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Abstract. A mathematical model describing HIV infection influenced by inflammatory cytokines and weakened adap-
tive immune responses is formulated and analyzed. The system is represented by delay differential equations that
characterize the interactions among uninfected CD4TT cells, infected CD4™T cells, inflammatory cytokines, HIV parti-
cles, cytotoxic T lymphocytes (CTLs), and antibodies. The model incorporates three forms of distributed delays: (i) a
delay associated with the infection of healthy CD4 ™ T cells, (ii) a delay representing the activation of cytokine responses,
and (iii) a delay corresponding to the maturation period of new HIV virions. The model’s biological plausibility is
verified by demonstrating essential properties of the solutions, including their non-negativity and ultimate bounded-
ness. The basic reproduction number, Ry, is computed and serves as a threshold parameter governing the existence and
stability of the system’s equilibrium points. Global stability of both equilibrium states is rigorously analyzed through
the construction of Lyapunov functionals. To confirm the analytical results, numerical experiments are carried out,
accompanied by a sensitivity study of Ry to examine how variations in essential parameters affect the system. The
impact of increased impairment of the adaptive immune response, as well as the delay time, on the progression of viral
activity within the body has been discussed. Our findings indicate that, the greater the impairment in adaptive immune
response, the more the virus progresses within the body, worsening the patient’s condition. Conversely, an increase in

the delay time leads to suppression of viral growth.

1. INTRODUCTION

AIDS (acquired immunodeficiency syndrome) is a severe and life-threatening condition that
results from infection with the human immunodeficiency virus (HIV) [1]. This virus, which carries
its genetic material as single-stranded RNA, primarily targets CD4 " T cells, the essential players in

the adaptive immune response. By attacking and depleting these cells, HIV progressively impairs
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the immune system’s function, leaving the body increasingly vulnerable to various infections
and diseases it would normally be able to resist. Upon viral infection, the immune system is
triggered to combat the invading pathogen. This immune response is divided into two main
components: the innate and adaptive immune systems. The innate immunity serves as the
immediate, nonspecific defense and involves cells like macrophages and dendritic cells that detect
and respond to foreign invaders quickly. On the other hand, adaptive immunity is highly specific
and relies on lymphocytes, particularly cytotoxic T lymphocytes (CTLs) (or known as CD8"T
cells) and B-cells. B-cells are responsible for producing antibodies that specifically recognize
and neutralize viruses, hindering their ability to spread. Concurrently, CTLs target and eliminate
infected host cells, reducing viral replication and aiding in the clearance of the infection. These two
branches work in tandem to effectively control viral infections and contribute to lasting immune
protection [2].

Previous studies largely attributed the loss of healthy CD4*T cells during HIV infection to
apoptosis. However, findings by Doitsh et al. [3] demonstrated that a substantial portion of CD4 T
cell death actually occurs through pyroptosis-a highly inflammatory form of programmed cell
death. Unlike apoptosis, pyroptosis is driven by abortive HIV-1 infection and is now recognized
as a major factor in the progression of HIV-1 disease [4], accounting for approximately 95% of
CD4"T cell depletion [3]. Earlier research by the same group [5] identified caspase-1, a cysteine
protease, as a critical mediator in this pathway through its role in activating proinflammatory
cytokines such as IL — 1p. These cytokines perpetuate chronic immune activation and attract more
uninfected CD4 7T cells to the site of infection, rendering them susceptible to death. This creates
a vicious cycle where ongoing cell death enhances inflammation, leading to further immune cell
loss and progressive immune system failure.

Within-host mathematical models of HIV infection are among the most promising tools that
significantly contribute to understanding the interactions between the virus and target cells, as
well as the immune system’s response to the infection. These models can help explain key aspects
of HIV dynamics, such as the decline in CD4" T cells and the effects of antiretroviral therapy. They
may also be used to predict the progression of the virus within the body, identify critical thresholds
for viral control, and evaluate treatment strategies. This, in turn, can support the development
of more effective therapies and potential cure strategies. The fundamental HIV infection model
typically includes compartments for healthy target cells, infected cells, and circulating free virus
particles [6]. More advanced models have been developed to investigate the complex interactions
between the immune system and the invading virus. Examples of these HIV infection models
include: CTL immunity [7]- [11]; humoral (or) antibody immunity [12]- [16]; and both CTL and
humoral immunities [17]- [22]. The influence of inflammatory cytokines has not been incorporated

into the models presented in these studies.

1.1. HIV infection models incorporating the effect of inflammatory cytokines. Recently, nu-

merous HIV infection models have emerged that take into account the effects of inflammatory
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cytokines and their impact on the progression of the virus within the body. In this section, we will
present an overview of these models. Jiang and Zhang [23] developed a cytokine-enhanced HIV-1

infection model as:

DU = w -y Y (1) = YL (Y (1), L()L(E) = aG(1)Y (1),
X — gmomyy (Y(¢—my), L(t—my))L(E—my) + 0G(£)Y(E) — (a1 + ) X(£), W
dG(t) .

20 _ ) X(t) - poG(t),
iy _ 66—@2mzx(t — mz) - #}LL(t).

At time, Y(t), X(t), G(t) and L(t) denote the concentrations of healthy CD4" T cells , HIV-infected
CD4"T cells, inflammatory cytokines, and free HIV virions, respectively. The rate at which healthy
CD4 7T cells are generated is w. The infection rate ¥1.(Y, L)L refers to the rate at which free HIV
particles infect CD4™T cells; which is termed viral infection. Here, ¥; is a general function. The
rate 0GY describes the viral infection enhanced by cytokines. The terms a;X and a,X refer to
the death rate of infected cells due to proptosis and the rate at which inflammatory cytokines are
generated from infected cells. The term 6X denotes the rate at which infected cells release free
HIV particles. Each compartment A has its own natural death rate, i)y A. The model incorporates
two distinct discrete delays: m; signifies the interval from when a virus infects a cell until it
begins producing new viral particles, while m; captures the time required for these new virions to
mature. The expression e™¢", fori = 1,2, denotes the likelihood that a cell or virion remains viable
over the corresponding delay interval [t — m;, t], where g; > 0. Hong et al. [24] extended model
(1.1) by incorporating both modes of HIV transmission: virus-to-cell (viral infection) and cell-to-
cell (cellular infection). The model utilizes general functional forms for viral infection, ¥ (Y,L),
cellular infection, ¥x (Y, X), and cytokine-enhanced viral infection, ¥ (Y, G). Xu [25] proposed an
age-structured viral infection model that includes both virus-to-cell and cell-to-cell transmission
mechanisms, along with the effect of cytokine-enhanced viral infection. Wang and Feng [26]
developed a partial differential equation (PDE) model that incorporates spatial heterogeneity. The
model employs general functions to represent the reproduction of healthy CD4™ T cells, ¥y(Y),
viral infection, ¥ (Y, L), and cellular infection, ¥x(Y, X). Models presented in [25] and [26] does
not consider time delays.

Recently, several cytokine-enhanced HIV infection models have been developed that incorporate

various biological factors, such as:

e CTL immunity. Zhang et al. [27] proposed the following cytokine-enhanced HIV infection

model with CTL immunity:
DU — &= Py Y (1) = Y (1) [o1L (1) +02G (1)),
% = 6_@1m1Y(t — ml) [GlL(t — 7’711) + GzG(t - ml)] - ((Xl + 17[1){) X(t) — k1X(t)T(t),
G(t

= = @X(t) - ¢eG(t),
—= = 0e" @™ X (t —my) — YLL(t),
— = BX(t=m3)T(t —m3) —PrT(t).
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Here, T represents the concentration of CTLs. The term fXT describes the proliferation of
CTLs, whereas ki XT accounts for the rate at which CTLs eliminate infected cells. The delay
m3 represents the time interval between antigenic stimulation and the production of CTL
immune cells. In [28], the discrete time delays m; and m; are generalized to distributed
time delays to provide a more realistic representation of biological processes. Furthermore,
the model incorporates a saturated CTL response. Chen et al. [29] investigated a delayed
HIV infection model with diffusion, incorporating cytokine-enhanced viral dynamics, a
general incidence function, and the CTL immune response.

e CTL and antibody immunity: Dahy et al. [30] introduced a cytokine-augmented HIV-1
model incorporating antibody-mediated and CTL immune responses, accounting for both
viral and cellular infection pathways, together with distributed time delays. The model is

expressed as follows:

DU — =Py Y () = Y(t) [01L(£) + 02G(t) + 03X (1)],
PO = [y (m) @™ Yt~ m) [o1L(t — 1) + 02G(t —m)
+03X(t—m)]dm— (a1 + ¥x) X(t) -k X()T(¢),
S (U el(3) (1.2)
% 5 fo“z no(m)e~@" X (t —m)dm — PrL(t) — kaL(t)S(t),
T = BX(OT(8) = yrT(8),
B = OL(D)S(t) - sS(b).

Here, S represents the concentration of antibodies. The term 03XY is incidence rate due
to cellular infection. The term OLS describes the proliferation of antibodies, whereas k,LS
accounts for the rate at which antibodies neutralize viruses. The delay parameter m is
selected from a probability distribution function n; (m) within the time interval [0, x;],
i = 1,2 where x; is the limit superior of the delay period. The term n; (1) e”%™ accounts
for the delayed effect in the infection process by representing how interactions between
healthy CD4" T cells and factors such as HIV, inflammatory cytokines, and infected cells that
occurred m time units ago impact the current infection rate. Moreover, the factor n (m) e~ %"
describes the delay in the production and maturation of free HIV particles by infected
cells. In [31], the authors proposed a cytokine-augmented HIV-1 model that includes both
antibody and CTL responses. The model utilizes generalized functions to capture both viral
and cellular infection pathways, as well as cytokine-mediated enhancement of infection.
Moreover, it adopts general formulations to describe the rates of production, proliferation,
clearance, and death within each compartment. However, the model presented in [31] did

not incorporate any time delays in its formulation.

