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Abstract. A mathematical model describing HIV infection influenced by inflammatory cytokines and weakened adap-

tive immune responses is formulated and analyzed. The system is represented by delay differential equations that

characterize the interactions among uninfected CD4+T cells, infected CD4+T cells, inflammatory cytokines, HIV parti-

cles, cytotoxic T lymphocytes (CTLs), and antibodies. The model incorporates three forms of distributed delays: (i) a

delay associated with the infection of healthy CD4+T cells, (ii) a delay representing the activation of cytokine responses,

and (iii) a delay corresponding to the maturation period of new HIV virions. The model’s biological plausibility is

verified by demonstrating essential properties of the solutions, including their non-negativity and ultimate bounded-

ness. The basic reproduction number, R0, is computed and serves as a threshold parameter governing the existence and

stability of the system’s equilibrium points. Global stability of both equilibrium states is rigorously analyzed through

the construction of Lyapunov functionals. To confirm the analytical results, numerical experiments are carried out,

accompanied by a sensitivity study of R0 to examine how variations in essential parameters affect the system. The

impact of increased impairment of the adaptive immune response, as well as the delay time, on the progression of viral

activity within the body has been discussed. Our findings indicate that, the greater the impairment in adaptive immune

response, the more the virus progresses within the body, worsening the patient’s condition. Conversely, an increase in

the delay time leads to suppression of viral growth.

1. Introduction

AIDS (acquired immunodeficiency syndrome) is a severe and life-threatening condition that

results from infection with the human immunodeficiency virus (HIV) [1]. This virus, which carries

its genetic material as single-stranded RNA, primarily targets CD4+T cells, the essential players in

the adaptive immune response. By attacking and depleting these cells, HIV progressively impairs
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the immune system’s function, leaving the body increasingly vulnerable to various infections

and diseases it would normally be able to resist. Upon viral infection, the immune system is

triggered to combat the invading pathogen. This immune response is divided into two main

components: the innate and adaptive immune systems. The innate immunity serves as the

immediate, nonspecific defense and involves cells like macrophages and dendritic cells that detect

and respond to foreign invaders quickly. On the other hand, adaptive immunity is highly specific

and relies on lymphocytes, particularly cytotoxic T lymphocytes (CTLs) (or known as CD8+T

cells) and B-cells. B-cells are responsible for producing antibodies that specifically recognize

and neutralize viruses, hindering their ability to spread. Concurrently, CTLs target and eliminate

infected host cells, reducing viral replication and aiding in the clearance of the infection. These two

branches work in tandem to effectively control viral infections and contribute to lasting immune

protection [2].

Previous studies largely attributed the loss of healthy CD4+T cells during HIV infection to

apoptosis. However, findings by Doitsh et al. [3] demonstrated that a substantial portion of CD4+T

cell death actually occurs through pyroptosis–a highly inflammatory form of programmed cell

death. Unlike apoptosis, pyroptosis is driven by abortive HIV-1 infection and is now recognized

as a major factor in the progression of HIV-1 disease [4], accounting for approximately 95% of

CD4+T cell depletion [3]. Earlier research by the same group [5] identified caspase-1, a cysteine

protease, as a critical mediator in this pathway through its role in activating proinflammatory

cytokines such as IL− 1β. These cytokines perpetuate chronic immune activation and attract more

uninfected CD4+T cells to the site of infection, rendering them susceptible to death. This creates

a vicious cycle where ongoing cell death enhances inflammation, leading to further immune cell

loss and progressive immune system failure.

Within-host mathematical models of HIV infection are among the most promising tools that

significantly contribute to understanding the interactions between the virus and target cells, as

well as the immune system’s response to the infection. These models can help explain key aspects

of HIV dynamics, such as the decline in CD4+T cells and the effects of antiretroviral therapy. They

may also be used to predict the progression of the virus within the body, identify critical thresholds

for viral control, and evaluate treatment strategies. This, in turn, can support the development

of more effective therapies and potential cure strategies. The fundamental HIV infection model

typically includes compartments for healthy target cells, infected cells, and circulating free virus

particles [6]. More advanced models have been developed to investigate the complex interactions

between the immune system and the invading virus. Examples of these HIV infection models

include: CTL immunity [7]- [11]; humoral (or) antibody immunity [12]- [16]; and both CTL and

humoral immunities [17]- [22]. The influence of inflammatory cytokines has not been incorporated

into the models presented in these studies.

1.1. HIV infection models incorporating the effect of inflammatory cytokines. Recently, nu-

merous HIV infection models have emerged that take into account the effects of inflammatory
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cytokines and their impact on the progression of the virus within the body. In this section, we will

present an overview of these models. Jiang and Zhang [23] developed a cytokine-enhanced HIV-1

infection model as:

dY(t)
dt = ω−ψYY(t) −ΨL(Y(t), L(t))L(t) − σG(t)Y(t),

dX(t)
dt = e−%1m1 ΨL(Y(t−m1), L(t−m1))L(t−m1) + σG(t)Y(t) − (α1 +ψX)X(t),

dG(t)
dt = α2X(t) −ψGG(t),

dL(t)
dt = δe−%2m2X(t−m2) −ψLL(t).

(1.1)

At time, Y(t), X(t), G(t) and L(t) denote the concentrations of healthy CD4+T cells , HIV-infected

CD4+T cells, inflammatory cytokines, and free HIV virions, respectively. The rate at which healthy

CD4+T cells are generated is ω. The infection rate ΨL(Y, L)L refers to the rate at which free HIV

particles infect CD4+T cells; which is termed viral infection. Here, ΨL is a general function. The

rate σGY describes the viral infection enhanced by cytokines. The terms α1X and α2X refer to

the death rate of infected cells due to proptosis and the rate at which inflammatory cytokines are

generated from infected cells. The term δX denotes the rate at which infected cells release free

HIV particles. Each compartment λ has its own natural death rate, ψλλ. The model incorporates

two distinct discrete delays: m1 signifies the interval from when a virus infects a cell until it

begins producing new viral particles, while m2 captures the time required for these new virions to

mature. The expression e−%imi , for i = 1, 2, denotes the likelihood that a cell or virion remains viable

over the corresponding delay interval [t −mi, t], where %i > 0. Hong et al. [24] extended model

(1.1) by incorporating both modes of HIV transmission: virus-to-cell (viral infection) and cell-to-

cell (cellular infection). The model utilizes general functional forms for viral infection, ΨL(Y, L),
cellular infection, ΨX(Y, X), and cytokine-enhanced viral infection, ΨG(Y, G). Xu [25] proposed an

age-structured viral infection model that includes both virus-to-cell and cell-to-cell transmission

mechanisms, along with the effect of cytokine-enhanced viral infection. Wang and Feng [26]

developed a partial differential equation (PDE) model that incorporates spatial heterogeneity. The

model employs general functions to represent the reproduction of healthy CD4+T cells, ΨY(Y),
viral infection, ΨL(Y, L), and cellular infection, ΨX(Y, X). Models presented in [25] and [26] does

not consider time delays.

Recently, several cytokine-enhanced HIV infection models have been developed that incorporate

various biological factors, such as:

• CTL immunity. Zhang et al. [27] proposed the following cytokine-enhanced HIV infection

model with CTL immunity:

dY(t)
dt = ω−ψYY(t) −Y(t) [σ1L(t) + σ2G(t)] ,

dX(t)
dt = e−%1m1Y(t−m1) [σ1L(t−m1) + σ2G(t−m1)] − (α1 +ψX)X(t) − k1X(t)T(t),

dG(t)
dt = α2X(t) −ψGG(t),

dL(t)
dt = δe−%2m2X(t−m2) −ψLL(t),

dT(t)
dt = βX(t−m3)T(t−m3) −ψTT(t).
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Here, T represents the concentration of CTLs. The term βXT describes the proliferation of

CTLs, whereas k1XT accounts for the rate at which CTLs eliminate infected cells. The delay

m3 represents the time interval between antigenic stimulation and the production of CTL

immune cells. In [28], the discrete time delays m1 and m2 are generalized to distributed

time delays to provide a more realistic representation of biological processes. Furthermore,

the model incorporates a saturated CTL response. Chen et al. [29] investigated a delayed

HIV infection model with diffusion, incorporating cytokine-enhanced viral dynamics, a

general incidence function, and the CTL immune response.

• CTL and antibody immunity: Dahy et al. [30] introduced a cytokine-augmented HIV-1

model incorporating antibody-mediated and CTL immune responses, accounting for both

viral and cellular infection pathways, together with distributed time delays. The model is

expressed as follows:

dY(t)
dt = ω−ψYY(t) −Y(t) [σ1L(t) + σ2G(t) + σ3X(t)] ,

dX(t)
dt =

∫ κ1

0 n1 (m) e−%1mY(t−m) [σ1L(t−m) + σ2G(t−m)

+σ3X(t−m)] dm− (α1 +ψX)X(t) − k1X(t)T(t),
dG(t)

dt = α2X(t) −ψGG(t),
dL(t)

dt = δ
∫ κ2

0 n2(m)e−%2mX(t−m)dm−ψLL(t) − k2L(t)S(t),
dT(t)

dt = βX(t)T(t) −ψTT(t),
dS(t)

dt = θL(t)S(t) −ψSS(t).

