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Abstract. In this paper, we present a coordinate-free investigation of a special anisotropic conformal transformation of
a Finsler function L. Specifically, for a Finsler metric (M, L) and a one-form B, we consider the transformation

—_ . B(x,%)

L(x,%) = &"CAL(x, %) = e T L(x, %).

We examine various geometric objects associated with the transformed metric L(x, %) in terms of the corresponding
objects of the original metric L. In particular, we derive the expressions for the metric tensor, Cartan tensor, and
other related geometric quantities for Z, and we characterize the conditions under which the metric tensor of L is
non-degenerate. To further explore geometric structures such as the geodesic spray, Barthel connection, and Berwald
connection of Z(x, %), we restrict the one-form B to one induced by a concurrent 7-vector field. Under this assumption,

we compute the curvature of the Barthel connection associated with L. An explicit example is also provided.

1. INTRODUCTION

Finsler geometry extends Riemannian geometry by allowing the norm of a tangent vector to
vary with both position and direction. This direction dependence makes Finsler spaces especially
suited for modeling anisotropic structures, where physical or geometric properties change based
on direction. Such flexibility has attracted attention in both pure mathematics and theoretical
physics.

One important class of transformations in Finsler geometry is the conformal change, which
modifies the Finsler function L(x, X) by a positive scalar factor. Unlike standard conformal trans-
formations that depend solely on the base point x, anisotropic conformal changes involve scaling

functions that also depend on the direction x.
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Such direction-dependent rescalings influence key geometric entities including the Finsler metric
tensor, Cartan tensor, and the connections that govern parallel transport and curvature. Studying
these changes sheds light on the internal structure of Finsler manifolds and allows the construction
of special types of metrics such as Landsberg and non-Berwaldian metrics.

From the viewpoint of physics, anisotropic conformal transformations offer a useful tool in
modeling space-time geometries where physical laws may vary with direction. These ideas appear
in extensions of general relativity, cosmological models with anisotropies, and approaches to
quantum gravity. The flexibility of Finsler geometry, especially when equipped with anisotropic
modifications, provides a natural setting for these theories. These transformations take the form

L(x, %) = "“YL(x, %),

where o(x, %) is a smooth real-valued function on the slit tangent bundle TM \ {0}. Recently, in

[16], the authors demonstrated the challenges that arise when considering an anisotropic conformal

change with a general factor o(x, ¥). So, a particularly interesting case arises when o (x, X) = f((;:j: )) ,
with B being a one-form. This leads to

- . Bxy)

L(x,%) = "L (x,%) = eT&0 L(x, %) (1.1)
where o(x,X) = %. A prominent class of special Finsler metrics is the family of (a, f)-metrics,

defined on a Riemannian manifold (M, «) in the presence of a 1-form . These metrics have been
widely explored in the literature due to their rich geometric structure and diverse applications (see,
for example, [1,2,7-11]). Many of these metrics play a fundamental role in Finsler geometry (see
references therein). One notable example of an (&, f)-metric is the exponential («, )-metric. In the
context of the above anisotropic transformation, a similar structure arises—however, it involves
the Finsler metric L in place of the Riemannian metric a. Therefore, this can be regarded as a
generalized exponential («, f)-metric.

This paper focuses on a coordinate-free study of anisotropic conformal transformations of Finsler
functions, particularly those defined using one-forms derived from concurrent r-vector fields. We
derive expressions for the resulting geometric quantities associated with the transformed metric
L, examine the conditions for non-degeneracy, and compute connections and curvatures relevant

to the new geometry. An illustrative example is also included.

Using the pullback formalism of Finsler geometry, we undertake a coordinate-free investigation
of the special anisotropic conformal transformation (1.1) which is defined as a deformation of a
Finsler metric L (not necessarily Riemannian) by a n-form B. We study various geometric objects
associated with L, including the metric tensor and Cartan tensor. Furthermore, we provide a

condition for the non-degeneracy of the metric tensor g: ¢ is non-degenerate if and only if
B2 4 BL-L2(p* +1) 0.