All the aforementioned models generally assumed that HIV and infected cells directly stimu-
late CTL and antibody responses, without accounting for the possibility of immune suppression
mechanisms. Ashighlighted in [32], HIV has the capacity to impair immune responses, potentially

altering the expected dynamics. Numerous investigations have explored immune dysfunction in
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the context of viral infections, with some emphasizing CTL impairment (e.g., [33]- [38]) and others
focusing on B-cell or antibody-related deficiencies (e.g., [39]- [43]). More integrated approaches,
such as those by [44]- [46], have analyzed viral infection dynamics under simultaneous impairment
of both CTL and antibody responses. Nonetheless, these works have generally overlooked the
contribution of inflammatory cytokines. Although [47] accounted for both CTL impairment and
cytokine involvement, the model overlooked the dynamics of the healthy target cell population.
In addition, it did not incorporate time delays associated with the activation of inflammatory
cytokines.

IL — 1B activity is controlled through multiple steps, including the production of pro-IL — 18, its
enzymatic processing, and the eventual secretion of the active cytokine [3]. Each phase can involve
a measurable delay. Nevertheless, the HIV-1 models presented in the referenced studies do not
account for these time delays in cytokine activation. This limitation may affect the precision of
the models in predicting immune responses and disease progression. Recent investigations by Lv
et al. [48] and Elaiw et al. [49] introduced time delays in the activation of inflammatory cytokines
within models of cytokine-enhanced viral infections. While Lv et al. incorporated CTL responses,
Elaiw et al. focused on antibody-mediated immunity. Both models attribute the initiation of
immune responses exclusively to the presence of HIV and infected cells, without accounting for

immune system suppression.

1.2. Research Aims.

e Formulate a mathematical framework to capture HIV-1 dynamics, explicitly accounting for
the influence of inflammatory cytokines and the functional impairment of both CTLs and
B-cells.

e Introduce three types of distributed time delays into the model: (i) delay in the infection
process of target cells, (ii) delay in cytokine activation, and (iii) delay in the maturation of
newly formed viral particles.

e Establish key model characteristics, including the non-negativity and boundedness of so-
lutions.

e Derive the basic reproduction number and identify the system’s equilibrium points.

e Perform a detailed global stability assessment for all equilibria, employing Lyapunov-based
methods to derive sufficient conditions for global asymptotic stability.

e Support analytical findings through numerical simulations.

e Carry out sensitivity analysis centered on the basic reproduction number to assess how
parameter variations influence infection dynamics.

e Investigate how immune response, and time delays collectively shape HIV-1 disease pro-

gression.

Through this approach, the study seeks to provide deeper insights into the progression of HIV-1

infection and its complex interactions with the host immune response.
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2. MopeL CONSTRUCTION

We formulate a distributed time delay model based on delay differential equations to describe
the variations in the concentrations of six compartments with respect to time t: healthy CD4*T
cells Y(t), HIV-infected CD4 T cells X(t), inflammatory cytokines G(t), free HIV particles L(),
CTLs T(t), and antibodies S(f):

T = @ =Yy Y(t) = 1Y (DL(t) - 02 Y () G() — a3 Y (D X(E),

dt
d)f.z—gt) = 0%1 ny (m) e=@™Y (t —m) (o1L(t — m) + 02G(t — m)
s X (t—m)) dm — (a1 + ¥x) X () — ki X (O T(E),
B0 — iy [y (m) e 2mX (¢ — m)dm — P6G(E), 2.1)
D — 5 [ ng(m)e @ X(t - m)dm — PrL(t) — koL (1)S(1),
T = pX(t) ~ PrT(t) - mX(DT(8),
U — BL() - sS(t) — L (£)S(8).

Here, the linear terms X and OL represent the rates at which CTLs and antibodies proliferate,
respectively, from infected cells and free HIV particles. The rates at which CTL and antibody
immunities are impaired are labeled as 171 XT and n,LS, respectively. The term 1y (m) e~ accounts
for the delayed effect in the infection process by representing how interactions between healthy
CD4 T cells and factors such as HIV, inflammatory cytokines, and infected cells that occurred m
time units ago impact the current infection rate. In addition, ny(m)e~?" describes the delay in
cytokine production following the activation of infected CD4 " T cells. It highlights that cytokines
are produced gradually over time, rather than instantly. Moreover, the factor n3 (m) e~%" describes
the delay in the production and maturation of free HIV particles by infected cells. It emphasizes
that viral replication and release occur gradually over time, rather than instantly, where g;,i = 1,2,3
are positive constants. The delay parameter m is selected from a probability distribution function
n; (m) within the time interval [0, »;], i = 1,2,3 where x; is the limit superior of the delay period.

The function n; (m), for i = 1,2, 3, meets the following conditions:
n; (m) >0, fO%i nj(m)dm =1, and foki n; (m) e "dm < oo, where g > 0.

Suppose that N;(m) = n;(m)e"%" and N; = 0%1- Ni(m)dm,i=1,2,3. Then,0 <N; < 1,i =1,2,3.
In the following, the initial conditions adopted for system (2.1), are given as:
Y(0) = Bi(v), X(v) =52(v), G(v) =Bs(v),
L(v) = B4(v), T(v) =B5(v), S(v)=Bs(v), (2.2)
B;i(v) 20, j=12,..,6, v € [-x,0], # = max{xq, ®, ®3}.

Here, Bi(v) € C([-x,0],Rx), j = 1,2,..,6 and C = C([-%,0],Rxg) is the Banach space of
= sup |B; () for all B; € C. Consequently, system
-u<(C<0

continuous functions with norm ||B]-|

(2.1) with initial conditions (2.2) has a unique solution, as established by the standard theory of
functional differential equations [50], [51].
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3. CHARACTERISTICS OF SOLUTIONS

The following result addresses the non-negativity, and ultimate boundedness of solutions for
model (2.1), which describe the densities of healthy CD4TT cells, HIV-infected CD4"T cells,
inflammatory cytokines, free HIV particles, CTLs, and antibodies.

Lemma 1. Consider the system (2.1) subjected to the initial conditions (2.2). A positively

invariant compact set ® is guaranteed to exist, defined as:
®={(Y,X,G,LT,S) €Csy: Y1) < o, [|X(H)]| < 1,
1G] < @3, ||| < @a. [|T(H)| < D2, S(t)|| < s}

Proof. We observe from the first equation of system (2.1) that 2 dt |y 0= @ > 0. Consequently,

Y (t) remains positive for all t > 0. Besides, the other equations in the system (2.1) result in the

following:

dx(t)

I + (1 +Yx + Kk T(t)) X(¢)

A
= f Ni(m)Y(t —m) (o1L(t — m) + 02G(t — m) + 03X (t —m)) dm
0
t t t
= X (t) = B,(0)¢™ b @tvxthaT()du | f o Jr (@i tyxtha T(w))du
0

X f%l Ny(m)Y (€ —m) (o1L(€ —m) + 02G(€ —m) + 03X (€ —m)) dmdt > 0,

dG( ) + Gt —azf Nz —m)dm
= G (t) = B3(0)e ¢Gf+a2f ~Yo(t=0) f Ny (m)X(€ - m)dmdt > 0,
# + (P + kaS(H) L(t) = 5f N3 (m m)dm

— L () = Ba(0)e b 01tk d“+5f ~ Ji et u f Na(m)X(€ - m)dmdt > 0,

T+ (r -+ mX() T() = pX(1)

t t t
— T (t) = Bs (O)e_fo (Yr+mX(u))du ‘[gf o= J (rtmX(u))du (€)det >0,
0

t t
= S (1) = Be(0)e” b @stmL)du Qf ¢~ J WstmLi)dup (py g > 0,
0

forall t € [0, x]. We deduce, through a recursive argument, that (Y(t), X(t), G(t),L(t), T(t),S(t)) >
0 for all t > 0. As a result, the solutions of system (2.1) satisfy (Y(t), X(t), G(t)
forallt > 0.

~
~
~—
—~
N—
~
—~
—~
N—r
~
n
—
~~
N—
S—
m

>()’
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Now, we proceed to analyze the solutions’ ultimate boundedness to confirm their bounded

nature. The first equation in the system (2.1) leads to the conclusion that tlim sup Y (t) < =2

Following that, we introduce

t) = f 1Nl(m)Y(t—m)dm + X(t) + %T( ).
0
Then,
le f K () (@ = 0y Y (= m)) dim — an X (1) = 28T (p) - (k + ’71;"X) (HT(t)
. Yxiyr
< a)Nl —l,[)y Nl(m)Y(t—m)dm—alX(t) - ﬁ T(t)
0
< w—?’l(f 1N1(m)Y(t—m)dm+X( ) + %T( )) =w-P1Zq (t),
0
where 1 = min{yy, a1, ¥r}. This results in tli)m supZi (t) < % = ¢. Since fom Ny (m)Y(t -
m)dm > 0, X(t) > 0, and T(t) > 0, then tlim sup X(t) < ¢1 and hm n sup T(t) < l;(?)l = ¢o.
—00 X
addition, the third equation in the system (2.1) demonstrates that
t N
—) = [Xzf Nz(m)X(t - m)dm - yDGG(t) <y — ¢GG(t).
0
This ensures that hm sup G (t) < 112;]51 = (3. Moreover, we proceed to introduce
t—oo G
Zo(t) = L) + 2500,
which yields
dZa(t) . 173 Yuys myL
7 —6](; N3(m)X(t —m)dm _TL( )— T S(t )—(k2+ 0 )L(t)S(t)
< 0Nz — %L(t) - #};—ZSSO) < o0p1 — P> (L( ) IPL S(t )) = 0¢1 — PzZz(t).
" . o1 .

where P, = min{-,1s}. Consequently, we have tlgg supZo (t) < P, ¢4. Since L (t) > 0 and

. . 2004

S(t) =0, then thm supL (t) < ¢4, and thm sup S () < = ¢5. Overall, the above results ensure
—00 —00 I

the ultimate boundedness of Y(t), X(t), G(t), L(t), T(t), and S(¢). This leads to the conclusion that

the compact set @, which corresponds to model (2.1), is positively invariant.