(1.2)

Here, S represents the concentration of antibodies. The term σ3XY is incidence rate due

to cellular infection. The term θLS describes the proliferation of antibodies, whereas k2LS
accounts for the rate at which antibodies neutralize viruses. The delay parameter m is

selected from a probability distribution function ni (m) within the time interval [0,κi],

i = 1, 2 where κi is the limit superior of the delay period. The term n1 (m) e−%1m accounts

for the delayed effect in the infection process by representing how interactions between

healthy CD4+T cells and factors such as HIV, inflammatory cytokines, and infected cells that

occurred m time units ago impact the current infection rate. Moreover, the factor n2 (m) e−%2m

describes the delay in the production and maturation of free HIV particles by infected

cells. In [31], the authors proposed a cytokine-augmented HIV-1 model that includes both

antibody and CTL responses. The model utilizes generalized functions to capture both viral

and cellular infection pathways, as well as cytokine-mediated enhancement of infection.

Moreover, it adopts general formulations to describe the rates of production, proliferation,

clearance, and death within each compartment. However, the model presented in [31] did

not incorporate any time delays in its formulation.

All the aforementioned models generally assumed that HIV and infected cells directly stimu-

late CTL and antibody responses, without accounting for the possibility of immune suppression

mechanisms. As highlighted in [32], HIV has the capacity to impair immune responses, potentially

altering the expected dynamics. Numerous investigations have explored immune dysfunction in
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the context of viral infections, with some emphasizing CTL impairment (e.g., [33]- [38]) and others

focusing on B-cell or antibody-related deficiencies (e.g., [39]- [43]). More integrated approaches,

such as those by [44]- [46], have analyzed viral infection dynamics under simultaneous impairment

of both CTL and antibody responses. Nonetheless, these works have generally overlooked the

contribution of inflammatory cytokines. Although [47] accounted for both CTL impairment and

cytokine involvement, the model overlooked the dynamics of the healthy target cell population.

In addition, it did not incorporate time delays associated with the activation of inflammatory

cytokines.

IL− 1β activity is controlled through multiple steps, including the production of pro-IL− 1β, its

enzymatic processing, and the eventual secretion of the active cytokine [3]. Each phase can involve

a measurable delay. Nevertheless, the HIV-1 models presented in the referenced studies do not

account for these time delays in cytokine activation. This limitation may affect the precision of

the models in predicting immune responses and disease progression. Recent investigations by Lv

et al. [48] and Elaiw et al. [49] introduced time delays in the activation of inflammatory cytokines

within models of cytokine-enhanced viral infections. While Lv et al. incorporated CTL responses,

Elaiw et al. focused on antibody-mediated immunity. Both models attribute the initiation of

immune responses exclusively to the presence of HIV and infected cells, without accounting for

immune system suppression.

1.2. Research Aims.

• Formulate a mathematical framework to capture HIV-1 dynamics, explicitly accounting for

the influence of inflammatory cytokines and the functional impairment of both CTLs and

B-cells.

• Introduce three types of distributed time delays into the model: (i) delay in the infection

process of target cells, (ii) delay in cytokine activation, and (iii) delay in the maturation of

newly formed viral particles.

• Establish key model characteristics, including the non-negativity and boundedness of so-

lutions.

• Derive the basic reproduction number and identify the system’s equilibrium points.

• Perform a detailed global stability assessment for all equilibria, employing Lyapunov-based

methods to derive sufficient conditions for global asymptotic stability.

• Support analytical findings through numerical simulations.

• Carry out sensitivity analysis centered on the basic reproduction number to assess how

parameter variations influence infection dynamics.

• Investigate how immune response, and time delays collectively shape HIV-1 disease pro-

gression.

Through this approach, the study seeks to provide deeper insights into the progression of HIV-1

infection and its complex interactions with the host immune response.
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2. Model Construction

We formulate a distributed time delay model based on delay differential equations to describe

the variations in the concentrations of six compartments with respect to time t: healthy CD4+T

cells Y(t), HIV-infected CD4+T cells X(t), inflammatory cytokines G(t), free HIV particles L(t),
CTLs T(t), and antibodies S(t):

dY(t)
dt = ω−ψYY(t) − σ1Y(t)L(t) − σ2Y(t)G(t) − σ3Y(t)X(t),

dX(t)
dt =

∫ κ1

0 n1 (m) e−%1mY(t−m) (σ1L(t−m) + σ2G(t−m)

+σ3X(t−m)) dm− (α1 +ψX)X(t) − k1X(t)T(t),
dG(t)

dt = α2
∫ κ2

0 n2 (m) e−%2mX(t−m)dm−ψGG(t),
dL(t)

dt = δ
∫ κ3

0 n3(m)e−%3mX(t−m)dm−ψLL(t) − k2L(t)S(t),
dT(t)

dt = βX(t) −ψTT(t) − η1X(t)T(t),
dS(t)

dt = θL(t) −ψSS(t) − η2L(t)S(t).

(2.1)

Here, the linear terms βX and θL represent the rates at which CTLs and antibodies proliferate,

respectively, from infected cells and free HIV particles. The rates at which CTL and antibody

immunities are impaired are labeled as η1XT and η2LS, respectively. The term n1 (m) e−%1m accounts

for the delayed effect in the infection process by representing how interactions between healthy

CD4+T cells and factors such as HIV, inflammatory cytokines, and infected cells that occurred m
time units ago impact the current infection rate. In addition, n2(m)e−%2m describes the delay in

cytokine production following the activation of infected CD4+T cells. It highlights that cytokines

are produced gradually over time, rather than instantly. Moreover, the factor n3 (m) e−%3m describes

the delay in the production and maturation of free HIV particles by infected cells. It emphasizes

that viral replication and release occur gradually over time, rather than instantly, where %i, i = 1, 2, 3

are positive constants. The delay parameter m is selected from a probability distribution function

ni (m) within the time interval [0,κi], i = 1, 2, 3 where κi is the limit superior of the delay period.

The function ni (m) , for i = 1, 2, 3, meets the following conditions:

ni (m) > 0,
∫ κi

0 ni (m) dm = 1, and
∫ κi

0 ni (m) e−qmdm < ∞, where q > 0.

Suppose that N̂i(m) = ni(m)e−%im and Ni =
∫ κi

0 N̂i(m)dm, i = 1, 2, 3. Then, 0 < Ni ≤ 1, i = 1, 2, 3.

In the following, the initial conditions adopted for system (2.1), are given as:
Y(v) = B1(v), X(v) = B2(v), G(v) = B3(v),
L(v) = B4(v), T(v) = B5(v), S(v) = B6(v),
B j (v) ≥ 0, j = 1, 2, ..., 6, v ∈ [−κ, 0], κ = max{κ1,κ2,κ3}.

(2.2)

Here, B j(v) ∈ C([−κ, 0], R≥0), j = 1, 2, ..., 6 and C = C ([−κ, 0] , R≥0) is the Banach space of

continuous functions with norm
∥∥∥B j

∥∥∥ = sup
−κ≤ζ≤0

∣∣∣B j (ζ)
∣∣∣ for all B j ∈ C. Consequently, system

(2.1) with initial conditions (2.2) has a unique solution, as established by the standard theory of

functional differential equations [50], [51].
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3. Characteristics of Solutions

The following result addresses the non-negativity, and ultimate boundedness of solutions for

model (2.1), which describe the densities of healthy CD4+T cells, HIV-infected CD4+T cells,

inflammatory cytokines, free HIV particles, CTLs, and antibodies.

Lemma 1. Consider the system (2.1) subjected to the initial conditions (2.2). A positively

invariant compact set Φ is guaranteed to exist, defined as:

Φ =
{
(Y, X, G, L, T, S) ∈ C6

≥0 :
∥∥∥Y(t)

∥∥∥ ≤ φ1,
∥∥∥X(t)

∥∥∥ ≤ φ1,∥∥∥G(t)
∥∥∥ ≤ φ3,

∥∥∥L(t)
∥∥∥ ≤ φ4,

∥∥∥T(t)
∥∥∥ ≤ φ2,

∥∥∥S(t)
∥∥∥ ≤ φ5

}
.

