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Abstract. The analysis of stability ensures that a dynamical system’s output remains bounded for given bounded inputs
and manages the system behavior. The concept of strong D-stability extends the idea of stability requiring the system’s
poles to stay within a predefined D-region in the complex plane C subject to uncertain parameter variations. This
ensures robustness and performance of the dynamical system. We offer some new findings on stability analysis, strong
D-stability analysis, and their interconnections with structured singular values. The theoretical findings were gained
by using several tools from linear algebra and system theory. The numerical experimentation shows the behavior of
the spectrum and hence the stability of dynamical systems. For the computation and analysis of pseudo-spectrum, the

Eigtool has been utilized.

1. INTRODUCTION

For a class of structured matrices, Arrow and McManus [1] first proposed the idea of D-stability,
followed by Enthoven and Arrow [2]. The fundamental idea was to make use of multiple tools
from linear algebra and control system theory to develop mathematical methods to study and
analyze stability of equilibrium in the competitive market dynamical models. The study and
analysis of D-stability theory plays a significant part in multi-parameter singular perturbation for
stability of systems in higher dimensions, see [3-6]. The characterization of D-stability is very
hard to verify, particularly for matrices having dimensions n > 2, see [7,8].

The single value that is structured (a.k.a p-values) is a widely used mathematical tool for

examining and evaluating the performance, adaptability, and stability of linear time invariant (LTI)
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systems. The p-value was first introduced by Doyle [9] for the complex structured uncertainties.
The p-value’s accurate computation is an NP-hard issue [10], and this motivates the development
of numerical methods to approximate it from above and below.

A new algorithm [11] was presented for the computation of tight lower bounds of p-values.
This algorithm considers real, uncorrelated parametric perturbations. The main advantage of this
algorithm is that it consists of simple matrix algebra and returns the actual values of worst-case
parameters. A non-linear programming technique was developed [12] for the computation of
lower bounds of real p-values. A novel numerical approach was developed [13] for providing
sufficient conditions to check whether a given matrix whose elements depend polynomially on
uncertain parameters is -stable or not. A novel iterative method was developed in [14] to study
and analyze the stability of LTI systems.

The close connection between p-values and D-stability for a class of real-valued square matrices
was studied by [15]. It was shown that for a given real-valued square matrix to be D-stable,
its real structured singular values must be strictly less than 1. Several necessary and sufficient
conditions were provided for an interconnection between p-values and D-stability. The novel
theoretical results on the relationship between Schur stability, u-values for n-dimensional matrices
were established and presented in [16].

In [17,18], it was shown that M + G is a stable matrix with ||G|| < y for a given stable matrix M,
and y > 0. This, as a result, shows that stability is the property that is resilient to minor allowable
perturbations across the system. If we assume that the given matrix M is a D-stable matrix, then
for a positive diagonal matrix P, both PM, and P(M + G) are stable matrices. The important
point to discuss is that there is a possibility for the existence of a y > 0 so that the matrix M+ G
is a O-stable matrix when ||G|| < y. Unfortunately, the answer is no in general. A given matrix
M € R"" is strongly D-stable matrix if there is scalar y > 0 in such a way that M + G is D-stable
matrix to each real-valued matrix G with ||G]| < y. It is important to note here that each strongly
D-stable matrix is a D-stable matrix. The simpler conditions to study and analyze D-stability were
developed in [19]. New findings about the relationships among D-stability, strong D-stability, and
u-values for a class of square matrices were given and examined in [20].

We have provided some fresh findings on stability computation in this study, and strong D-
stability of structured matrices. Further, we have analyzed the interlinks between strong O-
stability and structured singular values. The findings are obtained using a mix of methods from
system theory, matrix analysis, and numerical linear algebra in the suggested approach.

Overview of article: In section 2, we present the preliminary concepts related to our study in
this article. In part 3, we look back at several fundamental results on D-stability, and strong DO-
stability. Theoretical findings on stability analysis, D-stability analysis, and their interconnection
with p-value are given in section 4. In Section 5, we present the numerical experimentation
supporting theoretical results to discuss the stability of dynamical systems. For the stability of

a dynamical system, we have analyzed the behavior of the spectrum and pseudo-spectrum of
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constant structured matrices appearing as the coefficient in the matrix formulation. Finally, we

present the conclusion in Section 6.