To derive the geodesic spray and Berwald curvature of L, we focus on a Finsler manifold (M,L)

that admits a concurrent n-vector field p. We then compute the associated n-form B := i5g, where
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¢ is the metric tensor of L, and define the corresponding scalar n-form as B(x, x) := B(7). Using
this setup, we determine intrinsic expressions for the canonical spray G and Barthel connection T
associated with L. Additionally, we establish the transformation law of the curvature tensor of the
Barthel connection and show that the canonical sprays G and G satisfy the relation
~ L?(L -2%) Lt _
G=G- - 1L
B2+ BL-L2(p> +1) B2+ BL-L2(p> +1)

where C denotes the Liouville vector field and p? := B(p) = g(p,p)-

As an illustrative example, consider the Finsler manifold M = {(r, 6, o, tyelUc R*|r, 0 # 0,
and define the conic Finsler metric L by

0292 + 200\ .
L= \/ﬂ(—qj 5 qb) + 72 + 12

for (r,0,¢,t7, 0, q:‘), f) € TU c R* xR*. In this case, the corresponding m-form has components
B; =, B, = B3 = 0, By = t, leading to the scalar ni-form B(x, %) = r# + tf. That is, we have

i+t

~ B00) 0242 + 209\’ R
L(X,X) = L(x,fc)eL(M") = \/72 (%) +7;2+t26\/ ( 0 )+ + )

&

2. NOTATIONS AND PRELIMINARIES

Let M be a smooth manifold of dimension n, and let (TM, n, M) denote its tangent bundle
with the corresponding tangent map (TTM, dr, TM). The vertical bundle V(TM) is defined as
the kernel of the differential map: V(TM) := ker(dmn). The pullback of the tangent bundle is
denoted by 7! (TM). These structures yield the following short exact sequence of vector bundle
morphisms [4]:

0— Y (TM) S TTM S 7 {(TM) — 0,

where TM := TM \ {0} is the slit tangent bundle, y is the canonical injection, and p := (7trp, d7r).
The almost tangent structure (also known as the vertical endomorphism) | on TM is defined by
the composition | := y o p. The ring of smooth functions on TM is denoted by C*®(TM), and the
module of smooth sections of 7=} (TM) is denoted by ¥(7(M)), whose elements are called r-vector
fields and are typically written as X.
The Liouville vector field (or the fundamental n-vector field), denoted by C, is given by C := 7,
where 77(u) := (u,u) forall u € TM.

We now recall foundational aspects of the Klein—Grifone approach to Finsler geometry; see [4-6]
for more comprehensive treatments.
A nonlinear connection on M is a vector-valued 1-form I' on TM that is smooth on 7 M and

continuous on TM, satisfying;:

=], TJ=-].
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The associated horizontal and vertical projectors are defined by:
1 1

h = E(1+r), V= E(I—F).

The torsion and curvature tensors of I are given respectively by:

1 1
t:= EU,F], R .= —E[I’l,h]

Given a linear connection D on 7~} (TM), the corresponding connection map K is defined by:
K:TTM — " }(TM), X+ Dx7.
The horizontal subspace at u € TM is:
H,(TM) := {X € T,(TM) : K(X) = 0}.
The connection D is said to be regular if every tangent space decomposes as:
Tu(TM) =V, (TM)®H,(TM), VYueTM.
In this case, the restrictions plyrp) and Kly(7pr) are isomorphisms, and the inverse f := (pl H(TM) )1

is called the horizontal map associated with D.

Let D be a regular connection on 7w~!(TM), with horizontal map f and torsion and curvature

tensors T and K, respectively. Then the following hold:

(1) For a m-tensor field A of type (0,p), the horizontal and vertical covariant derivatives are

defined by:
h — — — — —
(DA)X, Xy,...,Xp) = (DﬁXA)(Xl,...,Xp),
(D A)(}_(,Yl, .. 'I}_(P) = (DyiA)(il’ e /§P)'
(2) The torsion components of D are:
Q(X,Y) = T(BX,pY),
T(X,Y) :=T(yX,8Y),
V(X,Y) :=T(yX,yY
(3) The curvature tensors of D are given by:

(4) The (v)h-, (v)hv-, and (v)v-torsion tensors are:

P P - p— —

R(X,Y):=R(X,Y)5, P(X,Y):=P(X,Y)n, S(XY):=S5XY)n.