Proof. We observe from the first equation of system (2.1) that dY(t)
dt |Y=0= ω > 0. Consequently,

Y(t) remains positive for all t ≥ 0. Besides, the other equations in the system (2.1) result in the

following:

dX(t)
dt

+ (α1 +ψX + k1T(t))X(t)

=

∫ κ1

0
N̂1(m)Y(t−m) (σ1L(t−m) + σ2G(t−m) + σ3X(t−m)) dm

=⇒ X (t) = B2(0)e−
∫ t

0 (α1+ψX+k1T(u))du +

∫ t

0
e−

∫ t
`
(α1+ψX+k1T(u))du

×

∫ κ1

0
N̂1(m)Y(` −m) (σ1L(` −m) + σ2G(` −m) + σ3X(` −m)) dmd` ≥ 0,

dG(t)
dt

+ψGG(t) = α2

∫ κ2

0
N̂2(m)X(t−m)dm

=⇒ G (t) = B3(0)e−ψGt + α2

∫ t

0
e−ψG(t−`)

∫ κ2

0
N̂2(m)X(` −m)dmd` ≥ 0,

dL(t)
dt

+ (ψL + k2S(t)) L(t) = δ

∫ κ3

0
N̂3(m)X(t−m)dm

=⇒ L (t) = B4(0)e−
∫ t

0 (ψL+k2S(u))du + δ

∫ t

0
e−

∫ t
`
(ψL+k2S(u))du

∫ κ3

0
N̂3(m)X(` −m)dmd` ≥ 0,

dT(t)
dt

+ (ψT + η1X(t))T(t) = βX(t)

=⇒ T (t) = B5(0)e−
∫ t

0 (ψT+η1X(u))du + β

∫ t

0
e−

∫ t
`
(ψT+η1X(u))duX (`) d` ≥ 0,

dS(t)
dt

+ (ψS + η2L(t)) S(t) = θL(t)

=⇒ S (t) = B6(0)e−
∫ t

0 (ψS+η2L(u))du + θ

∫ t

0
e−

∫ t
`
(ψS+η2L(u))duL (`) d` ≥ 0,

for all t ∈ [0,κ]. We deduce, through a recursive argument, that (Y(t), X(t), G(t), L(t), T(t), S(t)) ≥
0 for all t ≥ 0. As a result, the solutions of system (2.1) satisfy (Y(t), X(t), G(t), L(t), T(t), S(t)) ∈
R6
≥0, for all t ≥ 0.
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Now, we proceed to analyze the solutions’ ultimate boundedness to confirm their bounded

nature. The first equation in the system (2.1) leads to the conclusion that lim
t→∞

sup Y (t) ≤
ω
ψY

.

Following that, we introduce

Z1 (t) =
∫ κ1

0
N̂1(m)Y(t−m)dm + X(t) +

ψX

β
T(t).

Then,

dZ1(t)
dt

=

∫ κ1

0
N̂1(m) (ω−ψYY(t−m)) dm− α1X(t) −

ψXψT

β
T(t) −

(
k1 +

η1ψX

β

)
X(t)T(t)

< ωN1 −ψY

∫ κ1

0
N̂1(m)Y(t−m)dm− α1X(t) −

ψXψT

β
T(t)

≤ ω−P1

(∫ κ1

0
N̂1(m)Y(t−m)dm + X(t) +

ψX

β
T(t)

)
= ω−P1Z1 (t) ,

where P1 = min{ψY,α1,ψT}. This results in lim
t→∞

supZ1 (t) ≤
ω
P1

= φ1. Since
∫ κ1

0 N̂1(m)Y(t −

m)dm ≥ 0, X(t) ≥ 0, and T(t) ≥ 0, then lim
t→∞

sup X(t) ≤ φ1 and lim
t→∞

sup T(t) ≤
βφ1

ψX
= φ2. In

addition, the third equation in the system (2.1) demonstrates that

dG(t)
dt

= α2

∫ κ2

0
N̂2(m)X(t−m)dm−ψGG(t) ≤ α2φ1 −ψGG(t).

This ensures that lim
t→∞

sup G (t) ≤
α2φ1

ψG
= φ3. Moreover, we proceed to introduce

Z2 (t) = L(t) +
ψL

2θ
S(t),

which yields

dZ2(t)
dt

= δ

∫ κ3

0
N̂3(m)X(t−m)dm−

ψL

2
L(t) −

ψLψS

2θ
S(t) −

(
k2 +

η2ψL

2θ

)
L(t)S(t)

< δN3φ1 −
ψL

2
L(t) −

ψLψS

2θ
S(t) ≤ δφ1 −P2

(
L(t) +

ψL

2θ
S(t)

)
= δφ1 −P2Z2(t).

where P2 = min{ψL
2 ,ψS}. Consequently, we have lim

t→∞
supZ2 (t) ≤

δφ1

P2
= φ4. Since L (t) ≥ 0 and

S (t) ≥ 0, then lim
t→∞

sup L (t) ≤ φ4, and lim
t→∞

sup S (t) ≤
2θφ4

ψL
= φ5. Overall, the above results ensure

the ultimate boundedness of Y(t), X(t), G(t), L(t), T(t), and S(t). This leads to the conclusion that

the compact set Φ, which corresponds to model (2.1), is positively invariant.

4. Study on Equilibria and Reproduction Numbers

In this section, we assess the equilibria and identify the threshold parameter necessary to confirm

their existence. The results are outlined in the subsequent lemma:
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Lemma 2. Considering system (2.1), a basic reproduction number

R0 =
Y0N1 (ψGδN3σ1 +ψL (α2N2σ2 +ψGσ3))

ψGψL (α1 +ψX)
> 0

can be identified, which fulfills the following statements:

(i) The system ensures that it consistently achieves an HIV-free equilibrium, labeled as FE =

(Y0, 0, 0, 0, 0, 0), Y0 = ω/ψY.

(ii) The system also maintains an HIV-persistent equilibrium, labeled as PE = (Ȳ, X̄, Ḡ, L̄, T̄, S̄),
in the case of R0 > 1.

Proof. The basic reproduction number, R0, is computed through the next-generation matrix

technique described in [52]. To accomplish this, we can represent the right-hand side of system

(2.1) as J1 −J2 with

J1 =


N1 (σ1YL + σ2YG + σ3YX)

0

0

 , J2 =


(α1 +ψX)X + k1XT
−α2N2X +ψGG

−δN3X +ψLL + k2LS

 .

System (2.1) consistently exhibits an HIV-free equilibrium FE = (Y0, 0, 0, 0, 0, 0), where Y0 =
ω
ψY

.

Upon computing the Jacobian matrices, J1 and J2, at the equilibrium FE, we find

J1 =


N1σ3Y0 N1σ2Y0 N1σ1Y0

0 0 0

0 0 0

 , J2 =


α1 +ψX 0 0

−α2N2 ψG 0

−δN3 0 ψL

 .

Note that, the next generation matrix is in the following form:

J1J−1
2 =


Y0N1(ψGδN3σ1+ψL(α2N2σ2+ψGσ3))

ψGψL(α1+ψX)
N1Y0σ2
ψG

N1Y0σ1
ψL

0 0 0

0 0 0

 .

The basic reproduction numberR0 is determined by the spectral radius of the matrix product J1J−1
2 ,

expressed as:

R0 =
Y0N1 (ψGδN3σ1 +ψL (α2N2σ2 +ψGσ3))

ψGψL (α1 +ψX)
= R0L +R0G +R0X, (4.1)

where

R0L =
Y0N1δN3σ1

ψL (α1 +ψX)
, R0G =

Y0N1α2N2σ2

ψG (α1 +ψX)
, R0X =

Y0N1σ3

α1 +ψX
.

To clarify, the contributions of viral and cellular infections are represented, respectively, by R0L

and R0X, whereas R0G denotes the influence of inflammatory cytokines.

To identify the additional equilibrium beyond FE, we assume (Y, X, G, L, T, S) represents any

equilibrium that fulfills the following equations:

0 = ω−ψYY − σ1YL− σ2YG− σ3YX, (4.2)

0 = N1 (σ1YL + σ2YG + σ3YX) − (α1 +ψX)X − k1XT, (4.3)
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0 = α2N2X −ψGG, (4.4)

0 = δN3X −ψLL− k2LS, (4.5)

0 = βX −ψTT − η1XT, (4.6)

0 = θL−ψSS− η2LS. (4.7)

Referring to Eqs. (4.6) and (4.7), we derive

T =
βX

ψT + η1X
, S =

θL
ψS + η2L

. (4.8)

Replacing the values from Eq. (4.8) in Eq. (4.5), we obtain

X =
ψSψLL + (η2ψL + k2θ) L2

δN3 (ψS + η2L)
. (4.9)

By substituting the expression from Eq. (4.9) into Eq. (4.8), we yield

T =
β
(
ψSψLL + (η2ψL + k2θ) L2

)
δN3ψT (ψS + η2L) + η1 (ψSψLL + (η2ψL + k2θ) L2)

. (4.10)

Replacing the values from Eq. (4.9) in Eq. (4.4) gives

G =
α2N2

(
ψSψLL + (η2ψL + k2θ) L2

)
δN3ψG (ψS + η2L)

. (4.11)

From Eqs. (4.2) and (4.3), we get

ω−ψYY =
1

N1
((α1 +ψX)X + k1XT) . (4.12)

Substituting from Eqs. (4.9) and (4.10) into Eq. (4.12), we get

Y =
1
ψY

(
ω−

(α1 +ψX) (θk2L +ψL (ψS + η2L)) L
δN1N3 (ψS + η2L)