2. PRELIMINARIES

The notation M € K"", with K = C(R) means an n-dimensional complex-valued or a real-
valued matrix. The symbol u(-) denotes the structured singular value or y—value of a matrix
concerning a set of block-diagonal matrices. The notation o, (+) indicates the second largest singular
value of a matrix. For A € B, it indicates that the collection of block-diagonal matrices contains
an admissible perturbation matrix. The symbol ® denotes the entry-wise multiplication of two
matrices. The time derivative of a matrix-valued function A(t) is shown by A. The spectral radius
of a matrix is represented by the Greek symbol p(-).

B represents the set of block-diagonal matrices, which has the definition given below.

Definition 2.1. The set of block-diagonal matrices is a set containing matrices across its main diagonal,
that is,

B := {diag(011r,, -+, 0slrs, A1, -+, AF) : 6; €K, Aj e K", Yi=1:5, Vj=1:F}
Remark 2.1. In definition of B, Y.;ri + Y. jm; = n.
Definition 2.2. For a given M € K™", and B the u-value is defined as
up(M) := (min (J|All : A € B, det(I-MA) =0, Y AeB))™,
otherwise, ug(M) = 0, if det(I - MA) # 0, YA € B.

Remark 2.2. In the definition of p-value of a given matrix M, the quantity || - ||, denotes the largest singular
value of a matrix. The min is taken over A € B.

Definition 2.3. If Re(A;(M)) >0, Vi = 1: n., then a matrix M € R™" is a stable matrix.

Definition 2.4. If Re(A;(PM)) >0, Vi = 1 : n, where P = diag(p;;) such that all the diagonal elements
of P are strictly positive, then a matrix M € R™" is referred to as a D-stable.

Definition 2.5. A strongly D-stable matrix is defined as M € R"™" if there is y > 0 such that Re(A;(P +
M)) >0, Vi =1 : n, where P = diag(pi;) such that every diagonal entry (real entries) of P are strictly
positive, and ||Gl| < y.

3. D-STABILITY AND STRONG I)-STABILITY

The computation of a D-stable matrix for a given matrix was studied in [2,5,7,22]. The
computation of a D-stable matrix has played an important role in the study of large-scale systems
[6], and also for the multi-parameter singular perturbations, see [4,5]. In[7], 13 sufficient conditions
were presented to investigate and evaluate the D-stability of matrices.

The next theorem explains how D-stability and p-value computation are related.
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Theorem 3.1. Let M € R"". Then M is a D-stable matrix iff Re(A;(M)) > 0, Vi, and
0 < pp (il + M) (il - M)) < 1, i = V=1,
with B, the set of block-diagonal matrices.

For given M € R"", the D-stability can also be defined by using the following theoretical results
developed in [1].

Theorem 3.2. The matrix M € R™" is D-stable iff it is a stable matrix, and
0 < pg (I + M) (I, - M)) <1,
where I, is an identity matrix having the same dimension as the given M.

The following result [1] shows that computation of a -Stable matrix corresponds to a condition

on the upper bound of complex functions that is scaled diagonally u-value.
Theorem 3.3. Given M € R"™", M is a D-stable matrix iff M is stable, and

min Apax (-MP - PM) <0,
with min taken over P € y N 1B, where y is the set of positive diagonal matrices.

Remark 3.1. Any M € C"", the u-value can be calculated by resolving an optimization problem that is

convex.
Corollary 3.1. For n = 3, it can be shown analytically that M is a D-stable matrix.
Corollary 3.2. Consider that M is a stable matrix. Let

M= (I, + M)"H (I, - M),

then M is D-stable matrix iff
(M) <1,orp(M) <1,

where G(-)and p(-) signify the greatest singular value and the spectral radius of a given matrix.

To examine and assess the integrity of O-stability, [1] introduced the concept of the strong O-
stability. If M € R"" is a D-stable matrix and must continue to be so even if M is subject to a few
minor perturbations, then it is considered a strongly O-stable matrix. For instance, assume that
given M € R™" is D-stable, and let 6 > 0, a small positive parameter such that AM € R"", having
Omax(AM) < €, and M+ AM to be a D-stable matrix. The strong D-stability is known to imply
D-stability, but the opposite may not be true, see [1].

The following theorem shows that given M € R™", it is a strongly D-stable matrix if it is a stable

matrix and a structured singular value is less than 1.