Int. J. Anal. Appl. (2025), 23:291 5

Finsler Structures and Cartan Connection.

Definition 2.1. A Finsler manifold is a pair (M, L) where M is a smooth n-dimensional manifold and
L: TM — R is a function satisfying:

@): L(u) >0 forallu € TM,and L(0) =0,

(b): Lis C* on T M and continuous on TM,

(c): L is positively 1-homogeneous: LcL =L,

(d): The 2-form Q) := ddjE, where E := %LZ, is non-degenerate.
The induced Finsler metric g on = (TM) is defined by:

g(pX, pY) :=Q(JX,Y), VX, YeX(TM).

If the above conditions hold only on a conic subset U C T M, the pair (M, L) is called a conic Finsler

manifold.

Remark 2.1. Motivated by potential applications in both theoretical and applied settings such as general
relativity, we can extend the classical notions of Finsler geometry by introducing pseudo-Finsler and
conic pseudo-Finsler spaces. These generalizations allow for more flexibility in the geometric structure,

particularly by relaxing the strong convexity and positivity conditions on the Finsler metric.
Avector field G on TM is a semi-spray if J|G = C; itis a spray if itis 2-homogeneous, i.e., [C,G] = G.

Proposition 2.1 ( [5,6]). Let (M, L) be a Finsler manifold. Then:

(@): There exists a unique spray G (called the canonical spray) satisfying icddjE = —dE.
(b): The Barthel connection is defined by I' := [], G].

Theorem 2.1 ([13]). Given a Finsler manifold (M, L) with Finsler metric g, there exists a unique reqular
connection V on 7w~ (TM) such that:

(i): Vis metric: Vg =0,

(ii): The (h)h-torsion vanishes: Q = 0,

(iii): The (Who-torsion satisfies symmetry: ¢(T(X,Y),Z) = g(T(X,Z),Y).

This connection is called the Cartan connection.

Lemma 2.1 ([13]). Let (M, L) be a Finsler manifold and let B be the horizontal map of the Cartan connection
V. Then:

@) (D758) (Y, Z
(b) (D38)(V,Z

—

=2T(X,Y,
= 2P(X,Y,Z), Vixg =0,

~—  ~—

Lemma 2.2. For a Finsler manifold (M, L):
(a): d;L(yX) =0, DooL = dL(yX) = d;L(pX) = ((X),
(b): d,L(BX) = Dk = dL(BX) =0,
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(0): (D;Xé’) () = (VO (Y) = L'a(X,Y),
(d): dd;E(yX,BY) = g(X,Y),

where g is the Finsler metric and € := L‘liﬁg is the normalized supporting element.

3. SeeciAL ANI1SOTROPIC CONFORMAL CHANGE

In this section, we present an intrinsic study of the special anisotropic conformal change. By de-
forming the underlying Finsler structure using a factor o(x, X), we introduce as special anisotropic

conformal change, as defined below.

Definition 3.1 ([14]). Let (M, L) be a Finsler manifold and let D° denote the Berwald connection on . A
nt-vector field Y € C(nt) is said to be independent of the directional argument y if and only if

D;X? =0 forall X € C(n).

Similarly, a scalar or vector m-form w is independent of the directional arqument % if and only if

D;)_(a) =0 forall X € C(n).

Definition 3.2. Let (M, L) be a Finsler manifold. Consider the special anisotropic deformation of the Finsler
structure L given by

— . B(x,%)
L(x,%) = " YL(x, %) = eT®0 L(x, %), (3.1)
where o(x,X) := QE((;(;C)) , and B(x,x) := B(N) is defined by a scalar m-form B that is independent of the

directional argument y. Ifz defines a Finsler structure on M, then it can be referred also as a generalized

exponential («, f)-metric.
To investigate the geometry associated with Z, we require the following lemmas.