+
βk1 (θk2L +ψL (ψS + η2L))2 L2

δN1N3 (ψS + η2L) (δN3ψT (ψS + η2L) + η1 (θk2L +ψL (ψS + η2L)) L)

 . (4.13)

Substituting from Eqs. (4.9)-(4.11) and (4.13) into Eq. (4.3), we get

L
(
A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0

)
ψYψGδ2N2

3 (δN3ψTψS + (η2δψTN3 + η1ψLψS) L + η1(η2ψL + θk2)L2) (ψS + η2L)2 = 0, (4.14)

where

A5 = −
(
βk1 (η2ψL + θk2)

2
− (η2η1ψL + η1θk2) (η2ψL (α1 +ψX) + θk2 (α1 +ψX))

)
× (α2N2σ2 (η2ψL + θk2) +ψG (δη2N3σ1 + σ3 (η2ψL + θk2))) ,
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A4 = βδη2N3k1ψYψG (η2ψL + θk2)
2 + δη2N3ψYψG (α1 +ψX) (η2ψL + θk2) (η2η1ψL + η1θk2)

−

(
βk1 (η2ψL + θk2)

2
− (η2η1ψL + η1θk2) (η2ψL (α1 +ψX) + θk2 (α1 +ψX))

)
× (α2N2σ2ψLψS +ψG (δN3σ1ψS + σ3ψLψS))

− (α2N2σ2 (η2ψL + θk2) +ψG (δη2N3σ1 + σ3 (η2ψL + θk2)))

× (2βk1ψLψS (η2ψL + θk2) − (η2η1ψL + η1θk2) (ψLψS (α1 +ψX) − δη2N1N3ω)

− (η1ψLψS + δη2N3ψT) (η2ψL (α1 +ψX) + θk2 (α1 +ψX))) ,

A3 = βδN3k1ψYψG

(
3η2

2ψ
2
LψS + 4η2θk2ψLψS + θ2k2

2ψS

)
+ δN3ψYψG (α1 +ψX)

×

(
3η1η

2
2ψ

2
LψS + δη3

2N3ψLψT + δη2
2θN3k2ψT + η1θ

2k2
2ψS + 4η1η2θk2ψLψS

)
− (α2N2σ2ψLψS +ψG (δN3σ1ψS + σ3ψLψS))

× (2βk1ψLψS (η2ψL + θk2) − (η2η1ψL + η1θk2) (ψLψS (α1 +ψX) − δη2N1N3ω)

− (η1ψLψS + δη2N3ψT) (η2ψL (α1 +ψX) + θk2 (α1 +ψX)))

− (α2N2σ2 (η2ψL + θk2) +ψG (δη2N3σ1 + σ3 (η2ψL + θk2)))

× (δN1N3ψSω (η2η1ψL + η1θk2) − δN3ψTψS (η2ψL (α1 +ψX) + θk2 (α1 +ψX))

+βk1ψ
2
Lψ

2
S − (η1ψLψS + δη2N3ψT) (ψLψS (α1 +ψX) − δη2N1N3ω)

)
,

A2 = βδN3k1ψYψG

(
3η2ψ

2
Lψ

2
S + 2θk2ψLψ

2
S

)
+ δN3ψYψG (α1 +ψX)

×

(
3η1η2ψ

2
Lψ

2
S + 3δη2

2N3ψLψTψS + 2δη2θN3k2ψTψS + 2η1θk2ψLψ
2
S

)
− (α2N2σ2 (η2ψL + θk2) +ψG (δη2N3σ1 + σ3 (η2ψL + θk2)))

× (δN1N3ψSω (η1ψLψS + δη2N3ψT) − δN3ψTψS (ψLψS (α1 +ψX) − δη2N1N3ω))

− (α2N2σ2ψLψS +ψG (δN3σ1ψS + σ3ψLψS))

× (δN1N3ψSω (η2η1ψL + η1θk2) − δN3ψTψS (η2ψL (α1 +ψX) + θk2 (α1 +ψX))

+βk1ψ
2
Lψ

2
S − (η1ψLψS + δη2N3ψT) (ψLψS (α1 +ψX) − δη2N1N3ω)

)
,

A1 = δN3ψYψG (α1 +ψX)
(
η1ψ

2
Lψ

3
S + 3δη2N3ψLψTψ

2
S + δθN3k2ψTψ

2
S

)
− δ2N1N2

3ψTψ
2
Sω (α2N2σ2 (η2ψL + θk2) +ψG (δη2N3σ1 + σ3 (η2ψL + θk2)))

+ βδN3k1ψYψGψ
2
Lψ

3
S − (α2N2σ2ψLψS +ψG (δN3σ1ψS + σ3ψLψS))

× (δN1N3ψSω (η1ψLψS + δη2N3ψT) − δN3ψTψS (ψLψS (α1 +ψX) − δη2N1N3ω)) ,

A0 = ψYψGψLψTδ
2ψ3

SN2
3 (α1 +ψX) (1−R0),

where R0 is outlined in Eq. (4.1). According to Eq. (4.14), it follows that

(1) If L = 0, then based on Eqs. (4.8)-(4.11) and (4.13) we deduce the HIV-free equilibrium,

FE = (Y0, 0, 0, 0, 0, 0), with Y0 = ω/ψY.



12 Int. J. Anal. Appl. (2025), 23:264

(2) If L , 0, the equation A5L5 +A4L4 +A3L3 +A2L2 +A1L+A0 = 0 holds. In this context, we

introduce a function z (L) on [0,∞) as:

z (L) = A5L5 + A4L4 + A3L3 + A2L2 + A1L + A0.

We have z (0) = ψYψGψLψTδ2ψ3
SN2

3 (α1 +ψX) (1 −R0) < 0 when R0 > 1, and lim
L→∞
z (L) =

∞, which indicates that z possesses a positive real root, L̄. By substituting the expressions

from Eqs. (4.9) and (4.11) into Eq. (4.2), we get

Ȳ =
ω

ψY + σ1L̄ + σ2Ḡ + σ3X̄
,

where

X̄ =
ψSψLL̄ + (η2ψL + k2θ) L̄2

δN3 (ψS + η2L̄)
, Ḡ =

α2N2

(
ψSψLL̄ + (η2ψL + k2θ) L̄2

)
δN3ψG (ψS + η2L̄)

,

T̄ =
β
(
ψSψLL̄ + (η2ψL + k2θ) L̄2

)
δN3ψT (ψS + η2L̄) + η1 (ψSψLL̄ + (η2ψL + k2θ) L̄2)

, S̄ =
θL̄

ψS + η2L̄
.

It is evident that the existence of the HIV-persistent equilibrium, PE = (Ȳ, X̄, Ḡ, L̄, T̄, S̄), is

confirmed when R0 > 1.

5. Global Stability Investigation

This section focuses on exploring the global asymptotic stability of all equilibria through the

technique of the Lyapunov method. Take the function Ω j (Y, X, G, L, T, S) into consideration, and

let Θ
′

j be the largest invariant subset of Θ j, where

Θ j =

{
(Y, X, G, L, T, S) :

dΩ j

dt
= 0

}
, j = 0, 1.

We introduce a function Υ(υ) as follows:

Υ(υ) = υ− 1− ln υ.

The input notation is omitted for the purpose of simplicity, i.e., (Y, X, G, L, T, S) =

(Y(t), X(t), G(t), L(t), T(t), S(t)).
Theorem 1. The HIV-free equilibrium FE exhibits global asymptotic stability when R0 ≤ 1.

Proof. Introduce a Lyapunov function Ω0 (Y, X, G, L, T, S) as follows:

Ω0 = Y0Υ
( Y
Y0

)
+

1
N1

X +
σ2Y0

ψG
G +

σ1Y0

ψL
L +

k1

2N1β
T2 +

k2σ1Y0

2θψL
S2

+
1

N1

∫ κ1

0
N̂1(m)

∫ t

t−m
Y(`) (σ1L(`) + σ2G(`) + σ3X(`)) d`dm

+
α2σ2Y0

ψG

∫ κ2

0
N̂2(m)

∫ t

t−m
X(`)d`dm +

δσ1Y0

ψL

∫ κ3

0
N̂3(m)

∫ t

t−m
X(`)d`dm.
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It is evident that Ω0(Y, X, G, L, T, S) > 0 for all positive values of Y, X, G, L, T, S, and

Ω0(Y0, 0, 0, 0, 0, 0) = 0. The derivative dΩ0
dt is computed along the solutions of model (2.1) as:

dΩ0

dt
=

(
1−

Y0

Y

)
(ω−ψYY − σ1YL− σ2YG− σ3YX)

+
1

N1

(∫ κ1

0
N̂1(m)Y(t−m) (σ1L(t−m) + σ2G(t−m) + σ3X(t−m)) dm

− (α1 +ψX)X − k1XT) +
σ2Y0

ψG

(
α2

∫ κ2

0
N̂2(m)X(t−m)dm−ψGG

)
+
σ1Y0

ψL

(
δ

∫ κ3

0
N̂3(m)X(t−m)dm−ψLL− k2LS

)
+

k1T
N1β

(βX −ψTT − η1XT)

+
k2σ1Y0S
θψL

(θL−ψSS− η2LS) + σ1YL + σ2YG + σ3YX

−
1

N1

∫ κ1

0
N̂1(m)Y(t−m) (σ1L(t−m) + σ2G(t−m) + σ3X(t−m)) dm

+
α2σ2N2Y0

ψG
X −

α2σ2Y0

ψG

∫ κ2

0
N̂2(m)X(t−m)dm +

δσ1N3Y0

ψL
X

−
δσ1Y0

ψL

∫ κ3

0
N̂3(m)X(t−m)dm

= (ω−ψYY)
(
1−

Y0

Y

)
+ σ3Y0X −

α1 +ψX

N1
X −

k1ψT

N1β
T2
−

k1η1

N1β
XT2

−
k2σ1ψSY0

θψL
S2
−

k2σ1η2Y0

θψL
LS2 +

α2σ2N2Y0

ψG
X +

δσ1N3Y0

ψL
X.

