas of the autocorrelation function ρ̂v and the SDE f̂ (ω) are calculated

according to the formulas (4.3) and (4.2), respectively.

• In the consistent estimate form of SDF f̂ (ω), the lag window functions λT(v) that weighted

the estimated autocorrelation values are given in Table 1, in addition to the proposed NLW

(3.1) with parameters α =
√

3, β = 2
3 .

• The criterion used to evaluate the performance of lag window functions is the mean square

error (MSE) of the formula [14],

MSE =

R∑
j=1

k∑
i=1

(
f (ωi) − f̂ j(ωi)

)2

R k
(5.1)

where R is the number of simulation generations and k is the segmentation size of ω.

6. Results

The simulation of the spectrum of the OU process was performed using 16 lag window functions

in addition to the suggested NLW, at different values of the OU process parametersξ,λ and different

time interval segmentation. The simulation results are rounded to the sixth decimal place.

The MSE values between the SDF f (ω) and its consistent estimate f̂ (ω) for various parameter

values ξ,λ with a time step size ∆t = 2−7, are presented in Table 3.

Window ξ=1
λ=1

ξ=1
λ=1.5

ξ=1.5
λ=1

ξ=2
λ=2

Bartlett–Hanning 0.026883 0.026875 0.018332 0.013780
Blackman 0.064466 0.068588 0.066233 0.065410
Blackman–Harris 0.030959 0.031309 0.022946 0.017850
Bohman 0.021168 0.022315 0.017913 0.015639
Cauchy 0.028472 0.030174 0.026162 0.023025
Cosine 0.024833 0.024833 0.016163 0.011671
Exponential 0.082525 0.085210 0.084423 0.079461
Flat-top 0.029030 0.029265 0.020845 0.015881
Gaussian 0.019910 0.020921 0.016511 0.014362
Hamming 0.023911 0.025328 0.021016 0.018420
Hanning 0.029518 0.029490 0.021093 0.016534
Hanning–Poisson 0.017303 0.017930 0.013657 0.011731
Parzen 0.020785 0.021790 0.017520 0.015155
Poisson 0.018927 0.019709 0.015510 0.013366
Fejer 0.021700 0.022827 0.018585 0.016192
Riesz 0.027074 0.028755 0.024586 0.021643
NLW 0.014049 0.014312 0.008330 0.005329
Best lag window NLW NLW NLW NLW

Table 3. MSE values between SDF and the consistent estimate of SDF at time step

size ∆T = 2−7.
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At the time step size ∆t = 2−9, the MSE values between the SDF f (ω) and the consistent estimate

of the SDF f̂ (ω) are given in Table 4.

Window ξ=1
λ=1

ξ=1
λ=1.5

ξ=1.5
λ=1

ξ=2
λ=2

Bartlett–Hanning 0.026916 0.026908 0.017979 0.013522
Blackman 0.067274 0.066802 0.065934 0.069005
Blackman–Harris 0.031543 0.031558 0.022563 0.018260
Bohman 0.021832 0.021692 0.017654 0.017151
Cauchy 0.029670 0.029509 0.025163 0.024868
Cosine 0.024974 0.024974 0.016249 0.011728
Exponential 0.080735 0.080287 0.069363 0.070660
Flat-top 0.029451 0.029471 0.020504 0.016155
Gaussian 0.020383 0.020251 0.016218 0.015667
Hamming 0.024918 0.024768 0.020682 0.020269
Hanning 0.029330 0.029307 0.020052 0.015678
Hanning–Poisson 0.017449 0.017345 0.013313 0.012649
Parzen 0.021289 0.021155 0.017075 0.016535
Poisson 0.019253 0.019142 0.015073 0.014457
Fejer 0.022392 0.022261 0.018170 0.017663
Riesz 0.028353 0.028194 0.023993 0.023675
NLW 0.014138 0.014092 0.008165 0.005950
Best lag window NLW NLW NLW NLW

Table 4. MSE values between SDF and the consistent estimate of SDF at time step

size ∆T = 2−9.