Lemma 3.1. Under the transformation L L, the vertical component of the Berwald connection remains
invariant:
D°_Y=D_Y
rX rX
Proof. This follows from the fact that the difference between the horizontal maps E and B is a

vertical vector field, together with the identity
DY = plyX.pY],
the vanishing of p oy, and the integrability of the vertical distribution (cf. [13]). m|
Lemma 3.2. Let (M, L) be a Finsler manifold equipped with a scalar m-form B independent of x, and let
P be the associated mt-vector field defined via iz g := B. Then the function B(x,y) := B(7) satisfies the
following:
(a): d;B(yX) =0, D° B = dB(yX) = d;B(pX) = B(X).
14

(b): d, B(PX) = D;X B = dB(X) = Lf(D;i p), and dB(G) = L£(Dgp).
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(0): Dﬁp = -2T(X,p).
Proof. Straightforward computations; the proof is omitted. m]

We now derive the behavior of the normalized supporting element ¢ and the angular metric
tensor 71 under the anisotropic conformal change (3.1).

Proposition 3.1. Under the transformation (3.1), the following hold:
(1) The supporting form Cis related to € by

7(X) = em(%%)w?) + eVLB(X),

(2) The angular metric tensors 1 and h are related via

HX,Y) = w WX, Y) + 2/ B(X) B(Y)
B22B/L _ Be2B/L _ -
+ = (X) () - — [B(X) £(Y) +B(Y) £(X)]. (3.2)

Proof. (1) Since poy =0and pof = pof = idyxm)), we have:

((X) = 4jL(pX) = d)L(pX).
Differentiatingz = Le¥/L gives:
—— (), =  (OL)y =  €VEHL-B) — g =
{(X) = [ﬁ]{’(X) + [%)B(X) = ff(X) + e/ B(X).
(2) Using Lemmas 2.2, 3.1 and 3.2:

nXY) = LD OY) =LDO()
{e‘B/L(L_%)

Il
1

D°_
yX L

= 1 {{ops () @+ () o)

+L {(EM(%%)) (D°50) (Y) + ¥/t (D;XB)(TO}

2,8/L @B/l _\  _
_ LeB/L{(%Tf(X)—%LZ B<x>) %

((T) + DL B(l_/)}

GB/L B\ _
+ (_%Lz £(x) + TB(X)) B(Y)}

+Le®/L {(EB/L(%%)) (L7'h(X,Y) +0)}.

which simplifies to the expression in (3.2). O
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4. THE METRIC AND CARTAN TENSORS

In this section, we calculate some geometric objects associated to Z(x, %) in terms of the objects
associated with L. The following proposition shows the relationship between g and g.

Proposition 4.1. The Finsler metric g associated with the special anisotropic change (3.1) is given by the
following relation:

ARTZ) - 27D 1%, 7,74 2T 3 7)) 417, 2) )
il (LL; 23) (BX)1(Y,Z) +B(Y) h(X,Z)} + (D;zze%) B(X)B(Y)

D;z#) X Y)+ (D;ZW) €(X) €(Y)
)

Dy_—) {B(X)¢(Y) +B(Y) £(X)}.

Proof. In view of the change (3.1), using Proposition 3.1, we have the following;:

—_ B/L L—B . _
(X) = %K(X) + %L B(X).
23 23
— = = T(L-B), << == 2eT  — —
nXY) = % 1(X,Y)+et BX)B(Y) + SBL—‘;L €(X) e(Y)
Bel (o~ = o=
- {B(X) ¢(Y) +B(Y) £(X)}.
Hence, using the definition of the angular metric tensor "= 9- {®¢, the expression of g is

obtained. Moreover, using the expression of the metric g, taking into account the fact that
(Dozg) (X,Y) = 2T(X,Y,Z) (Lemma 2.1), it follows the required expression of the Cartan tor-
Y

sion T. m]
Theorem 4.1. The metric tensor §off is non-degenerate if and only if
B2+ BL-L?(p* +1) 0. (4.1)

That is, the special anisotropic change provide a Finsler structure (ot, conic Finsler structure) if and only if
the condition (4.1) is satisfied.
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Proof. Assume that ¢ be the Finsler metric associated with the special anisotropic change (3.1). To
prove the non-degenerate property of 3. Suppose that g(X,Y) = 0 for all X € ¥(t(M)). By using
Proposition 4.1, we obtain
28 23
T(L-B) —— g — —  BelT(2B-L) —  —
0 = %g(x, Y)+2¢T B(X)B(Y) + BT (28-1) i

220 45%) 1) + BT ().