By setting Y0 = ω/ψY, we deduce that

dΩ0

dt
= −

ψY (Y −Y0)
2

Y
+
α1 +ψX

N1
(R0 − 1)X −

k1

N1β
(ψT + η1X)T2

−
k2σ1Y0

θψL
(ψS + η2L) S2.

Therefore, dΩ0
dt ≤ 0 for all Y, X, T, S, L > 0 under the condition that R0 ≤ 1. Equality dΩ0

dt = 0 is

achieved in the case when (Y, X, L, T, S) = (Y0, 0, 0, 0, 0). The solutions of system (2.1) converge to

Θ
′

0. The elements of Θ
′

0 satisfy (Y(t), X(t), L(t), T(t), S(t)) = (Y0, 0, 0, 0, 0) for all t. At this point,
dG(t)

dt =
dY(t)

dt = 0. The first equation of system (2.1) simplifies to

0 =
dY(t)

dt
= ω−ψYY0 − σ2Y0G(t).

From this G(t) = 0 for all t, leading to Θ
′

0 = {F E}. By applying the Lyapunov-LaSalle asymptotic

stability theorem [53], it is concluded that the equilibrium FE is globally asymptotically stable.

Theorem 2. The HIV-persistent equilibrium PE achieves global asymptotic stability when

R0 > 1.

Proof. Define a function Ω1(Y, X, G, L, T, S) as:

Ω1 = ȲΥ
(Y
Ȳ

)
+

X̄
N1

Υ
(X
X̄

)
+
σ2Ȳ
ψG

ḠΥ
(G
Ḡ

)
+

σ1Ȳ
ψL + k2S̄

L̄Υ
(L
L̄

)
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+
k1

2N1 (β− η1T̄)
(T − T̄)2

+
k2σ1Ȳ

2 (θ− η2S̄) (ψL + k2S̄)
(S− S̄)2

+
σ1ȲL̄

N1

∫ κ1

0
N̂1(m)

∫ t

t−m
Υ

(
Y(`)L(`)

ȲL̄

)
d`dm +

σ2ȲḠ
N1

∫ κ1

0
N̂1(m)

∫ t

t−m
Υ

(
Y(`)G(`)

ȲḠ

)
d`dm

+
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

∫ t

t−m
Υ

(
Y(`)X(`)

ȲX̄

)
d`dm +

α2σ2ȲX̄
ψG

∫ κ2

0
N̂2(m)

∫ t

t−m
Υ

(
X(`)

X̄

)
d`dm

+
δσ1ȲX̄
ψL + k2S̄

∫ κ3

0
N̂3(m)

∫ t

t−m
Υ

(
X(`)

X̄

)
d`dm.

Eqs. (4.6) and (4.7) indicate that β − η1T̄ =
ψTT̄

X̄
> 0 and θ − η2S̄ =

ψSS̄
L̄

> 0. The computation of
dΩ1
dt yields

dΩ1

dt
=

(
1−

Ȳ
Y

)
(ω−ψYY − σ1YL− σ2YG− σ3YX)

+
1

N1

(
1−

X̄
X

) (∫ κ1

0
N̂1(m)Y(t−m) (σ1L(t−m) + σ2G(t−m) + σ3X(t−m)) dm

− (α1 +ψX)X − k1XT) +
σ2Ȳ
ψG

(
1−

Ḡ
G

) (
α2

∫ κ2

0
N̂2(m)X(t−m)dm−ψGG

)
+

σ1Ȳ
ψL + k2S̄

(
1−

L̄
L

) (
δ

∫ κ3

0
N̂3(m)X(t−m)dm−ψLL− k2LS

)
+

k1 (T − T̄)
N1 (β− η1T̄)

(βX −ψTT − η1XT) +
k2σ1Ȳ (S− S̄)

(θ− η2S̄) (ψL + k2S̄)
(θL−ψSS− η2LS)

+
σ1ȲL̄

N1

∫ κ1

0
N̂1(m)

(
YL
ȲL̄
−

Y(t−m)L(t−m)

ȲL̄
+ ln

(
Y(t−m)L(t−m)

YL

))
dm

+
σ2ȲḠ

N1

∫ κ1

0
N̂1(m)

(
YG
ȲḠ
−

Y(t−m)G(t−m)

ȲḠ
+ ln

(
Y(t−m)G(t−m)

YG

))
dm

+
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

(
YX
ȲX̄
−

Y(t−m)X(t−m)

ȲX̄
+ ln

(
Y(t−m)X(t−m)

YX

))
dm

+
α2σ2ȲX̄
ψG

∫ κ2

0
N̂2(m)

(
X
X̄
−

X(t−m)

X̄
+ ln

(
X(t−m)

X

))
dm

+
δσ1ȲX̄
ψL + k2S̄

∫ κ3

0
N̂3(m)

(
X
X̄
−

X(t−m)

X̄
+ ln

(
X(t−m)

X

))
dm.

After collecting terms, we obtain

dΩ1

dt
= (ω−ψYY)

(
1−

Ȳ
Y

)
+ σ1ȲL + σ3ȲX −

α1 +ψX

N1
(X − X̄)

−
k1

N1
T (X − X̄) −

σ1

N1

∫ κ1

0
N̂1(m)

Y(t−m)L(t−m)X̄
X

dm

−
σ2

N1

∫ κ1

0
N̂1(m)

Y(t−m)G(t−m)X̄
X

dm−
σ3

N1

∫ κ1

0
N̂1(m)

Y(t−m)X(t−m)X̄
X

dm
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−
α2σ2Ȳ
ψG

∫ κ2

0
N̂2(m)

X(t−m)Ḡ
G

dm + σ2ȲḠ−
σ1ψLȲ
ψL + k2S̄

(L− L̄)

−
k2σ1Ȳ
ψL + k2S̄

S (L− L̄) −
δσ1Ȳ

ψL + k2S̄

∫ κ3

0
N̂3(m)

X(t−m)L̄
L

dm

+
k1 (T − T̄)

N1 (β− η1T̄)
(βX −ψTT − η1XT) +

k2σ1Ȳ (S− S̄)
(θ− η2S̄) (ψL + k2S̄)

(θL−ψSS− η2LS)

+
σ1ȲL̄

N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)L(t−m)

YL

)
dm +

σ2ȲḠ
N1

∫ κ1

0
N̂1(m)

× ln
(

Y(t−m)G(t−m)

YG

)
dm +

σ3ȲX̄
N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)X(t−m)

YX

)
dm

+
α2σ2N2Ȳ
ψG

X +
δσ1N3Ȳ
ψL + k2S̄

X +
α2σ2ȲX̄
ψG

∫ κ2

0
N̂2(m) ln

(
X(t−m)

X

)
dm

+
δσ1ȲX̄
ψL + k2S̄

∫ κ3

0
N̂3(m) ln

(
X(t−m)

X

)
dm.

The equilibrium conditions associated with PE indicate that

ω = ψYȲ + σ1ȲL̄ + σ2ȲḠ + σ3ȲX̄,

σ1ȲL̄ + σ2ȲḠ + σ3ȲX̄ =
1

N1
(α1 +ψX + k1T̄) X̄,

Ḡ =
α2N2X̄
ψG

, L̄ =
δN3X̄
ψL + k2S̄

,

βX̄ = ψTT̄ + η1X̄T̄, θL̄ = ψSS̄ + η2L̄S̄.