Int. J. Anal. Appl. (2025), 23:267 5

Theorem 3.4. Let M € R"". Then M is strongly D-stable matrix iff M is stable, and 3 some small

positive parameter € such that
0<u(M) <1,

where
(il + M)~ (i, = M) 2i(il, + M)7!
e(il, + M) —e(il, + M)71)

M=
The following results for M € IR"" to be a strongly D-stable matrix were proven in [3].
Result 3.1. Suppose that M € R™". The matrix M is strongly D-stable if
Ai(PM+ MTP) <0, ¥i=1,2,...,n.
Result 3.2. Suppose that M € R"™". If Mis an M-matrix, then M is a strongly D-stable matrix.

Result 3.3. Assume that M € R""". Consequently, if M is a triangular matrix, it is a strong D-stable
matrix, and m; <0, ¥Yi=1,2,...,n.

Result 3.4. Suppose that M € R™". If M is a sign-stable matrix with no zero entries, then M is a Strongly
D-stable matrix.

Result 3.5. Suppose that M € R™". If M is an oscillatory matrix, then M is a strongly D-stable matrix.

Result 3.6. Suppose that M € R™". If there is a positive diagonal matrix P such that for every x € C",
x # 0, Mis a strongly D-stable matrix then

Re(Ai(x*PMx)) <0, Vi=1,2,...,n.
Result 3.7. Let M € R*>2. Then M is strongly D-stable matrix iff all j-th order principal minors are with
sign(—1)/.

M My,
Mo My,
Moo — M21M1_11M12 when Mj; exists.

The following lemma shows that if M is strongly D-stable, then My, and M, are strongly

Consider the partition of M = ( ), with My as the principal sub-matrix. Let MS, :=

PD-stable matrices.

Lemma 3.1. Let M € R"" be a strongly D-stable matrix. The matrices My and MS, are also strongly

D-stable matrices. This means that M = Moy or Mgz, d e > 0, a small positive parameter such that

A (1= (i + M+ E) (il = M= E,)P) 0, Vi,
i=1

where P is a positive diagonal matrix.
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4. NEW RESULTS

In this segment, we introduce new theoretical findings on the stability analysis, D-stability
analysis, and strong D-stability analysis of economic models. We employ several methods from
system theory, matrix analysis, and linear algebra to construct and analyze results to study the
dynamics of the economic model under consideration. Insection 4.1, we provide results on stability
analysis. We study stability in the sense that non-complex parts of all the eigenvalues of the matrix
under consideration are strictly positive. In the subsequent section 4.2, we provide new results on

strong D-stability of economic models.
4.1. Stability.

Theorem 4.1. The dynamical system
dx(t)
dt

= (MTSM=38)x(t), 2"(x(t)=1, teR*
is stable if

Re[Li(MISM=8)| >0, Vi=1:n,
with S is a symmetric positive definite matrix.

Proof. Letp € (1,2,...,m}, and let x(t) € R™!,t € R*. Further, consider that x[8] # 0. To prove, we
take x(t) # 0, meaning that

x[B]" (MTSM = 8) x[B] = x (t) (MTSM = S) x(t) > 0.

The above equality may be rewritten as

xT(HRe[A;(H)]x(t) >0, Vi teR™.
This implies that

Re[A;(1)]xT (£)x(t) > 0.
Since, we know that for t € R, xT (t)x(t) = 1, thus,
Re[A;(t)] >0, VteR™.
Finally, we have that
Re[l;( MTSM~S)] >0, Vi=1:n

O

The subsequent Theorem 4.2 show that dynamical system is stable if non-complex part of all
eigenvalues of modified matrix (M"SMM — MTSM) are strictly positive.

Theorem 4.2. The dynamical system
dx(t)

dt
Re[Ai(MISMM - MTSM)| >0, Vi=1:n.

= (MTSM=8)x(t), x"(t)x(t)=1, teR"
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Furthermore, rank(M) = n, where n is the dimension of the coefficient matrix.

Proof. The fact
Re [ (MTSMM—-MTSM)| >0, Vi=1:n
ensures that

rank(M) = rank ((MTSM - S)M) = rank (MT(MTSM - S)M) :

As,
Re[;(MTSM=S)|#0, Vi=1:n,
yields that
rank (MT(MTSM - S)M) =,
where 7 is the rank of matrix M. O

The following Theorem 4.3 shows that a dynamical system with coefficient matrix MTSM - S

is stable if the real part of all eigenvalues of this matrix is strictly positive.

Theorem 4.3. The dynamical system
dx(t)

T (MTSM—S)x(t), T(Hx(t) =1, teRT

is stable if
Re[Ai(MTSM=S)|>0, Vi=1:n, teR".