From which, by substituting X = p, noting that £(p) = % and B(p) = g(p,p) =: p?, one can show
that

GOY)+0B(Y) =0, (4.2)
where

eT (28 -L)(B-Lp)(B+Lp) e (—28 + 2L + 12)
Cl = L3 , Cz = L2 A

Similarly, by substituting X = 7], taking into account the facts that £(7]) = L and B(7}) = 8, we

obtain
G (YY) +GB(Y) =0, 4.3)
with
(3 = —e%(% -L), = LeT

Now, the system of the algebraic equations (4.2) and (4.3) has non-trivial solution (i.e. £(Y) # 0

and B(Y) # 0) if and only if
et (B2 +BL-L2(p? +1))

=0.
L

Hence, as L # 0 over 9 M, then we conclude that

B2+ BL-L2(p* +1) = 0.

Therefore, £(Y) = B(Y) = 0 if and only if the Finsler structure L and the n-form B satisfy the

condition
B2+ BL-L2(p? +1) 0.

From which, one can show that Y vanishes. This means that the metric gfis non-degenerate if and
only if the condition (4.1) is satisfied. Hence, the proof is completed. O

Form now on, we consider that the L satisfies the condition (4.7).
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5. GeopEesic SPrRAY AND BERWALD CONNECTION

To simplify the calculations involved in determining the geodesic spray under the special
anisotropic change, we focus on a particular type of 1-form. This leads to the following definition.

Definition 5.1 ( [14]). Let (M, L) be a Finsler manifold. A m-vector field p € ¥(m(M)) is said to be a

concurrent ri-vector field if it satisfies:
<P =0=D°_p. (5.1)

Furthermore, if B is the m-form associated with p via the Finsler metric g, that is, B = i5 g, then B satisfies:

(VixB)(Y) = —3(X,Y) = (DzB)(Y), (V,xB)(Y)=0= (DB (Y).

An intrinsic treatment of concurrent m-vector fields within Finsler geometry was presented
in [14], where their properties and characterizations were systematically examined. One such

characterization is given below.

Lemma 5.1. Let (M, L) be a Finsler manifold endowed with a scalar 1-form B that does not depend on the
directional argument %, and let p be its associated concurrent mt-vector field. Then the function B := B(7)
satisfies:

dB(G) = -1

Proof. The result is obtained by applying part (b) of Lemma 3.2 in conjunction with Definition
5.1. m|

Theorem 5.1 ( [14]). If p is a concurrent m-vector field, then both p and its associated m-form B are

independent of the directional argument X.

We now derive the expression for the canonical spray G associated with L, relating it to the
geodesic spray G of the original metric L.
Theorem 5.2. Under the special anisotropic change (3.1), the corresponding canonical spray G is given by:

S_c L?(L-29) c L*
B4 BL-L2(p2+1) B2+ BL-L2(p2+1)

VP,
where C := y 1] denotes the Liouville vector field, and p* := B(p) = ¢(p, ).

Proof. Due to the Let L be (3.1), taking into account the expression of the exterior m-form Q=
1dd ]ZZ, the fact that the difference between two sprays is a vertical vector field (i.e. G=G+ YU,
for some 7t-vector field p) and using Proposition 2.1, one can show that

~E(X) = iz0(X) = igeyz (A4 T2)(X)

2 - 5.2
= jicddjL*(X) + 3i,5 dd;L*(X). 6-2)
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Therefore, after some computation together the fact thats fn = G and X = hX + vX = fpX + yKX,
together with Lemmas 2.2, 3.2 and 5.1, we have

JE(X) = %dfz(X):fdf(X)

= (Le%) {M dL(X) +e®/L d%(X)}

L

= —eT(B-L)dL(X) + LeT dB(X).

Also, we have

%icddﬁ?(x) = %{ddﬁ?(ﬁﬁrx)}
_ % {G -djL2(X) - X - djL*(G) — d;L*[G, X]}
_ %{G,(zf’{?(px))_X-(2-(ﬁ))—2ff7(P[GrXD}

((G-L) £(pX) + LG - £(pX)) ~ (X -L*) =L£(p[G, X))

From which taking into account Lemmas 3.2, 5.1 and the following facts

G-L = dL(G)=-L2¢%"!
X-L = dL(X) :de(X)Jre%“d%(X),
X = wf(}_()%—e%“mi),
p[G,X] = pl[G hX+vX]=DlpX-KX,
(DgB)(X) = -g(X,7) =-L{(X),
(DeOX) = (VeO)(X) =0,
dB(X) = B(KX)-Ll(pX),
dL(X) = dL(yKX) = £(KX).