From this, we find

dΩ1

dt
= (ψYȲ −ψYY)

(
1−

Ȳ
Y

)
+ (σ1ȲL̄ + σ2ȲḠ + σ3ȲX̄)

(
1−

Ȳ
Y

)
+ σ1ȲL + σ3ȲX −

α1 +ψX

N1
(X − X̄) −

k1

N1
T (X − X̄) −

σ1ȲL̄
N1

∫ κ1

0
N̂1(m)

×
Y(t−m)L(t−m)X̄

ȲL̄X
dm−

σ2ȲḠ
N1

∫ κ1

0
N̂1(m)

Y(t−m)G(t−m)X̄
ȲḠX

dm

−
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

Y(t−m)X(t−m)

ȲX
dm−

σ2ȲḠ
N2

∫ κ2

0
N̂2(m)

X(t−m)Ḡ
X̄G

dm

+ σ2ȲḠ−
σ1ψLȲ
ψL + k2S̄

(L− L̄) −
k2σ1Ȳ
ψL + k2S̄

S (L− L̄) −
σ1ȲL̄

N3

∫ κ3

0
N̂3(m)

X(t−m)L̄
X̄L

dm

+
k1 (T − T̄)

N1 (β− η1T̄)
(βX −ψTT − η1XT − βX̄ +ψTT̄ + η1X̄T̄ − η1XT̄ + η1XT̄)

+
k2σ1Ȳ (S− S̄)

(θ− η2S̄) (ψL + k2S̄)
(θL−ψSS− η2LS− θL̄ +ψSS̄ + η2L̄S̄− η2LS̄ + η2LS̄)

+
σ1ȲL̄

N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)L(t−m)

YL

)
dm +

σ2ȲḠ
N1

∫ κ1

0
N̂1(m)
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× ln
(

Y(t−m)G(t−m)

YG

)
dm +

σ3ȲX̄
N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)X(t−m)

YX

)
dm

+
α2σ2N2Ȳ
ψG

X +
δσ1N3Ȳ
ψL + k2S̄

X +
σ2ȲḠ

N2

∫ κ2

0
N̂2(m) ln

(
X(t−m)

X

)
dm

+
σ1ȲL̄

N3

∫ κ3

0
N̂3(m) ln

(
X(t−m)

X

)
dm.

Simplifying, we arrive at

dΩ1

dt
= −

ψY (Y − Ȳ)2

Y
+ (σ1ȲL̄ + σ2ȲḠ + σ3ȲX̄)

(
1−

Ȳ
Y

)
+ σ1ȲL + σ3ȲX

−
α1 +ψX

N1
(X − X̄) −

k1

N1
T (X − X̄) +

k1

N1
T̄ (X − X̄) −

k1

N1
T̄ (X − X̄)

−
σ1ȲL̄

N1

∫ κ1

0
N̂1(m)

Y(t−m)L(t−m)X̄
ȲL̄X

dm−
σ2ȲḠ

N1

∫ κ1

0
N̂1(m)

Y(t−m)G(t−m)X̄
ȲḠX

dm

−
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

Y(t−m)X(t−m)

ȲX
dm−

σ2ȲḠ
N2

∫ κ2

0
N̂2(m)

X(t−m)Ḡ
X̄G

dm

+ σ2ȲḠ−
σ1ψLȲ
ψL + k2S̄

(L− L̄) −
k2σ1Ȳ
ψL + k2S̄

S (L− L̄) +
k2σ1Ȳ
ψL + k2S̄

S̄ (L− L̄)

−
k2σ1Ȳ
ψL + k2S̄

S̄ (L− L̄) −
σ1ȲL̄

N3

∫ κ3

0
N̂3(m)

X(t−m)L̄
X̄L

dm

+
k1

N1
(T − T̄) (X − X̄) −

k1 (ψT + η1X)

N1 (β− η1T̄)
(T − T̄)2

+
k2σ1Ȳ
ψL + k2S̄

(S− S̄) (L− L̄)

−
k2σ1Ȳ (ψS + η2L)

(θ− η2S̄) (ψL + k2S̄)
(S− S̄)2

+
σ1ȲL̄

N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)L(t−m)

YL

)
dm

+
σ2ȲḠ

N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)G(t−m)

YG

)
dm +

σ3ȲX̄
N1

∫ κ1

0
N̂1(m)

× ln
(

Y(t−m)X(t−m)

YX

)
dm +

α2σ2N2Ȳ
ψG

X +
δσ1N3Ȳ
ψL + k2S̄

X

+
σ2ȲḠ

N2

∫ κ2

0
N̂2(m) ln

(
X(t−m)

X

)
dm +

σ1ȲL̄
N3

∫ κ3

0
N̂3(m) ln

(
X(t−m)

X

)
dm. (5.1)

In this way, Eq. (5.1) is rewritten in the form

dΩ1

dt
= −

ψY (Y − Ȳ)2

Y
+ (σ1ȲL̄ + σ2ȲḠ + σ3ȲX̄)

(
1−

Ȳ
Y

)
+ σ3ȲX

−
1

N1
(α1 +ψX + k1T̄) (X − X̄) −

σ1ȲL̄
N1

∫ κ1

0
N̂1(m)

Y(t−m)L(t−m)X̄
ȲL̄X

dm

−
σ2ȲḠ

N1

∫ κ1

0
N̂1(m)

Y(t−m)G(t−m)X̄
ȲḠX

dm−
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

Y(t−m)X(t−m)

ȲX
dm

−
σ2ȲḠ

N2

∫ κ2

0
N̂2(m)

X(t−m)Ḡ
X̄G

dm + σ2ȲḠ + σ1ȲL̄−
σ1ȲL̄

N3

∫ κ3

0
N̂3(m)

X(t−m)L̄
X̄L

dm
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−
k1 (ψT + η1X)

N1 (β− η1T̄)
(T − T̄)2

−
k2σ1Ȳ (ψS + η2L)

(θ− η2S̄) (ψL + k2S̄)
(S− S̄)2

+
σ1ȲL̄

N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)L(t−m)

YL

)
dm +

σ2ȲḠ
N1

∫ κ1

0
N̂1(m)

× ln
(

Y(t−m)G(t−m)

YG

)
dm +

σ3ȲX̄
N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)X(t−m)

YX

)
dm

+
α2σ2N2Ȳ
ψG

X +
δσ1N3Ȳ
ψL + k2S̄

X +
σ2ȲḠ

N2

∫ κ2

0
N̂2(m) ln

(
X(t−m)

X

)
dm

+
σ1ȲL̄

N3

∫ κ3

0
N̂3(m) ln

(
X(t−m)

X

)
dm.

Since we have (
δσ1N3Ȳ
ψL + k2S̄

X̄ +
α2σ2N2Ȳ
ψG

X̄ + σ3ȲX̄ −
α1 +ψX + k1T̄

N1
X̄
)

X
X̄

= 0.

This results in the following form

dΩ1

dt
= −

ψY (Y − Ȳ)2

Y
+ (σ1ȲL̄ + σ2ȲḠ + σ3ȲX̄)

(
2−

Ȳ
Y

)
−
σ1ȲL̄

N1

∫ κ1

0
N̂1(m)

×
Y(t−m)L(t−m)X̄

ȲL̄X
dm−

σ2ȲḠ
N1

∫ κ1

0
N̂1(m)

Y(t−m)G(t−m)X̄
ȲḠX

dm

−
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

Y(t−m)X(t−m)

ȲX
dm−

σ2ȲḠ
N2

∫ κ2

0
N̂2(m)

X(t−m)Ḡ
X̄G

dm

+ σ2ȲḠ + σ1ȲL̄−
σ1ȲL̄

N3

∫ κ3

0
N̂3(m)

X(t−m)L̄
X̄L

dm−
k1 (ψT + η1X)

N1 (β− η1T̄)
(T − T̄)2

−
k2σ1Ȳ (ψS + η2L)

(θ− η2S̄) (ψL + k2S̄)
(S− S̄)2

+
σ1ȲL̄

N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)L(t−m)

YL

)
dm

+
σ2ȲḠ

N1

∫ κ1

0
N̂1(m) ln

(
Y(t−m)G(t−m)

YG

)
dm +

σ3ȲX̄
N1

∫ κ1

0
N̂1(m)

× ln
(

Y(t−m)X(t−m)

YX

)
dm +

σ2ȲḠ
N2

∫ κ2

0
N̂2(m) ln

(
X(t−m)

X

)
dm

+
σ1ȲL̄

N3

∫ κ3

0
N̂3(m) ln

(
X(t−m)

X

)
dm.