At the time step size ∆t = 2−11, the MSE values between the SDF f (ω) and the consistent

estimate of the SDF f̂ (ω) are given in Table 5.

Window ξ=1
λ=1

ξ=1
λ=1.5

ξ=1.5
λ=1

ξ=2
λ=2

Bartlett–Hanning 0.026895 0.026927 0.018159 0.013643
Blackman 0.067918 0.067624 0.065966 0.068383
Blackman–Harris 0.031590 0.031516 0.022769 0.018279
Bohman 0.022185 0.021949 0.017513 0.016880
Cauchy 0.030017 0.029693 0.025244 0.024653
Cosine 0.025100 0.025100 0.016271 0.011742
Exponential 0.078876 0.079444 0.074436 0.074244
Flat-top 0.029500 0.029452 0.020705 0.016199
Gaussian 0.020722 0.020510 0.016078 0.015428
Hamming 0.025293 0.025006 0.020567 0.019960
Hanning 0.029201 0.029295 0.020485 0.015989
Hanning–Poisson 0.017772 0.017565 0.013158 0.012483
Parzen 0.021621 0.021382 0.016974 0.016314
Poisson 0.019587 0.019350 0.014943 0.014280
Fejer 0.022745 0.022480 0.018055 0.017423
Riesz 0.028732 0.028406 0.023956 0.023373
NLW 0.014325 0.014190 0.008066 0.005839
Best lag window NLW NLW NLW NLW

Table 5. MSE values between SDF and the consistent estimate of SDF at time step

size ∆T = 2−11.
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According to the simulation results, Table 6 shows the order of lag window functions based

on the average mean square error (AMSE) between f (ω) and f̂ (ω) at the segmentation ∆t =

2−7, 2−9, 2−11.

No. ξ=1
λ=1

ξ=1
λ=1.5

ξ=1.5
λ=1

ξ=2
λ=2

1 NLW NLW NLW NLW

2 Hanning-Poisson Hanning-Poisson Hanning-Poisson Cosine

3 Poisson Poisson Poisson Hanning-Poisson

4 Gaussian Gaussian Cosine Bartlett–Hanning

5 Parzen Parzen Gaussian Poisson

6 Bohman Bohman Parzen Gaussian

7 Fejer Fejer Bohman Parzen

8 Hamming Cosine Bartlett–Hanning Hanning

9 Cosine Hamming Fejer Flat-top

10 Bartlett–Hanning Bartlett–Hanning Hanning Bohman

11 Riesz Riesz Flat-top Fejer

12 Flat-top Hanning Hamming Blackman–Harris

13 Hanning Flat-top Blackman–Harris Hamming

14 Cauchy Cauchy Riesz Riesz

15 Blackman–Harris Blackman–Harris Cauchy Cauchy

16 Blackman Blackman Blackman Blackman

17 Exponential Exponential Exponential Exponential

Table 6. Ranking of lag window functions based on their performance in estimating

the OU process spectrum at different parameter values.

The stability of the OU process (2.2) is satisfied when the parameter values are strictly positive

ξ,λ > 0. The SDF of the OU process (2.7) is affected only by the friction parameter ξ, while the

consistent estimate of the SDF of the OU process (4.2) is affected by the friction parameter ξ and

the diffusion parameter λ. On the other hand, choosing the values of the parameter ξ > 2 makes

the SDF f (ω) (2.7) very small (SDF< 0.07), and therefore it is difficult to determine the best lag

window to estimate the spectrum of the OU process. Fig. 2 shows the SDF curves of the OU

process (2.7) at increasing values of the friction parameter ξ.
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Figure 2. SDF curves of OU process with different parameters

7. Conclusions

In this paper, a novel lag window is proposed and the 16 most popular classical lag windows

in spectral analysis are presented. The lag windows are compared to estimate the spectrum of

the OU process, which is a continuous-time stochastic process, at different values of the process

parameters and different time interval segmentation. The most prominent conclusion is that the

suggested lag window outperforms all other lag windows in all parameter cases of the OU process,

as well as in all time interval segmentation ∆t = 2−7, 2−9, 2−11.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the

publication of this paper.
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