4. Stupy oN EQUILIBRIA AND REPRODUCTION NUMBERS

In this section, we assess the equilibria and identify the threshold parameter necessary to confirm

their existence. The results are outlined in the subsequent lemma:
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Lemma 2. Considering system (2.1), a basic reproduction number

_ YoN1 (60N301 + 1 (02N202 + 9603))
Yeyr (a1 + Px)

can be identified, which fulfills the following statements:

RO >0

(i) The system ensures that it consistently achieves an HIV-free equilibrium, labeled as ¥& =
(Y0,0,0,0,0,0), Yo = w/¢y.

in the case of Ry > 1.

Proof. The basic reproduction number, Ry, is computed through the next-generation matrix
technique described in [52]. To accomplish this, we can represent the right-hand side of system
(2.1) as 91 — 9> with

Ny (0‘1YL+02YG—|—G3YX) (O(] +¢X)X+k1XT
J1= 0 VLS —a2No X + G
0 —ON3X + I,DLL + koLS

System (2.1) consistently exhibits an HIV-free equilibrium & = (Y),0,0,0,0,0), where Yo = l/}ﬂ
Y

Upon computing the Jacobian matrices, J1 and 7>, at the equilibrium ¥ &, we find

Nio3Yy NioYy Nio1Yo ar+yPx 0 0
h= 0 0 0 ;2= —aaN2 YPs 0
0 0 0 —6N3 0 41

Note that, the next generation matrix is in the following form:

YoN1 (YGON3o1+ 1 (@2N202+9c03))  NiYooa  NiYooq

) Yoy (ar+vx) (e YL
Il = 0 0 0
0 0 0

The basic reproduction number R is determined by the spectral radius of the matrix product J1,*,

expressed as:

~ YoN1 (¥GON301 + ¢1 (a2N202 + Go3))

Ro = Ror + Roc + Rox, (4.1)
Yepr (a1 + ¢x) ’
where
Ror — YON15N301 . YoNl(XzNsz . YON103
Ty (e +gx) %7 Yo (o +9x)’ Xy

To clarify, the contributions of viral and cellular infections are represented, respectively, by Ror,
and Rox, whereas Ry; denotes the influence of inflammatory cytokines.

To identify the additional equilibrium beyond ¥ &, we assume (Y, X, G, L, T,S) represents any
equilibrium that fulfills the following equations:

0= w—¢yY—01YL—02YG—G3YX, (42)
0 =Ny (61YL 4 02YG 4 03YX) — (a1 + ¢x) X — k1 XT, (4.3)
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0 = N> X - G,
0 = 6N3X — L — ko LS,
0 =pX—-yrT-mXT,
0 = 6L — 155 — LS.

Referring to Egs. (4.6) and (4.7), we derive

N S
Y +mX’ s+l

Replacing the values from Eq. (4.8) in Eq. (4.5), we obtain

_ YsYLL + (mar + ka0) L2

X
ONj3 (lps + T]zL)

By substituting the expression from Eq. (4.9) into Eq. (4.8), we yield

_ B(WsiL + (nayr + ka0) L2)
~ ONsyr (s + naL) + m (YsYrL + (mayr + k26) 12)°

Replacing the values from Eq. (4.9) in Eq. (4.4) gives

N2 (YsyiL + (myr + k26) L?)
B ONstG (s +m2L)

From Egs. (4.2) and (4.3), we get

W=y = Ni ((ar + x) X + k1 XT).
1

Substituting from Egs. (4.9) and (4.10) into Eq. (4.12), we get
1 (a) (a1 +9x) (BkoL + p (s + L)) L
Py 6N1N3 (s + maL)
Bk (OkoL + 1, (s +12L))* L2

Y

+5NlN3 (¥s + maL) (6N3yr (s + ML) +m (OkaL + ¢ (Ys +1m2L)) L) )

Substituting from Egs. (4.9)-(4.11) and (4.13) into Eq. (4.3), we get

L (A5L5 4 ALA 4 ASL3 £ AsL? + AL + Ao)

Py Pco2N2 (ONsPrs + (Mm0YrNs + mrs) L+ m(navr + 6ka)L2) (s + L)

where

As = — (Bk1 (a1 + 0ka)* = (oL + m6ka) (nayr (1 + Px) + Oka (a1 + ¥x)))

X (2Nao2 (M, + 6ka) + P (0n2N301 + 03 (2L, + 6kz2))),

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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Ay = BomaNskipy g (2 + 0ka)? + 5Ny (an + Px) (n2yr, + 0ka) (namyr, + m10k2)
— (Bk1 (i + Ok2)? = (nampr + mOka) (natr (a1 + ) + 6kz (@1 + 1x)))
X (2N202Y1s + P (ON301s + 03P 1s))
— (a2N202 (ML + 6kz) + g (0m2N301 + 03 (M2 + 6k2)))
(2Bk1gprps (mypr + Okz2) = (mmyL + mbkz) (Yrys (a1 + Px) — 6mN1Nsw)
— (myrys + omNsyr) (myr (a1 + x) + Ok (a1 + ¥x))),

X

As = BoNskpyip (3mapi s + 4na0kaprs + 0% s) + ONsPyye (a1 + Px)

X (31711731#%1#5 + OmNsYLYr + 0m;ONskapr + m6°kg s + 4771712@’(2%1#5)
azN2021 s + PG (ON301Ys + 03P1s))
2Bkiprps (e + Okz) = (2mypr + mOka) (Yrys (a1 +Px) — 6n2N1Nsw)
myrLps + 0maNzyr) (napr (a1 + Yx) + 0k (a1 +1x)))
— (2N2072 (m2yr + 6ka) + Y (0n2N301 + 03 (2L + 6k2)))
X (ON1N3ysw (mmiL + m6Oka) — ON3rs (mar (a1 + ¥x) + Ok (a1 + ¥x))
kTPt = (mrs + 6maNsyr) (Yrys (a1 + Px) — 512N1Nsw)),

X

(
(
(
(

Az = BONskigv i (3n2uFed + 20kayn93) + ONay G (a1 + Px)
X (3mnay? 9 + 3omBNspLYTYs + 20mONskaprips + 2m Okaipry?)
— (@2N202 (Y + 0kz) + g (02N3o1 + 03 (Y + 6kz)))
X (ON1Nspsw (myprips + 0mNsyr) — ONsyprips (YPrips (a1 + ¢x) — 0m2N1Nsw))
— (2N202Y1s + P (ON301s + 03PL1s))
X (0N1Nsppsw (mmir + mOkz) — SNsrps (maypr (a1 + x) + Ok2 (a1 + ¥x))
+BRIYTYE — (myrys + OmaNapr) (Prys (ar + ¥x) = omNiNsw)),

A1 = oNsyvipe (e + x) (myy + 30mNsyryry + 00Nskapry3)
— PN\ N3P 3o (2o (s + Ok2) + P (9n2Nson + 03 (29 + Ok2)))
+ BONsky i g — (aaNaoayrys + Y (SN3019s + o3yLys))
x (N1 Nawsw (n191ws + 01aNwr) — SNspris (Wris (a1 + x) — 572NiNsw)),

Ao = PyPeyrpro®PiN; (ar +vx) (1-Ro),
where Ry is outlined in Eq. (4.1). According to Eq. (4.14), it follows that

(1) If L = 0, then based on Egs. (4.8)-(4.11) and (4.13) we deduce the HIV-free equilibrium,
FE = (Yy,0,0,0,0,0), with Yo = w/¢y.
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(2) If L # 0, the equation AsLD 4+ A4L* + A3L3 4+ AoL? + A1L 4 Ag = 0 holds. In this context, we
introduce a function F (L) on [0, o) as:

F (L) = AsL® + A4L* + A3L3 + AsL? + A1L + Ag.

We have F (0) = lpygbcl,bLlpT(SnggNg (a1 +¥x) (1-Rp) < 0when Ry > 1, and Llim F(L) =
oo, which indicates that F possesses a positive real root, L. By substituting the expressions
from Egs. (4.9) and (4.11) into Eq. (4.2), we get

Y = L
Yy +01L 4+ 026G + 03X
where
r YsyrL + (L + {QQ) L c_ azN; (‘PS%I‘ + (Y 4:k26) I‘2)
ON3 (s +mL) ' N3G (s + n2L) '
. B(VsyrL + (v + k:6) 1) s _ oL
ONaYr (s + L) +m (YsyrL + (myr +k20) L2) s + 1L

confirmed when Ry > 1.

5. GLOBAL STABILITY INVESTIGATION

This section focuses on exploring the global asymptotic stability of all equilibria through the
technique of the Lyapunov method. Take the function () j (Y,X,G,L,T,S) into consideration, and

let @;. be the largest invariant subset of ® ir where

acy,; .
®]: (Y/X/G/L/T/S):WZO ’ ]:0,1

We introduce a function Y (v) as follows:
Y(v)=v-1-Inv.