Furthermore, we have the following equalities

ln
(

Y(t−m)L(t−m)

YL

)
= ln

(
Y(t−m)L(t−m)X̄

ȲL̄X

)
+ ln

(
Ȳ
Y

)
+ ln

(
L̄X
LX̄

)
,

ln
(

Y(t−m)G(t−m)

YG

)
= ln

(
Y(t−m)G(t−m)X̄

ȲḠX

)
+ ln

(
Ȳ
Y

)
+ ln

(
ḠX
GX̄

)
,

ln
(

Y(t−m)X(t−m)

YX

)
= ln

(
Y(t−m)X(t−m)

ȲX

)
+ ln

(
Ȳ
Y

)
,

ln
(

X(t−m)

X

)
= ln

(
X(t−m)Ḡ

X̄G

)
+ ln

(
GX̄
ḠX

)
,
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ln
(

X(t−m)

X

)
= ln

(
X(t−m)L̄

X̄L

)
+ ln

(
LX̄
L̄X

)
. (5.2)

Utilizing equality (5.2) gives

dΩ1

dt
= −

ψY (Y − Ȳ)2

Y
− (σ1ȲL̄ + σ2ȲḠ + σ3ȲX̄)

(
Ȳ
Y
− 1− ln

(
Ȳ
Y

))
−
σ1ȲL̄

N1

∫ κ1

0
N̂1(m)

(
Y(t−m)L(t−m)X̄

ȲL̄X
− 1− ln

(
Y(t−m)L(t−m)X̄

ȲL̄X

))
dm

−
σ2ȲḠ

N1

∫ κ1

0
N̂1(m)

(
Y(t−m)G(t−m)X̄

ȲḠX
− 1− ln

(
Y(t−m)G(t−m)X̄

ȲḠX

))
dm

−
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

(
Y(t−m)X(t−m)

ȲX
− 1− ln

(
Y(t−m)X(t−m)

ȲX

))
dm

−
σ2ȲḠ

N2

∫ κ2

0
N̂2(m)

(
X(t−m)Ḡ

X̄G
− 1− ln

(
X(t−m)Ḡ

X̄G

))
dm

−
σ1ȲL̄

N3

∫ κ3

0
N̂3(m)

(
X(t−m)L̄

X̄L
− 1− ln

(
X(t−m)L̄

X̄L

))
dm

−
k1 (ψT + η1X)

N1 (β− η1T̄)
(T − T̄)2

−
k2σ1Ȳ (ψS + η2L)

(θ− η2S̄) (ψL + k2S̄)
(S− S̄)2 .

Upon simplification, we arrive at

dΩ1

dt
= −

ψY (Y − Ȳ)2

Y
−
σ1ȲL̄

N1

∫ κ1

0
N̂1(m)

(
Υ

(
Y(t−m)L(t−m)X̄

ȲL̄X

)
+ Υ

(
Ȳ
Y

))
dm

−
σ2ȲḠ

N1

∫ κ1

0
N̂1(m)

(
Υ

(
Y(t−m)G(t−m)X̄

ȲḠX

)
+ Υ

(
Ȳ
Y

))
dm

−
σ3ȲX̄

N1

∫ κ1

0
N̂1(m)

(
Υ

(
Y(t−m)X(t−m)

ȲX

)
+ Υ

(
Ȳ
Y

))
dm

−
σ2ȲḠ

N2

∫ κ2

0
N̂2(m)Υ

(
X(t−m)Ḡ

X̄G

)
dm−

σ1ȲL̄
N3

∫ κ3

0
N̂3(m)Υ

(
X(t−m)L̄

X̄L

)
dm

−
k1 (ψT + η1X)

N1 (β− η1T̄)
(T − T̄)2

−
k2σ1Ȳ (ψS + η2L)

(θ− η2S̄) (ψL + k2S̄)
(S− S̄)2 .

At this stage, we guarantee that dΩ1
dt ≤ 0 for all positive values of Y, X, G, L, T, S when R0 > 1.

Meanwhile, dΩ1
dt = 0 when Y = Ȳ, T = T̄, S = S̄ and Υ = 0. The solutions of model (2.1) approach

Θ
′

1, where Y(t) = Ȳ, T(t) = T̄, S(t) = S̄ and Υ = 0 for all t, such that

Y(t−m)L(t−m)X̄
ȲL̄X

=
Y(t−m)G(t−m)X̄

ȲḠX
=

Y(t−m)X(t−m)

ȲX
=

X(t−m)Ḡ
X̄G

=
X(t−m)L̄

X̄L
= 1,

for all t ∈ [0,κ]. This ensures that (Y(t), X(t), G(t), L(t), T(t), S(t)) = (Ȳ, X̄, Ḡ, L̄, T̄, S̄) for all t, and

Θ
′

1 = {PE}. By applying Lyapunov-LaSalle asymptotic stability theorem, we conclude that PE

attains global asymptotic stability.
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6. Numerical Simulations

This section presents numerical simulations to validate the theoretical findings of our study.

Moreover, we investigate how CTL and antibody immune impairments, along with time delay,

affect HIV replication. Furthermore, a detailed sensitivity analysis will be conducted for each

parameter.

To facilitate the numerical calculations, we adopt a particular structure for the probability

distribution functions ni (m), where i = 1, 2, 3, as described below:

ni(m) = δ∗ (m−mi) , mi ∈ [0,κi] , i = 1, 2, 3.

Here, δ∗(.) refers to the Dirac delta function. As κi →∞, we have the following result:∫
∞

0
ni (m) dm = 1, i = 1, 2, 3.

Further, we obtain

Ni =

∫
∞

0
δ∗ (m−mi) e−%imdm = e−%imi , i = 1, 2, 3.

Therefore, system (2.1) is reformulated into the discrete time delay system shown below:

dY(t)
dt = ω−ψYY(t) − σ1Y(t)L(t) − σ2Y(t)G(t) − σ3Y(t)X(t),

dX(t)
dt = e−%1m1Y(t−m1) (σ1L(t−m1) + σ2G(t−m1)

+σ3X(t−m1)) − (α1 +ψX)X(t) − k1X(t)T(t),
dG(t)

dt = α2e−%2m2X(t−m2) −ψGG(t),
dL(t)

dt = δe−%3m3X(t−m3) −ψLL(t) − k2L(t)S(t),
dT(t)

dt = βX(t) −ψTT(t) − η1X(t)T(t),
dS(t)

dt = θL(t) −ψSS(t) − η2L(t)S(t).

(6.1)

In the case of system (6.1), the basic reproduction number can be written as:

R̃0 =
Y0e−%1m1 (ψGδe−%3m3σ1 +ψL (α2e−%2m2σ2 +ψGσ3))

ψGψL (α1 +ψX)
. (6.2)

For numerical calculations, the parameters associated with infection rates, immune impairment,

and delays (i.e. σ1, σ2, σ3, η1, η2, m1, m2, m3) are varied, while the other parameters are kept

constant as specified in Table 1. These parameters are sourced from existing literature, except for

%1, %2, %3, and k2, which are predetermined.
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Table 1. The values of the model’s parameters.

Parameter Value Source Parameter Value Source

ω 10 [54] ψY 0.01 [54]

σ1, σ2, σ3 Varied ψX 0.75 [55]

α1 0.1 [55] ψG 0.1 [55]

α2 0.1 [30] ψL 1 [56]

k1 0.001 [55] ψT 0.2 [57], [58]

k2 0.01 Assumed ψS 0.01 [56]

δ 3 [56] m1, m2, m3 Varied

β 0.5 [57] %1 0.1 Assumed

θ 0.2 [56] %2 0.1 Assumed

η1, η2 Varied %3 0.1 Assumed

6.1. Stability of equilibrium points. Here, we undertake a numerical investigation into the global

stability of all equilibria. Based on Theorems 1 and 2 which ensure the global stability of both

equilibria, convergence is guaranteed irrespective of the initial values. Therefore, the initial

conditions for system (6.1) are chosen randomly as follows:
Y(v) = 700 + 2 sin(v) − 30 j, X(v) = 0.9 + 0.1 sin(v) + 0.5 j,
G(v) = 3 + 0.1 sin(v) + 0.4 j, L(v) = 2 + 0.05 sin(v) + 0.5 j,
T(v) = 2 + 0.01 sin(v) + 1.5 j, S(v) = 60 + 0.03 sin(v) + 4 j,
j = 1, 2, ..., 12, v ∈ [−m, 0], m = max{m1, m2, m3}.

(IC1)

To carry out our numerical calculations in this subsection, the values of infection rates parameters

ω1, ω2, and ω3 are varied, whereas the immune impairment and delays parameters are set to

η1 = η2 = 0.001, m1 = 0.7, m2 = 0.6, and m3 = 0.5. Meanwhile, the other parameters are kept

constant as specified in Table 1. Therefore, the following cases arise:

Case 1. Assigning σ1 = 0.0001, σ2 = 0.0003, and σ3 = 0.0002, the basic reproduction number R̃0

is calculated to be 0.84, which is less than unity. In accordance with Theorem 1, the equilibrium

point FE = (1000, 0, 0, 0, 0, 0) demonstrates global asymptotic stability, as depicted in Figure 1.

This finding indicates the successful clearance of HIV infection from the human body, highlighting

the conditions under which the virus cannot persist.

Case 2. The values σ1 = 0.0003, σ2 = 0.0007, and σ3 = 0.0006 are assigned. With these

parameters, the basic reproduction number, R̃0, is determined to be 2.32, exceeding unity. Theorem

2 confirms that the equilibrium point PE = (538.23, 4.99, 4.70, 7.64, 12.18, 86.60) exhibits global

asymptotic stability, as depicted in Figure 2. This analysis reflects the ability of the virus to

maintain a stable presence in the human body under this condition and cause chronic infection,

highlighting the persistence of HIV infection.