Using the above identities, then straightforward calculations imply the above relation reduces to

% icdd/[2(X) =

eB/L(L—B)
L
eB/L(L-B)
L
eB/L(L-B)
L
eB/L(L-B)
L

—[%Y/T ( t(pX) +eQ3/LB(pX))

+Le¥LG ( {(pX) + ewLB(pX))
—2Le%/t ( dL(X) +e®/F d%(X))

Lot ( ((p[G,X]) + /L B(pG, X]))

—LeT (L-2B)6(pX) —20%eT B(pX) + T (B - L) dL(X)

—LeT dB(X).
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On the other hand, using Proposition 4.1, we have

Rl ddL*(X) =g, pX)
_ erL (IL_ ) g(ﬁ,px) —|—2€ L B(H) B(pX) + 8 (52% _L) f(ﬁ) f(PX)
eT (L-23)

Plugging the last two relations into Equation (5.2), after some calculation, it follows that

eT (B-L)dL(X) - Le™ dB(X)
= —LeT (L-2B)(pX)-2[%eT B(pX) + T (B —L)dL(X)
2 el (L-2%B) _ _ _
—LeT dB(X) + ————— {B(@) ((pX) + B(pX) (@)}

238 28
et (L-B) _ ® BeT (2B-L) _
7 8(F,pX) +2¢T B(H) B(pX) + ——5— £(7) ((pX).

Adopting to the non-degenerate property of the Finsler metric g, the above relation reduces to

=2

23 23 23
et (L-3B) _ 2 et (L-28B)  _ BVe1 (2B-L) _ |_
— 7 = {“ (L-29) - TB(#)—Tf(#) n
28
: ; T(L-2B
+{2L2 eT —2¢T B(H) — % f(y)}ﬁ, (5.3)
where ¢(11) and B() are geometric quantities given by the following system
Art(p) +B1B(p) = G,
A @) +BB(E) = G, (5.4)
with coefficients determined by
23
T(L-3B ;
A1 = %, Bl = 6%, C1 = Lze%,
et (28 -L) (B2 - 12p?)
Ay = 3 ,
e (L2(2p% +1)-2%?)
B, = I ,
Cy = —eT (28— BL-20%p?),
P’ = B()

Making use of the condition (4.1), the system (5.4) has the following solution

L2 (—2%2 + BL + L}?)
B2+ BL-12(p2+1)

[3(8-L)

L) = B2+ BL-12 (2 +1) B(u) = -
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Consequently, in view of Equation (5.3) taking into account the assumption G=G+ yu, it
follows that the canonical sprays G and 5, are related by

~ [2(L-2%9) L4 _

C=Crwmrwirp D wrsi-ngeen P

This completes the proof. m]
Theorem 5.3. The Barthel connection T associated with the special anisotropic conformal change (3.1), is
given by

T=T-M]-diA®)yn+dA®)p,
where Ay and A are scalar functions determined by

I L2(L—-29) . -L*
LT R sl (2 1) T B+ BL-L2 (P2 + 1)

Consequently, the horizontal map Eussocmted with the anisotropic conformal change (3.1) has the form

FX = BR— 2 {1y R + g (K) 171 - dya(6X) 7).
Proof. The proof follows from T = [J, G], Theorem 5.2, the formula [3]:
X = fIX I +df Nix] —dif @ X,
taking into account the given expressions of A1 and A,, and the facts that
dp* = 0, i]=0=1ig], [ypJ]X=0.
]

Theorem 5.4. The Barthel curvature tensor R associated with the special anisotropic conformal change
(3.1) is determined by

R =R-[hL]-Ng,

where Ny, := 3[IL, L] is the Nijenhuis torsion of a vector 1-form 1L defined by

1 _ —
L:.= ~5 {/\1]—1- djA ®@yn—djhy ®VP}- (5.5)