The input notation is omitted for the purpose of simplicity, ie., (Y,X,G,LT,S) =
(Y(£), X(8), G(#),L(#), T(£), S(¢))-
Theorem 1. The HIV-free equilibrium ¥ & exhibits global asymptotic stability when Ry < 1.
Proof. Introduce a Lyapunov function O (Y, X, G,L, T, S) as follows:

Y 1 GZYO 01Y0 k1 2 szlYo
0 :YY(—)+—X+ G+ 4oy A g2 20170
T\ TN e Ur | 2NiB 20y,

+ I\Lll fokl N (m) j;_m Y () (01L(€) + 02G(€) + 03X (£)) dtdm

Y &) . t Y U3 R t
4 ®02to f Ny (m) f X(f)dfderéal 0 f N (m) f X(£)dedm.
I)[}G 0 t—m ¢L 0 t—m

SZ
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It is evident that O(Y,X,G,L,T, S) > 0 for all positive values of Y,X,G,L,T,S, and
0y(Y0,0,0,0,0,0) = 0. The der1vat1ve ¢ is computed along the solutions of model (2.1) as:

dzo (1 B %) (0 =¢yY =01YL-02YG - 05YX)

+i( Rl (m)Y (£ = 1) (1L (E = m) + 02G (£ — 1) + 05X (£ — m)) dm

(a1 + lpx) X - k1XT —I— GZ—YO (Oézf N2 )dm QDGG)

kT

Nop (BX = 41T = mXT)

+ —(5 - Ng(m)X(t—m)dm—gbLL—kzLS)
0

+ — (QL —1PsS — 7]2LS) 4+ 01YL 4+ 02YG+ 03YX

_ I\i] : Ny (m)Y(t —m) (o1L(t = m) + 02G(t —m) + 03X (t —m)) dm
1Jo0

a202N2Y aaY
+2220 220f N2

(5(71Y0 f N3 )d

Yo
= (w—yyY (1——)+GYX—
(@=vY) y ) o0 M Nip Nip
k Y k Y
_kao1ps 02 _ k201 0L52+a202N2Y0X+501N3Y0
Oy oL e Y1,

By setting Yo = w /vy, we deduce that

(5(71N3Y0 X
U

(1) X (t — m)dm +

k k
a1+ 1PXX_ 11,DTT2 _km o

X.

dQy Py (Y- Yo)® a1+ U k szleo
0y

Therefore, —* < 0 for all Y, X, T,S,L > 0 under the condition that Ry < 1. Equality d

achieved in the case when (Y, X,L,T,S) = (Y0,0,0,0,0). The solutions of system (2.1) converge to

©,. The elements of @, satisfy (Y(t), X(t),L(t), T(t),S(t)) = (Y0,0,0,0,0) for all t. At this point,
() _ dv(t)
aF = at

(Y5 +maL) S*.

h — 0is

= 0. The first equation of system (2.1) simplifies to

_ )

0 dt

=w — gDyYO - GzYoG(t).

From this G(t) = 0 for all ¢, leading to @E) = {F &}. By applying the Lyapunov-LaSalle asymptotic
stability theorem [53], it is concluded that the equilibrium ¥ & is globally asymptotically stable.
Theorem 2. The HIV-persistent equilibrium P& achieves global asymptotic stability when
Ro > 1.
Proof. Define a function O(Y, X,G,L,T,S) as

o= 1y(g)+ v () o @)+ e (D
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szlY

e T e s e O
I L) PR P R o
(’?I’\ZX R (m) ft Y(%)dﬁd “Zgzyxf Ny (m \f:mY(%)dt’dm
g [ o [ v(5 avan
Egs. (4.6) and (4.7) indicate that g —m T = 1’[}—;_? >0and 6 — 125 = ‘blig > 0. The computation of
1 vields
% - (1 - 1—’:) (@=PyY —01YL— 0,YG — 03YX)
4 Nil (1 - ;) (fom K (m) Y (£ = m) (1L (£ = m) + 062G (E = m) + 03X (£ m)) dim
~ (a1 + ) X ko XT) + 22X (1 - —)(az f Ko (m) X (t = m)edm 1/)GG)
IPL‘T;S (1 - %) (6f0 K (m) X (t = m)dm — p, L - kst)
% (BX - 1T - mXT) + (Q_kj;g Efb:f)kzg) (6L — 55 — ,LS)
L R i T
N a;\]f/l(; fo%l R (m) (ig Y(t—m l)/g(t—m) —i—ln(Y(t_ml)/g(t_m)))dm
+a?\]1?1;‘< fom Nl(m)(g(( Y(t—m lg{m—m) +1n(Y(t_m1)é(t_m)))dm
Ty i

After collecting terms, we obtain

@:(w_¢yy)(1_X)+01YL+03Y)(_0¢1+¢X(X—X)
dt Y 1
L(t-m)X
_k_lTX X) __f Ny (m m)X( m) dm

)G(t—m

—-m)X(t—

X
m) dm

(s 2 (s

X



Int. J. Anal. Appl. (2025), 23:264

15

G Y _
“my f Ko (1 ) X=m)G 4 opva - T )
Y1 + koS
_ " X(t-m)L
——kZOlY_s(L—L)——‘SalY_f Ry () XL,
YL + koS U1 + koS L
k1 (T— T) k20‘1Y (S - S)

m (BX = ¢rT —mXT) + ) (ot D) (6L — 1sS — 1LS)

+011\112L 0 N1( ) In (Y(t_my)/i(t_ ) ozycf Ky (m
Xln(y(t—my)g(t—m))dm+ag,YXf R (m ln( (t—m l)é(((t— ))dm

0(202N2Y 50‘1N3Y OQUQYX[ ~ (X(t— ))
+ X+ X+ No(m) In| ——=|dm
e Y+ ko3 go Jo 2 X

t_
(3(71YX f N3 ln( ))d
¢L +kyS

The equilibrium conditions associated with P& indicate that

w = I,DyY—i— GlYi + OzYG —+ G3YX,

- - - _ 1 N
01YL4+02YG+03YX = — (041 +Yx —|—k1T) X,

Ny
G _ 0(2N2X, i _ 5N3X _
B¢ YL+ kaS

ﬁX = l]bTT + T]lXT, OL = l,bsg + T]zlz_.g

From this, we find

dQ Y _- _ e Y
- (ll)yY leY) (1 - —) + (01YL + GZYG + GgYX) (1 - —)
dt Y Y
b VLt o VX - gy Rrxox GlYLf K (m
N N1
Y(t—m)L(t—m)X YG (7 . Y(t—m)G(t
, Y(t—m)L(t—m) dm_OzYGf Ky () (t=m)G(t -
YLX N1 Jo YGX
03YX f“l - Y(t—m)X(t—m) 0, YG f”z . X(t-m)G
- N - dm — Ny (m)————24
N, Milm) YX m-Ny ), Nl —xg—dm
oY - koo Y -, o1YL fm . X(t—m)L
+0,Y6 - ———(L-L)- ———S(L-L)- N (m) ———"=dm
’ ¢L+k25( ) U1 + k25 e A A O
M( X — T = XT = BX + 1T + mXT — m XT + mXT)
N (B—miT) X —=¢rT —m BX+¢rT +m m m
k2(71Y(S g)

OL —1sS — LS — OL S LS -n,LS LS
(6 —125) (¢L+k25)( YsS =2 + sS4+ LS = 12LS + 1pLS)

(71YL t— )L(t—m) GQYG *
f Ni(m ln( v dm + N s Ny (m)
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|
X n YG

5O1N3Y

(Y(t —m)G(t - m))d

0(2(72N2Y

aYX [ . Y(t—m)X(t-
1
m+ N1 ](; N1 (m) n( VX

m))dm

YL, +k25

Simplifying, we arrive at

oy Py (Y-Y)

"1YLf K5 (m ln( < ))dm.

<=

- + (01YL + 02YG + 05YX) (1— —)+01YL+03YX

ar Y

_ar+Yx k1

(X-X)- 17 (X - X)+ px - X)—I’\‘TT(X X)

N1 Nl
1YL f}‘l - Y(t—m)L(t—-m)X GZYGf - Y(t—m)G(t—m)X
- N — dm — N — d
N ), Nl YIX m-=g ), Nim YGX "
oYX [ . Y(t—m)X(t—m) 0 YG fm - X(t-m)G
N, ](; N1 (m) Z dm N2 s N (m) % dm
_ Y i} % i _
LG WY g gy koY g gy, koY g g,
Y1 + kS YL + koS YL + koS
Y - YT N X(t—m)L
_ kz()‘lY_S (L—L) _ 01YL f 3(171) ( - m) dm
¢L +k25 N3 0 XL
_ _. k X _ Y _ -
+k_1<T_T)(X_X>_1(l’bT—+m_)(T_T)2 Lly_ S-5)(L-1)
Ny Ny (ﬁ—mT) Y1 + koS
koo1Y (s + 1moL)

(9 1]25 (l/)L+k25

( —

(t—m)L(t -
a1YLf Ky (m ln( 1)/L( m

Y(t
G 2 YG f N1 11’1

X(t

GYG
L%

m) In
N2 0

azUQNQY

G(t—-m N
)dm+Mf N1 (m)
Nl 0

6(71N3Y

=
n (Y )dm+
5

Y+ k»S

) “1YLf N5 (m ln( (= m >)d (5.1)

In this way, Eq. (5.1) is rewritten in the form

a Py (Y=Y ?