6.2. Role of time delays in the stability of equilibrium points. Here, we investigate how different

delay values affect the system’s dynamics (6.1). To conduct this analysis, we set σ1 = 0.0003,

σ2 = 0.0007, σ3 = 0.0006, and η1 = η2 = 0.001, while the remaining parameters are drawn from
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Table 1. Furthermore, the delay parameters mi, for i = 1, 2, 3 will be adjusted throughout the

analysis as needed. The stability of equilibrium points is highly sensitive to changes in mi, causing

notable variations in R̃0 (as defined in Eq. (6.2)), which is dependent on mi. As a result, the

dynamical system undergoes substantial shifts in stability whenever mi changes. We begin by

considering the delay parameters provided in Table 2, and subsequently solve system (6.1) using

the prescribed initial condition below. (Y(v), X(v), G(v), L(v), T(v), S(v)) = (700, 3, 2, 3.5, 7, 40) ,

v ∈ [−m, 0], m = max{m1, m2, m3}.
(IC2)

The computed values of R̃0 corresponding to specific choices of mi (i = 1, 2, 3) are displayed in Table

2. The findings indicate that a significant decline in R̃0 occurs as mi increases. The numerical sim-

ulations, depicted in Figure 3, demonstrate that longer time delays lead to a higher concentration

of healthy CD4+T cells while simultaneously reducing the levels of other compartments.

Table 2. Different values of R̃0 corresponding to mi.

Case Delay parameters (m1, m2, m3) Equilibrium points R̃0

DP1 0.1 , 0.2, 0.3 PE(6.1) = (501.62, 5.71, 5.60, 8.63, 13.88, 92.65) 2.52

DP2 0.5, 1.5, 2.5 PE(6.1) = (566.93, 4.78, 4.11, 6.30, 11.67, 77.30) 2.13

DP3 2, 3, 4 PE(6.1) = (694.33, 2.92, 2.16, 3.79, 7.19, 54.96) 1.66

DP4 3, 4, 5 PE(6.1) = (788.64, 1.83, 1.23, 2.40, 4.54, 38.75) 1.41

DP5 6, 7, 8 FE(6.1) = (1000, 0, 0, 0, 0, 0) 0.87

DP6 9, 10, 11 FE(6.1) = (1000, 0, 0, 0, 0, 0) 0.55

6.3. Role of CTL and antibody immune impairments. To explore the influence of CTL and

antibody immune impairments, we set σ1 = 0.0003, σ2 = 0.0007, σ3 = 0.0006, m1 = 0.7, m2 = 0.6,

and m3 = 0.5, while the remaining parameters are drawn from Table 1. In addition, the immune

impairment parameters ηi, for i = 1, 2, will be modified throughout the analysis as needed.

Although the stability of equilibrium points is not affected by changes in ηi, since R̃0 (as defined

in Eq. (6.2)) does not depend on ηi, we still aim to investigate the role of immune impairments

in the behavior of solution trajectories. To do so, we begin by utilizing the immune impairment

parameter values listed in Table 3 and subsequently solve system (6.1) using the prescribed initial

condition below.  (Y(v), X(v), G(v), L(v), T(v), S(v)) = (510, 5, 5, 9, 7, 60) ,

v ∈ [−m, 0], m = max{m1, m2, m3}.
(IC3)

Table 3. Equilibrium points corresponding to different values of ηi.

Set Immune impairment parameters (η1, η2) Equilibrium points
1 0, 0 PE(6.1) = (561.90, 4.74, 4.46, 6.10, 11.85, 121.90)
2 0.007, 0.001 PE(6.1) = (537.39, 5.01, 4.72, 7.66, 10.66, 86.74)
3 0.02, 0.005 PE(6.1) = (485.63, 5.58, 5.26, 11.87, 8.96, 34.23)
4 0.07, 0.01 PE(6.1) = (462.87, 5.86, 5.52, 14.09, 4.80, 18.67)
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As observed in Table 3 and Figure 4, it is evident that a higher ηi results in a decline in the

population of CTLs and antibodies. This, in turn, corresponds with an increase in HIV-infected

CD4+T cells, inflammatory cytokines, as well as free HIV particles. As a result, the count of healthy

CD4+T cells declines.

6.4. Sensitivity analysis. The main objective of this subsection is to discuss the sensitivity analysis

of model (6.1). Specifically, the analysis aims to assess the impact of various parameters on the

advancement of HIV infection in a host, offering insights that can be useful for the development of

novel antiviral therapies. The sensitivity index will be determined by employing partial derivatives

to examine how variables fluctuate in accordance to parameter changes. The following formula

represents the normalized forward sensitivity index of R̃0 in relation to the parameter:

Qτ =
τ

R̃0
×
∂R̃0

∂τ
. (6.3)

Here, τ accounts for a specified parameter. The values of Qτ range from −1 to 1, with a positive Qτ

indicating a positive correlation and a negative value reflecting a negative correlation. The absolute

value of Qτ signifies the level of sensitivity: values close to zero imply a minimal effect, whereas

values near one point to a strong impact [59]. The sensitivity indices for R̃0 were computed

using Eq. (6.3) by applying the parameter values provided in Table 1, including σ1 = 0.0003,

σ2 = 0.0007, σ3 = 0.0006, η1 = η2 = 0.001, m1 = 0.7, m2 = 0.6, and m3 = 0. The calculated

sensitivity indices, derived from these values, are summarized in Table 4. The sensitivity indices

of R̃0, as demonstrated in Table 4 and Figure 5, shed light on the varying influences of each

parameter. From these, it is apparent that parameters ω, σ1, σ2, σ3, δ, and α2 exhibit positive index

values. This indicates that an increase in the values of these parameters is linked to a higher R̃0

value, leading to a greater level of HIV endemicity. In contrast, the parameters ψY, α1, ψX, ψG, ψL,

%1, %2, %3, m1, m2, and m3 show negative sensitivity indices, meaning that as their values rise, R̃0

decreases. Among all the parameters, the most influential areω, σ1, and δ, while σ2, σ3, and α2 have

relatively minor impacts. Moreover, the parameters related to CTL and antibody responsiveness,

η1 and η2, seem to have no impact on R̃0.

Table 4. Quantifying parameters’ influence on R̃0 in model (6.1): sensitivity index

Parameter τ Value of Qτ Parameter τ Value of Qτ Parameter τ Value of Qτ

ω 1 α1 −0.118 %2 −0.019

ψY −1 α2 0.312 %3 −0.020

σ1 0.405 ψX −0.882 m1 −0.07

σ2 0.312 ψG −0.312 m2 −0.019

σ3 0.284 ψL −0.405 m3 −0.020

δ 0.405 %1 −0.07
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Figure 1. Numerical simulations reveal that the solution of system (6.1) stabilizes at the HIV-free

equilibrium FE = (1000, 0, 0, 0, 0, 0) when R̃0 ≤ 1 (Case 1).
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Figure 2. Numerical simulations reveal that the solution of system (6.1) stabilizes at the HIV-persistent

equilibrium PE = (538.23, 4.99, 4.70, 7.64, 12.18, 86.60) when R̃0 > 1 (Case 2).
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Figure 3. Role of time delay parameters in shaping the dynamic patterns of solution trajectories in

system (6.1).
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Figure 4. Role of immune impairment parameters in shaping the evolution of solution trajectories in

system (6.1).
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Figure 5. Assessment of parameter influence on R̃0 in system (6.1) using forward sensitivity analysis

7. Conclusion

This study investigated a cytokine-enhanced HIV infection model that incorporates impair-

ments in both CTL and antibody-mediated immune responses. The model captures three modes

of CD4+T cell infection: (i) virus-to-cell transmission via free HIV particles, (ii) cell-to-cell spread

through direct contact with infected cells, and (iii) cytokine-enhanced infection, in which inflam-

matory cytokines attract uninfected CD4+T cells to inflamed tissues, increasing their vulnerability

to infection. The model also accounts for three biologically relevant distributed time delays: in

infection, cytokine activation, and virion maturation.

Mathematically, we demonstrated that all solutions remain nonnegative and ultimately

bounded. Two equilibria were identified: the HIV-free equilibrium (FE) and the HIV-persistent

equilibrium (PE). Their existence and stability depend on the basic reproduction number R0, de-

rived using the next-generation matrix method. Lyapunov functionals were constructed to show

that FE is globally asymptotically stable when R0 ≤ 1, while PE is globally asymptotically stable

when R0 > 1.

Numerical simulations supported the analytical results and revealed how variations in model

parameters influence infection dynamics. Sensitivity analysis of R0 identified key factors driving

viral persistence and immune control. In particular, increased impairment of the adaptive immune

response led to more severe infection progression, whereas longer delay times were associated with

suppressed viral growth.

These findings underscore the complex interplay between immune dysfunction, cytokine ac-

tivity, and time delays in HIV infection, offering valuable insights for future immunological and

therapeutic research.
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