Proof. The proof follows from Theorem 5.3, together with the fact that R = —% [h,h], and taking
into account the proprties of the Frolicher-Nijenhuis bracket. m|

The Berwald vertical counterpart is given by Lemma 3.1 and the Berwald horizontal counterpart

is given by the following result.
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Proposition 5.1. Under the special anisotropic conformal change (3.1), the Berwald horizontal counterpart
is given by

RV o v 1 o Vv £a o Vv

DopxY = DY -35ih D Y +dia(BX) DY

—djAq (.BX) Y- djh (ﬁ?) X - djAo (ﬁ)_() D;r_ﬂ l_/}

+% {ddj (Y, BX) 7 - ddj A2 (vY, BX)) B}

Proof. The proof follows from the fact that v := y oK, h := Bop, yD°%x Y := v[hX,]Y] and
D% % pY := p[yX,BY] ( [13, Proposition 4.4]), taking into account Theorem 5.4, and the facts

that the map y : n}(TM) — VTM is an isomorphism, the Berwlad (v)v-curvature s =0,
UX,JY] = JIX,JY]+JUX, Y], 0] = J and Jo = 0. o

We now present an example of a conic Finsler metric that admits a concurrent n-vector field.
Subsequently, we compute the corresponding m-form associated with this structure. Detailed
calculations for this example are available in the accompanying PDF and Maple files, which can

be accessed at: https://github.com/salahelgendi/Examplel_Intrinsic_anisotropic_change.

Example 5.1. Let M = {(r,0,¢,t) e U C R* |7, 8 # 0} and L be a conic Finsler metric given by

022 4209\ .
L= \/rz(—qb 5 qb) + 72 4 12,

where (r,0,¢,t;#0,0,f) € TU c R* x R

The metric tensor has the following non-vanishing components g;;:

1262 H>(36%¢ + 40) 2712 62¢%(26%¢) + 30)
gun =1, g» = n , &3 =-— 55 ,
272 (30%p? + 66%0¢ + 202
833 = B0 o2 ¢ )/ Qas = 1.

The inverse metric tensor has the following non-vanishing components g'/:

o1 Mo 2o 0* (304 + 6QZQ¢ + 292),
1’263qi)3
o (2026 + 30) 6
2 (60543 + 604062 + 126267 + 86°)’
. (3629 + 40) 6

1
& =3 ] ) - e
r2 (693 + 6640¢)2 + 126262 + 803)
The the Cartan tensor has the following non-vanishing components Cjj:

612 0% $p3(0*d + 0) 612 0% p2(0%) + 0)
Cop = — &5 , Co3 = B ,
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61262 p(6%p + 0) 61262 (0%p + 0)
Cozz = — 0 , G333 = o2 .

The coefficients G’ of the geodesic spray are given by
r? (0*9% +4620 +46%) . (9i-r0)0 i

- , Gr=———" G=-L G'=0.
202 ro r

G' =

By performing direct computations, or alternatively using the Finsler package [15], one can obtain
the coefficients of the Cartan connection. For instance,

1 1

2 3 1 3 j
rlzz;f Iﬂ13:;f I, =T5% =0, ri}j:O'

It is evident that this metric supports a concurrent n-vector field of the form p = p' d;, where 0; are
the local basis vectors of the fibers of 7~!(TM), with components defined by p?(x) = p3(x) = 0

and p'(x) = r,p*(x) = t. In this case, it follows that piCijk = 0, and for instance, we compute
Py = 0P +¥'Ty; = p' +p'Ty; +p'Ty;
pp=0w' +p' Ty =1, pp=0p"+p'TH =1, py=0p’+pTi;=1
While all other components of plij vanish. In addition, the corresponding m-form B has compo-

nents B2 = B2 = 0, B! = 7, B* = t, which implies the associated 1-form is given by 8 = r7 + tf.

Therefore, we have

it

~ B(xd) 022 + 20( 2 R P ZEE 0 A S
L(X,X) — L(X,J'C)EL(”) — \/72 (¢T¢) +7>2+t26\/ ( 9 )+ + .

&

Hence, the given Finsler structure L defines a conic Finsler structure over M, under the condition

of non-degeneracy defined by (4.1).
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