—_ . (01YL + 0,YG + 03YX) (1 - 1—/) + 037X

dt Y

—Ni<a1+¢x+k1T)(

alYL m)L(t—m)de

N —
LX

UZYG f Nl

Y(t—m)G(
YGX
t—m)

OzYG f ~ X(t-
— N N
N, M=%z

Y
— % X(t—
m) i — ogYXf K (i m}( m)dm
YX

XL

o oYL < X(t-m)L
dm—i—ozYG—i—cnYL—all\] f N3(m)ﬂdm
0

3
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i(r+mX) o oo koY (Ys+ml) Lo
"N U T oo k) Y

+f’f fOKlKh(m)ln(Y(t_ ;i(t‘m))dm“;fc fo}“mm
Xln(Y(t—m)G(t— ) agYXf Ky (m ln( M)X(f—M))dm

YG YX
_ (t—m
4 CYQOzNzyx+ (501N3Y OzYGf Nz 11’1( ))dm
Y +k25 X
GlYLf N3 ln( X ))dﬂ’l
Since we have
Y _ Y _ o kT
( 00N ¥ gy Q20Mal g | yg - Gt vx il X) 2o
IPL + kZS HbG Ny X
This results in the following form
— 2 — —
dQl le(Y—Y) — = - = — = Y O‘1YL fkl A
= — X)[2-=]- N
o % + (1YL + 02YG + 03YX) (2 7 N, 1(m)
Y(t—m)L(t —m)X YG 1 Y(t—m)G(t—m)X
X ( m}_( m) dm — G2YGf Ni(m) ( mz _( m) dm
YLX N1 Jo YGX
a3 YX [ . Y(t—m)X(t—m) 0 YG f}‘z - X(t-m)G
- N - dm — N. —d
2 [ ) T - [ o) S
N A A TR TP,
YG YL - N. — dm — —(T-T
+02YG 401 Ny Jy 3(m) 3L m N1 (B—mT) ( )
k201Y(1705 + T]zL) ( g 2 (71YLf N ( t—m)L(t—m))dm
(0 mS) (Y1 +k2S) YL

Y(t G(t—-m
GZYG f N1 ln( ) G3YX f N1

x 1n(Y( dm (’Zm Nz(m) ln(X(T>)dm

GlYi S IR )
+ N j(; Ng(m)ln( e dm.

Furthermore, we have the following equalities

y Y<f—m>L<f—m>):ln(wf—mz%w—mX)Hn(;)Hn(g)

YL YLX
In (Y= ;G ) (Y )X)—l-ln(%)-l-ln(g—;)
n (X2 ;X ):m(y ))+1n(l;),

n(H5) = n (g )Hn( )
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K] (M (15) o

Utilizing equality (5.2) gives

Y—Y ? Y Y
a0y _ ¥y ) —(01YL 4 02YG + 05YX) (3—;—1—ln(;—;)

i B U1YL ( mX _ln(Y(t—m}}/g;—m)X))dm
~ azYG (Y YGX mX _ln(Y(t—m;gg—m)X))dm
N s (122 >_1_1D(Y<f—mz§<f—m>))dm
_ GzYG (X _1n(X<t§—é”)G)) dm
_ ‘71YL (X XL 1n(X(t>;—Lm)i))dm
_M(T_T>z_ ¥ Y5 +m)_ (g

Ny (B=mT)

Upon simplification, we arrive at

a0y Yy (Y-Y) oYL f”l ) Y(t—m)L(t-m)X Y

ar Y Ny ), NimY YLX TY|y))dm
02 YG f}“ . Y(t—m)G(t—m)X Y

- N Y ~— Y|(=]|d

N1 Jo 1(m)( ( YGX Ty
aYX [0 Y(t—m)X(t—m) Y
X[ st (M v ()

YG (72 . X(t-m)G YL (7 . X(t—m)L
—GZYGI Na(m)Y & dm—alYLf N3(m)Y M dm
N2 Jo XG N3 Jo XL

ki (Y1 +mX) _ kao1Y (s + n2L) 2
N (=T : = (5-5)".
N1 (B—mT) (0 =mS) (YL + k2S)

(0 =mS) (Y + k25)

At this stage, we guarantee that dﬂ% < 0 for all positive values of Y, X,G,L,T,S when Ry > 1.
Meanwhile, d% =0whenY =Y, T=T,5=Sand Y = 0. The solutions of model (2.1) approach
©,, where Y(t) =Y, T(t) = T, S(t) = Sand Y = 0 for all ¢, such that

Y(t—m)L(t-m)X Y(t-m)G(t-m)X Y(t-m)X(t-m) X(t-m)G X(t-m)L

YLX YGX B YX X6 XL 7
for all t € [0, »]. This ensures that (Y(¢), X(t), G(¢),L(t),T(t),S(t)) = (Y,X,G,L,T,S) for all t, and
= {PE}. By applying Lyapunov-LaSalle asymptotic stability theorem, we conclude that P&
attains global asymptotic stability.
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6. NUMERICAL SIMULATIONS

This section presents numerical simulations to validate the theoretical findings of our study.
Moreover, we investigate how CTL and antibody immune impairments, along with time delay,
affect HIV replication. Furthermore, a detailed sensitivity analysis will be conducted for each
parameter.

To facilitate the numerical calculations, we adopt a particular structure for the probability

distribution functions n; (m), where i = 1,2, 3, as described below:
ni(m)=06.(m-m;), mel0,x], i=1,23.

Here, 6.(.) refers to the Dirac delta function. As x; — oo, we have the following result:

jo‘ooni (m)ydm=1, i=1,2,3.
Further, we obtain
N; = fooo Os (m —m;) e "dm = @™, i=1,23.
Therefore, system (2.1) is reformulated into the discrete time delay system shown below:

e _ o, YyY(t) —o1Y(t)L(t) — o2Y(t)G(t) —o3Y (£) X(t),
= = e ™Y (t —my) (01L(t —my) + 02G(t —my)
+03X(t—m)) — (a1 + Px) X(t) =k X () T(¢),

) — qpem@mX (- mp) - P6G(t), 6.1)
L) — se~emaX (¢ —ms) — YLL(t) - kaL(£)S(2),
% = BX(t) =T (t) —mX(t)T(t),

t

i~ = OL(t) —¢sS(t) — 2L (t)S(2).

In the case of system (6.1), the basic reproduction number can be written as:

R Yoe™ "™ (e ®" g 4 P (aze™?™03 + 1Pgo3))
0 — .

Yer (n + Px)

For numerical calculations, the parameters associated with infection rates, immune impairment,

6.2)

and delays (i.e. 01, 02, 03, M1, 12, M1, myp, m3) are varied, while the other parameters are kept
constant as specified in Table 1. These parameters are sourced from existing literature, except for

01, 02, 03, and kp, which are predetermined.
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TasLe 1. The values of the model’s parameters.

Parameter Value Source Parameter Value Source
w 10 [54] Py 0.01 [54]
01,02,03 Varied Px 0.75 [55]
aq 0.1 [55] [ 0.1 [55]
a 0.1 [30] Yr, 1 [56]
kp 0.001 [55] YT 0.2 [57], [58]
k> 0.01 Assumed s 0.01 [56]
1) 3 [56] my, My, M3 Varied
B 0.5 [57] 01 0.1 Assumed
0 0.2 [56] o 0.1 Assumed
m., M2 Varied 03 0.1 Assumed

6.1. Stability of equilibrium points. Here, we undertake a numerical investigation into the global
stability of all equilibria. Based on Theorems 1 and 2 which ensure the global stability of both
equilibria, convergence is guaranteed irrespective of the initial values. Therefore, the initial

conditions for system (6.1) are chosen randomly as follows:
Y(v) = 700 + 2sin(v) —30j, X(v) = 0.9+ 0.1sin(v) + 0.5j,
G(v) =3+ 0.1sin(v) +0.4j, L(v) =2+ 0.05sin(v) + 0.5],
T(v) =2+ 0.01sin(v) +1.5j, S(v) =60+ 0.03sin(v) + 4/,
i=12..,12, v e [-m,0], m = max{my, my, ms}.

(IC1)

To carry out our numerical calculations in this subsection, the values of infection rates parameters
w1, wy, and w3 are varied, whereas the immune impairment and delays parameters are set to
m = 1n2 = 0.001, m; = 0.7, my = 0.6, and m3 = 0.5. Meanwhile, the other parameters are kept
constant as specified in Table 1. Therefore, the following cases arise:

Case 1. Assigning o1 = 0.0001, o2 = 0.0003, and 03 = 0.0002, the basic reproduction number Ro
is calculated to be 0.84, which is less than unity. In accordance with Theorem 1, the equilibrium
point #& = (1000,0,0,0,0,0) demonstrates global asymptotic stability, as depicted in Figure 1.
This finding indicates the successful clearance of HIV infection from the human body, highlighting
the conditions under which the virus cannot persist.

Case 2. The values 0; = 0.0003, 0, = 0.0007, and 03 = 0.0006 are assigned. With these
parameters, the basic reproduction number, R, is determined to be 2.32, exceeding unity. Theorem
2 confirms that the equilibrium point PE = (538.23,4.99,4.70,7.64,12.18,86.60) exhibits global
asymptotic stability, as depicted in Figure 2. This analysis reflects the ability of the virus to
maintain a stable presence in the human body under this condition and cause chronic infection,

highlighting the persistence of HIV infection.

6.2. Role of time delays in the stability of equilibrium points. Here, we investigate how different
delay values affect the system’s dynamics (6.1). To conduct this analysis, we set 01 = 0.0003,
o2 = 0.0007, 03 = 0.0006, and 11 = n2 = 0.001, while the remaining parameters are drawn from
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Table 1. Furthermore, the delay parameters m;, for i = 1,2,3 will be adjusted throughout the
analysis as needed. The stability of equilibrium points is highly sensitive to changes in m;, causing
notable variations in Ry (as defined in Eq. (6.2)), which is dependent on m;. As a result, the
dynamical system undergoes substantial shifts in stability whenever m; changes. We begin by
considering the delay parameters provided in Table 2, and subsequently solve system (6.1) using
the prescribed initial condition below.

{ (Y(0),X(v),G(v),L(0), T(v),S(v)) = (700,3,2,3.5,7,40),

(IC2)
ve[-m,0], m = max{my, mp, ms}.

The computed values of Ry corresponding to specific choices of m; (i = 1,2,3) are displayed in Table
2. The findings indicate that a significant decline in R occurs as m; increases. The numerical sim-
ulations, depicted in Figure 3, demonstrate that longer time delays lead to a higher concentration

of healthy CD4 7T cells while simultaneously reducing the levels of other compartments.

Tasre 2. Different values of Ry corresponding to ;.

Case Delay parameters (1, my, m3) Equilibrium points Ry

DP1 0.1,0.2,0.3 508(6.1) = (501.62,5.71,5.60, 8.63,13.88,92.65) 2.52
DP2 0.5,1.5,25 PS(M) = (566.93,4.78,4.11,6.30,11.67,77.30) 2.13
DP3 2,3,4 508<6~1) = (694.33,2.92,2.16,3.79,7.19,54.96) 1.66
DP4 3,4,5 P8(6.1) = (788.64,1.83,1.23,2.40,4.54,38.75) 141
DP5 6,7,8 FEe1) = (1000,0,0,0,0,0) 0.87
DP6 9,10, 11 F &) = (1000,0,0,0,0,0) 0.55

6.3. Role of CTL and antibody immune impairments. To explore the influence of CTL and
antibody immune impairments, we set 01 = 0.0003, 0, = 0.0007, 03 = 0.0006, m; = 0.7, my = 0.6,
and m3 = 0.5, while the remaining parameters are drawn from Table 1. In addition, the immune
impairment parameters 7;, for i = 1,2, will be modified throughout the analysis as needed.
Although the stability of equilibrium points is not affected by changes in 7;, since Ry (as defined
in Eq. (6.2)) does not depend on 7;, we still aim to investigate the role of immune impairments
in the behavior of solution trajectories. To do so, we begin by utilizing the immune impairment

parameter values listed in Table 3 and subsequently solve system (6.1) using the prescribed initial

condition below.
(Y(v),X(v),G(v),L(v), T(v),S(v)) = (510,5,5,9,7,60), (1C3)
v e [-m,0], m = max{my, mp, ms}.
TasLE 3. Equilibrium points corresponding to different values of n;.
Set Immune impairment parameters (11, 12) Equilibrium points

1 0,0 PE 5.1) = (561.90,4.74,4.46,6.10,11.85,121.90)

2 0.007, 0.001 PEes1) = (537.39,5.01,4.72,7.66,10.66,86.74)

3 0.02, 0.005 PE6.1) = (485.63,5.58,5.26,11.87,8.96,34.23)

4 0.07,0.01 PE5.1) = (462.87,5.86,5.52,14.09,4.80,18.67)
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As observed in Table 3 and Figure 4, it is evident that a higher 7, results in a decline in the
population of CTLs and antibodies. This, in turn, corresponds with an increase in HIV-infected
CD4" T cells, inflammatory cytokines, as well as free HIV particles. As a result, the count of healthy
CD4"T cells declines.

6.4. Sensitivity analysis. The main objective of this subsection is to discuss the sensitivity analysis
of model (6.1). Specifically, the analysis aims to assess the impact of various parameters on the
advancement of HIV infection in a host, offering insights that can be useful for the development of
novel antiviral therapies. The sensitivity index will be determined by employing partial derivatives
to examine how variables fluctuate in accordance to parameter changes. The following formula
represents the normalized forward sensitivity index of Ry in relation to the parameter:
T y IRy

Qr = 7 <o (6.3)

Here, T accounts for a specified parameter. The values of Q. range from —1 to 1, with a positive Q.
indicating a positive correlation and a negative value reflecting a negative correlation. The absolute
value of Q. signifies the level of sensitivity: values close to zero imply a minimal effect, whereas
values near one point to a strong impact [59]. The sensitivity indices for Ry were computed
using Eq. (6.3) by applying the parameter values provided in Table 1, including o1 = 0.0003,
o2 = 0.0007, 03 = 0.0006, 11 = 12 = 0.001, m; = 0.7, my = 0.6, and m3 = 0. The calculated
sensitivity indices, derived from these values, are summarized in Table 4. The sensitivity indices
of Ry, as demonstrated in Table 4 and Figure 5, shed light on the varying influences of each
parameter. From these, it is apparent that parameters w, 01, 02, 03, 6, and a; exhibit positive index
values. This indicates that an increase in the values of these parameters is linked to a higher Ry
value, leading to a greater level of HIV endemicity. In contrast, the parameters )y, a1, ¥x, Yc, Y1,
01, 02, 03, M1, mp, and m3 show negative sensitivity indices, meaning that as their values rise, Ro
decreases. Among all the parameters, the most influential are w, 01, and 6, while 02, 03, and a, have
relatively minor impacts. Moreover, the parameters related to CTL and antibody responsiveness,

n1 and 12, seem to have no impact on Ro.

TasLE 4. Quantifying parameters’ influence on Ro in model (6.1): sensitivity index

Parameter T Value of Q; Parameter t Value of Q; Parameter t Value of Q;

@ 1 a -0.118 0 ~0.019
Uy -1 as 0.312 0 -0.020
o1 0.405 Uy —0.882 m -0.07
oy 0.312 e -0.312 my ~0.019
03 0.284 UL —0.405 ms ~0.020

5 0.405 o ~0.07
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Ficure 1. Numerical simulations reveal that the solution of system (6.1) stabilizes at the HIV-free
equilibrium & = (1000,0,0,0,0,0) when R < 1 (Case 1).
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Ficure2. Numerical simulations reveal that the solution of system (6.1) stabilizes at the HIV-persistent
equilibrium PE = (538.23,4.99,4.70,7.64,12.18,86.60) when Ro > 1 (Case 2).
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Ficure 3. Role of time delay parameters in shaping the dynamic patterns of solution trajectories in

system (6.1).




26 Int. J. Anal. Appl. (2025), 23:264
580 ; ‘ ‘ ‘ ‘ 8 ; ‘ ‘ ‘ ‘
Set1l — = ‘Set2 - O--Set 3 e Set 4 Set1 — — ‘Set2 - O--Set 3 »e Set 4
560
540
_ 520 _
S =
500 3
480
460 - ,. RPCILE |
440 ’ L L L L L L 4 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
t t
(a) Healthy CD4™ T cells (8) HIV-infected CD4 7T cells
7 — ; ; ‘ 20 : : : : ‘
|——Set1 — - ‘Set2 - O- ‘Set 3 = Set 4 |——Set1 — - ‘Set2 - O- ‘Set 3 = Set 4
6.5 ] |
E 4
600 700
t t
(c) Inflammatory cytokines (p) Free HIV particles
; ‘ ‘ ‘ ‘ 140 ; ‘ ‘ ‘ ‘
|——Set1 - - ‘Set2 - O Set 3 www=ween Set 4 |——Set1 - - ‘Set2 - O Set 3 www-=een Set 4
12 r\/\r ] 120 :
Y "l il wheiol ity At el i 7 100 ]
) emmmmmm s s s s ==
o II, \\~—,—-O _____________ O === === = 80 )
s ) 5
8J 1 606 1
40 8 :
6 | - O-=----- o R R L) O--==t====
e s RS RRRRERRRRRRRRnRRRR E s I
4 L L L L L L 0 L L L L L L
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
t t
(e) CTLs (F) Antibodies

Ficure 4. Role of immune impairment parameters in shaping the evolution of solution trajectories in

system (6.1).
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FiGure 5. Assessment of parameter influence on Ry in system (6.1) using forward sensitivity analysis

7. CONCLUSION

This study investigated a cytokine-enhanced HIV infection model that incorporates impair-
ments in both CTL and antibody-mediated immune responses. The model captures three modes
of CD4™T cell infection: (i) virus-to-cell transmission via free HIV particles, (ii) cell-to-cell spread
through direct contact with infected cells, and (iii) cytokine-enhanced infection, in which inflam-
matory cytokines attract uninfected CD4™ T cells to inflamed tissues, increasing their vulnerability
to infection. The model also accounts for three biologically relevant distributed time delays: in
infection, cytokine activation, and virion maturation.

Mathematically, we demonstrated that all solutions remain nonnegative and ultimately
bounded. Two equilibria were identified: the HIV-free equilibrium (# &) and the HIV-persistent
equilibrium (PE&). Their existence and stability depend on the basic reproduction number Ry, de-
rived using the next-generation matrix method. Lyapunov functionals were constructed to show
that & is globally asymptotically stable when Ry < 1, while P& is globally asymptotically stable
when Ry > 1.

Numerical simulations supported the analytical results and revealed how variations in model
parameters influence infection dynamics. Sensitivity analysis of Ry identified key factors driving
viral persistence and immune control. In particular, increased impairment of the adaptive immune
response led to more severe infection progression, whereas longer delay times were associated with
suppressed viral growth.

These findings underscore the complex interplay between immune dysfunction, cytokine ac-
tivity, and time delays in HIV infection, offering valuable insights for future immunological and

therapeutic research.



28 Int. ]. Anal. Appl. (2025), 23:264

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the

publication of this paper.

REFERENCES

[1] D. Wodarz, D.N. Levy, Human Immunodeficiency Virus Evolution Towards Reduced Replicative Fitness in Vivo
and the Development of AIDS, Proc. R. Soc. B: Biol. Sci. 274 (2007), 2481-2491. https://doi.org/10.1098/rspb.2007.0413.

[2] M.A. Nowak, R.M. May, Virus Dynamics, Oxford University Press, (2000).

[3] G. Doitsh, N.L.K. Galloway, X. Geng, Z. Yang, K.M. Monroe, et al., Cell Death by Pyroptosis Drives CD4 T-Cell
Depletion in Hiv-1 Infection, Nature 505 (2013), 509-514. https://doi.org/10.1038/nature12940.

[4] W. Wang, W. Ma, Z. Feng, Complex Dynamics of a Time Periodic Nonlocal and Time-Delayed Model of Re-
action-Diffusion Equations for Modeling CD4" T Cells Decline, J. Comput. Appl. Math. 367 (2020), 112430.
https://doi.org/10.1016/j.cam.2019.112430.

[5] G.Doitsh, M. Cavrois, K.G. Lassen, O. Zepeda, Z. Yang, etal., Abortive HIV Infection Mediates CD4 T Cell Depletion
and Inflammation in Human Lymphoid Tissue, Cell 143 (2010), 789-801. https://doi.org/10.1016/j.cell.2010.11.001.

[6] M.A. Nowak, C.R.M. Bangham, Population Dynamics of Immune Responses to Persistent Viruses, Science 272
(1996), 74-79. https://doi.org/10.1126/science.272.5258.74.

[7] J. Deng, H. Shu, L. Wang, X. Wang, Viral Dynamics with Immune Responses: Effects of Distributed Delays and
Filippov Antiretroviral Therapy, . Math. Biol. 86 (2023), 37. https://doi.org/10.1007/s00285-023-01869-w.

[8] C. Chen, Y. Zhou, Dynamic Analysis of HIV Model with a General Incidence, CTLs Immune Response and
Intracellular Delays, Math. Comput. Simul. 212 (2023), 159-181. https://doi.org/10.1016/j.matcom.2023.04.029.

[9] M. Tan, G. Lan, C. Wei, Dynamic Analysis of HIV Infection Model with CTL Immune Response and Cell-to-Cell
Transmission, Appl. Math. Lett. 156 (2024), 109140. https://doi.org/10.1016/j.am1.2024.109140.

[10] L. Ly, J. Yang, Z. Hu, D. Fan, Dynamics Analysis of a Delayed HIV Model with Latent Reservoir and Both Viral
and Cellular Infections, Math. Methods Appl. Sci. 48 (2024), 6063-6080. https://doi.org/10.1002/mma.10655.

[11] H. Hmarrass, R. Qesmi, Global Stability and Hopf Bifurcation of a Delayed HIV Model with Macrophages, CD4+T
Cells with Latent Reservoirs and Immune Response, Eur. Phys. J. Plus 140 (2025), 335. https://doi.org/10.1140/epjp/
s13360-025-06001-z.

[12] M. Dhar, S. Samaddar, P. Bhattacharya, Modeling the Cell-To-Cell Transmission Dynamics of Viral Infection
Under the Exposure of Non-Cytolytic Cure, ]J. Appl. Math. Comput. 65 (2020), 885-911. https://doi.org/10.1007/
$12190-020-01420-w.

[13] J. Lin, R. Xu, X. Tian, Threshold Dynamics of an HIV-1 Virus Model with Both Virus-To-Cell and Cell-To-Cell
Transmissions, Intracellular Delay, and Humoral Immunity, Appl. Math. Comput. 315 (2017), 516-530. https:
//doi.org/10.1016/j.amc.2017.08.004.

[14] Y. Luo, L. Zhang, T. Zheng, Z. Teng, Analysis of a Diffusive Virus Infection Model with Humoral Immunity,
Cell-To-Cell Transmission and Nonlinear Incidence, Physica A: Stat. Mech. Appl. 535 (2019), 122415. https://doi.
org/10.1016/j.physa.2019.122415.

[15] A.D. AlAgha, AM. Elaiw, Stability of a General Reaction-Diffusion HIV-1 Dynamics Model with Humoral Immu-
nity, Eur. Phys. J. Plus 134 (2019), 390. https://doi.org/10.1140/epjp/i2019-12740-9.

[16] Z. Xie, X. Liu, Global Dynamics in an Age-Structured HIV Model with Humoral Immunity, Int. J. Biomath. 14
(2021), 2150047. https://doi.org/10.1142/s1793524521500479.

[17] J. Wang, M. Guo, X. Liu, Z. Zhao, Threshold Dynamics of HIV-1 Virus Model with Cell-To-Cell Transmission,
Cell-Mediated Immune Responses and Distributed Delay, Appl. Math. Comput. 291 (2016), 149-161. https://doi.
org/10.1016/j.amc.2016.06.032.

[18] A.G. Cervantes-Pérez, E. Avila-Vales, Dynamical Analysis of Multipathways and Multidelays of General Virus
Dynamics Model, Int. J. Bifurc. Chaos 29 (2019), 1950031. https://doi.org/10.1142/s0218127419500317.


https://doi.org/10.1098/rspb.2007.0413
https://doi.org/10.1038/nature12940
https://doi.org/10.1016/j.cam.2019.112430
https://doi.org/10.1016/j.cell.2010.11.001
https://doi.org/10.1126/science.272.5258.74
https://doi.org/10.1007/s00285-023-01869-w
https://doi.org/10.1016/j.matcom.2023.04.029
https://doi.org/10.1016/j.aml.2024.109140
https://doi.org/10.1002/mma.10655
https://doi.org/10.1140/epjp/s13360-025-06001-z
https://doi.org/10.1140/epjp/s13360-025-06001-z
https://doi.org/10.1007/s12190-020-01420-w
https://doi.org/10.1007/s12190-020-01420-w
https://doi.org/10.1016/j.amc.2017.08.004
https://doi.org/10.1016/j.amc.2017.08.004
https://doi.org/10.1016/j.physa.2019.122415
https://doi.org/10.1016/j.physa.2019.122415
https://doi.org/10.1140/epjp/i2019-12740-9
https://doi.org/10.1142/s1793524521500479
https://doi.org/10.1016/j.amc.2016.06.032
https://doi.org/10.1016/j.amc.2016.06.032
https://doi.org/10.1142/s0218127419500317

Int. ]. Anal. Appl. (2025), 23:264 29

[19] J.Lin, R. Xu, X. Tian, Threshold Dynamics of an HIV-1 Model with Both Viral and Cellular Infections, Cell-Mediated
and Humoral Immune Responses, Math. Biosci. Eng. 16 (2019), 292-319. https://doi.org/10.3934/mbe.2019015.

[20] N. AlShamrani, Stability of a General Adaptive Immunity HIV Infection Model with Silent Infected Cell-To-Cell
Spread, Chaos, Solitons Fractals 150 (2021), 110422. https://doi.org/10.1016/j.chaos.2020.110422.

[21] Z. Zhang, Y. Chen, X. Wang, L. Rong, Dynamic Analysis of a Latent HIV Infection Model with CTL Immune and
Antibody Responses, Int. J. Biomath. 17 (2023), 2350079. https://doi.org/10.1142/s1793524523500791.

[22] T. Guo, Q. Deng, S. Gao, Z. Qiu, L. Rong, HIV Infection Dynamics with Broadly Neutralizing Antibodies and CTL
Immune Response, Discret. Contin. Dyn. Syst. - S 18 (2025), 3631-3660. https://doi.org/10.3934/dcdss.2024151.

[23] Y. Jiang, T. Zhang, Global Stability of a Cytokine-Enhanced Viral Infection Model with Nonlinear Incidence Rate
and Time Delays, Appl. Math. Lett. 132 (2022), 108110. https://doi.org/10.1016/j.am1.2022.108110.

[24] L. Hong, J. Li, L. Rong, X. Wang, Global Dynamics of a Delayed Model with Cytokine-Enhanced Viral Infection
and Cell-To-Cell Transmission, AIMS Math. 9 (2024), 16280-16296. https://doi.org/10.3934/math.2024788.

[25] J. Xu, Dynamic Analysis of a Cytokine-Enhanced Viral Infection Model with Infection Age, Math. Biosci. Eng. 20
(2023), 8666-8684. https://doi.org/10.3934/mbe.2023380.

[26] W. Wang, Z. Feng, Global Dynamics of a Diffusive Viral Infection Model with Spatial Heterogeneity, Nonlinear
Anal.: Real World Appl. 72 (2023), 103763. https://doi.org/10.1016/j.nonrwa.2022.103763.

[27] T. Zhang, X. Xu, X. Wang, Dynamic Analysis of a Cytokine-Enhanced Viral Infection Model with Time Delays and
CTL Immune Response, Chaos Solitons Fractals 170 (2023), 113357. https://doi.org/10.1016/j.chaos.2023.113357.

[28] X. Cao, S. Hou, X. Kong, A Cytokine-Enhanced Viral Infection Model with CTL Immune Response, Distributed
Delay and Saturation Incidence, arXiv:2409.10223 (2024). http://arxiv.org/abs/2409.10223v1.

[29] C. Chen, Z. Ye, Y. Zhou, Z. Zheng, Dynamics of a Delayed Cytokine-Enhanced Diffusive HIV Model with a
General Incidence and CTL Immune Response, Eur. Phys. J. Plus 138 (2023), 1083. https://doi.org/10.1140/epjp/
s13360-023-04734-3.

[30] E. Dahy, A.M. Elaiw, A.A. Raezah, H.Z. Zidan, A.E.A. Abdellatif, Global Properties of Cytokine-Enhanced HIV-1
Dynamics Model with Adaptive Immunity and Distributed Delays, Computation 11 (2023), 217. https://doi.org/10.
3390/computation11110217.

[31] C.Chen, Y. Zhou, Z. Ye, Stability and Optimal Control of a Cytokine-Enhanced General HIV Infection Model with
Antibody Immune Response and CTLs Immune Response, Comput. Methods Biomech. Biomed. Eng. 27 (2023),
2199-2230. https://doi.org/10.1080/10255842.2023.2275248.

[32] P. Lydyard, A. Whelan, M. Fanger, BIOS Instant Notes in Immunology, Taylor & Francis, 2005. https://doi.org/10.
4324/9780203488287.

[33] N.Bai, R. Xu, Mathematical Analysis of an HIV Model with Latent Reservoir, Delayed CTL Immune Response and
Immune Impairment, Math. Biosci. Eng. 18 (2021), 1689-1707. https://doi.org/10.3934/mbe.2021087.

[34] Y. Yang, R. Xu, Mathematical Analysis of a Delayed HIV Infection Model with Saturated CTL Immune Response
and Immune Impairment, J. Appl. Math. Comput. 68 (2021), 2365-2380. https://doi.org/10.1007/s12190-021-01621-x.

[35] L. Zhang, R. Xu, Dynamics Analysis of an HIV Infection Model with Latent Reservoir, Delayed CTL Immune
Response and Immune Impairment, Nonlinear Anal.: Model. Control. 28 (2023), 1-19. https://doi.org/10.15388/
namc.2023.28.29615.

[36] K. Guo, S. Guo, Lyapunov Functionals for a General Time-Delayed Virus Dynamic Model with Different CTL
Responses, Chaos: Interdiscip. J. Nonlinear Sci. 34 (2024), 053138. https://doi.org/10.1063/5.0204169.

[37] N.H. AlShamrani, R.H. Halawani, A.M. Elaiw, Stability of Generalized Models for HIV-1 Dynamics with Impaired
CTL Immunity and Three Pathways of Infection, Front. Appl. Math. Stat. 10 (2024), 1412357. https://doi.org/10.
3389/fams.2024.1412357.


https://doi.org/10.3934/mbe.2019015
https://doi.org/10.1016/j.chaos.2020.110422
https://doi.org/10.1142/s1793524523500791
https://doi.org/10.3934/dcdss.2024151
https://doi.org/10.1016/j.aml.2022.108110
https://doi.org/10.3934/math.2024788
https://doi.org/10.3934/mbe.2023380
https://doi.org/10.1016/j.nonrwa.2022.103763
https://doi.org/10.1016/j.chaos.2023.113357
http://arxiv.org/abs/2409.10223v1
https://doi.org/10.1140/epjp/s13360-023-04734-3
https://doi.org/10.1140/epjp/s13360-023-04734-3
https://doi.org/10.3390/computation11110217
https://doi.org/10.3390/computation11110217
https://doi.org/10.1080/10255842.2023.2275248
https://doi.org/10.4324/9780203488287
https://doi.org/10.4324/9780203488287
https://doi.org/10.1007/s12190-021-01621-x
https://doi.org/10.15388/namc.2023.28.29615
https://doi.org/10.15388/namc.2023.28.29615
https://doi.org/10.1063/5.0204169
https://doi.org/10.3389/fams.2024.1412357
https://doi.org/10.3389/fams.2024.1412357

30 Int. ]. Anal. Appl. (2025), 23:264

[38] S. Hou, X. Tian, Stability and Hopf Bifurcation Analysis of an HIV Infection Model with Latent Reservoir, Im-
mune Impairment and Delayed CTL Immune Response, Int. ]. Biomath. (2025), 2550084. https://doi.org/10.1142/
$1793524525500846.

[39] H. Miao, X. Abdurahman, Z. Teng, L. Zhang, Dynamical Analysis of a Delayed Reaction-Diffusion Virus Infection
Model with Logistic Growth and Humoral Immune Impairment, Chaos Solitons Fractals 110 (2018), 280-291.
https://doi.org/10.1016/j.chaos.2018.03.006.

[40] AM. Elaiw, S.E. Alshehaiween, A.D. Hobiny, Global Properties of HIV Dynamics Models Including Impairment
of B-Cell Functions, ]. Biol. Syst. 28 (2020), 1-25. https://doi.org/10.1142/s0218339020500011.

[41] N.H. AlShamrani, R.H. Halawani, W. Shammakh, A.M. Elaiw, Stability of Impaired Humoral Immunity HIV-
1 Models with Active and Latent Cellular Infections, Computation 11 (2023), 207. https://doi.org/10.3390/
computation11100207.

[42] AM. Elaiw, S.F. Alshehaiween, Global Stability of Delay-distributed Viral Infection Model with Two Modes of
Viral Transmission and B-Cell Impairment, Math. Methods Appl. Sci. 43 (2020), 6677-6701. https://doi.org/10.1002/
mma.6408.

[43] A.M.Elaiw, S.F. Alshehaiween, A.D. Hobiny, Impact of B-Cell Impairment on Virus Dynamics with Time Delay and
Two Modes of Transmission, Chaos Solitons Fractals 130 (2020), 109455. https://doi.org/10.1016/j.chaos.2019.109455.

[44] N.H. AlShamrani, R.H. Halawani, A.M. Elaiw, Effect of Impaired B-Cell and CTL Functions on HIV-1 Dynamics,
Mathematics 11 (2023), 4385. https://doi.org/10.3390/math11204385.

[45] N.H. AlShamrani, R.-H. Halawani, A.M. Elaiw, Analysis of General HIV-1 Infection Models with Weakened Adap-
tive Immunity and Three Transmission Modalities, Alex. Eng. J. 106 (2024), 101-146. https://doi.org/10.1016/;.aej.
2024.06.033.

[46] K. Guo, D. Zhao, Z. Feng, Lyapunov Functionals for a Virus Dynamic Model with General Monotonic Incidence,
Two Time Delays, CTL and Antibody Immune Responses, Appl. Math. Lett. 158 (2024), 109212. https://doi.org/10.
1016/j.am1.2024.109212.

[47] Q. Song, S. Wang, F. Xu, Robustness and Bistability in a Cytokine-Enhanced Viral Infection Model, Appl. Math.
Lett. 158 (2024), 109215. https://doi.org/10.1016/j.am1.2024.109215.

[48] C. Ly, X. Chen, C. Du, Global Dynamics of a Cytokine-Enhanced Viral Infection Model with Distributed Delays
and Optimal Control Analysis, AIMS Math. 10 (2025), 9493-9515. https://doi.org/10.3934/math.2025438.

[49] AM. Elaiw, E. Dahy, H.Z. Zidan, A.A. Abdellatif, Stability of an HIV-1 Abortive Infection Model with Antibody
Immunity and Delayed Inflammatory Cytokine Production, Eur. Phys. J. Plus 140 (2025), 563. https://doi.org/10.
1140/epjp/s13360-025-06475-x.

[50] J.K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, (1993).

[51] Y. Kuang, Delay Differential Equations With Applications in Population Dynamics, Academic Press, San Diego,
(1993).

[52] P. van den Driessche, J. Watmough, Reproduction Numbers and Sub-Threshold Endemic Equilibria for Com-
partmental Models of Disease Transmission, Math. Biosci. 180 (2002), 29-48. https://doi.org/10.1016/s0025-5564(02)
00108-6.

[53] H.K. Khalil, Nonlinear Systems, Prentice Hall, Upper Saddle River, (2002).

[54] S.K. Sahani, Yashi, Effects of Eclipse Phase and Delay on the Dynamics of HIV Infection, J. Biol. Syst. 26 (2018),
421-454. https://doi.org/10.1142/s0218339018500195.

[55] T. Zhang, X. Xu, X. Wang, Dynamic Analysis of a Cytokine-Enhanced Viral Infection Model with Time Delays and
CTL Immune Response, Chaos Solitons Fractals 170 (2023), 113357. https://doi.org/10.1016/j.chaos.2023.113357.

[56] AM.Elaiw, S.F. Alshehaiween, A.D. Hobiny, Impact of B-Cell Impairment on Virus Dynamics with Time Delay and
Two Modes of Transmission, Chaos Solitons Fractals 130 (2020), 109455. https://doi.org/10.1016/j.chaos.2019.109455.


https://doi.org/10.1142/s1793524525500846
https://doi.org/10.1142/s1793524525500846
https://doi.org/10.1016/j.chaos.2018.03.006
https://doi.org/10.1142/s0218339020500011
https://doi.org/10.3390/computation11100207
https://doi.org/10.3390/computation11100207
https://doi.org/10.1002/mma.6408
https://doi.org/10.1002/mma.6408
https://doi.org/10.1016/j.chaos.2019.109455
https://doi.org/10.3390/math11204385
https://doi.org/10.1016/j.aej.2024.06.033
https://doi.org/10.1016/j.aej.2024.06.033
https://doi.org/10.1016/j.aml.2024.109212
https://doi.org/10.1016/j.aml.2024.109212
https://doi.org/10.1016/j.aml.2024.109215
https://doi.org/10.3934/math.2025438
https://doi.org/10.1140/epjp/s13360-025-06475-x
https://doi.org/10.1140/epjp/s13360-025-06475-x
https://doi.org/10.1016/s0025-5564(02)00108-6
https://doi.org/10.1016/s0025-5564(02)00108-6
https://doi.org/10.1142/s0218339018500195
https://doi.org/10.1016/j.chaos.2023.113357
https://doi.org/10.1016/j.chaos.2019.109455

Int. ]. Anal. Appl. (2025), 23:264 31

[57] AM.Elaiw, A.A. Raezah, B.S. Alofi, Dynamics of Delayed Pathogen Infection Models with Pathogenic and Cellular
Infections and Immune Impairment, AIP Adv. 8 (2018), 025323. https://doi.org/10.1063/1.5023752.

[58] S. Wang, X. Song, Z. Ge, Dynamics Analysis of a Delayed Viral Infection Model with Immune Impairment, Appl.
Math. Model. 35 (2011), 4877-4885. https://doi.org/10.1016/j.apm.2011.03.043.

[59] A. Elaiw, E. Almohaimeed, A. Hobiny, Stability Analysis of a Diffusive HTLV-2 and HIV-1 Co-Infection Model,
Alex. Eng. J. 116 (2025), 232-270. https://doi.org/10.1016/j.aej.2024.11.074.


https://doi.org/10.1063/1.5023752
https://doi.org/10.1016/j.apm.2011.03.043
https://doi.org/10.1016/j.aej.2024.11.074

	1. Introduction
	1.1. HIV infection models incorporating the effect of inflammatory cytokines
	1.2. Research Aims

	2. Model Construction
	3. Characteristics of Solutions
	4. Study on Equilibria and Reproduction Numbers
	5. Global Stability Investigation
	6. Numerical Simulations
	6.1. Stability of equilibrium points
	6.2. Role of time delays in the stability of equilibrium points
	6.3. Role of CTL and antibody immune impairments
	6.4. Sensitivity analysis

	7. Conclusion
	 Conflicts of Interest:

	References