Furthermore, let (A(t),x(t)) be an eigen-pair, and let
[Re[2:(MTsM-5)]

=p, then |x(t)]>0, VteRT,
and
(MISM = S)x(t) = p(MISM—S)[x(t)].
Proof. Suppose that
2(t) = (MISM=S)Ix(t)| > 0.
The above inequality implies that
2(t) = (MISM=S)lx(t)l = (MTSM = S)lx(t)] = Re (L;(MTSM = M)) [x(t)]
Also,
£(t) = [Re (LMTSM = )| lx(t)] = p(MTSM =S x(1)]
Let
2(t) = x(t) — p(MISM = S)|x(t)] = 0.
This further implies that,
p(MISM=S)|x(t)] = (MISM = 8)|x(t)| = a

Also,
p(MISM~S) >0, and|x(t)|>0, £(t)=0.
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If £(t) # 0, we have

0 < (MTSM=8)2(t) = (MTSM=S)x(t) - p(MTSM = S)[x(1)]
= (MISM—=S)x(t) — p(MTSM = S)x(t).

Finally, we have
(MISM=S)x(t) = p(MTSM—S)x(t).
This is true if we drop x(t), which is not possible. This implies that £(¢) # 0. o

4.2. Strong D-stability.

Theorem 4.4. Let M € C"" and A € C"" (Hermitian matrix). Then M € C™" is strongly D-stable if
Re (i, + log(M)) (il —log(M)) ™) Im (il + log(M)) (i, - log(M)) ") | o1
—Im ((z'ln + log(M)) (i, — log(M))_l) Re((iln + log(M)) (il, — log(M))_l) ’

where 0, (-) denotes the 2nd largest singular value, and inf is taken over all positive diagonal matrices P.

inf o,

Proof. Let P = diag(P;;) >0, Vi=1,2,...,n,and let A € B, where
B = {diag(61,02,...,0m) :6; €C, |6/ <1, Vi=1,2,...,n}.
[ Re ( (i, + log(M)) (il, = log(M))™")  Im ((iL, +log(M)) (il - log(M)) ")
il, - P

—Im((i[n—i—log(M)) (il, — log(M ) Re (il, —|—log(M))(iIn—log(M))_1)

[“J

rank

Re ((ily + log(M)) (il, - log(M Im ((11 +log(M)) (il, —log(M)) ")
il —
cank ~Im ((il,, +log(M)) (i, — log(M ((iL, +log(M)) (il — log(M)) ™)
Re ((iln + log(M)) (il,, — log(M N Im ((zI +log(M)) (il, — log(M))_l)
il,, —
rank —Im ((il,, + log(M)) (il, - log(M ))—1) Re ((il, +log(M)) (iL, — log(M))™")

A O
0 A
Since, for all P, the positive diagonal matrices, we posses that
Ak [(iLy + 1og(M)) 7 (il — log(M))A] # 0, Vk=1:n.
Thus, finally we have
0 < p [ (il + log (M)~ (il - log(M))] < 1,
this implies that M € C"" is strongly D-stable matrix. m]
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The following Theorem 4.5 shows the strong D-stability of a considered n-dimensional complex
valued matrix. Further, we prove that matrix (log(M) + (log(M)®A)" A+ A (log(M)®A)) is a
D-stable matrix.

Theorem 4.5. Let M € C"", and A € C"" (Hermitian matrix). Then M is strongly D-stable if M is

stable, and for some o > 0,
(Iog(M) + (log(M)®A)" A+ A (log(M)® A))
is a D-stable matrix, with A € B, and ® denotes the entry-wise product of two matrices.

Proof. Let A = A(t) € B be a valid perturbation from a collection of block-diagonal matrices B.
The structure of B is such that

B = {diag(61 (), 62(1), ..., 0(£)) : 6:(t) € C,16:(8)| < 1}.

Assume that A(t) = |A(t)[e!?, 0 < O < 27 is greatest eigenvalue with algebraic multiplicity 1 cor-
responding to matrix-valued function (log(M)®A)" A + A (log(M)®A), A € B, ¢ > 0. Consider
that x(t), y(t) are right and left eigenvectors corresponding to A(t). Further, assume that

Z = (log(M)®A)" A+ A (log(M)®A) - y(t).

The outcome of Kato's eigenvalue perturbation applied to A(f) is

I - 2:200ge (740,

where A = ¢x > 0,& > 0,and x = x(t),Z = Z(t). As, Re (Z*A(t)x) > 0, and in turn this further

means that
(log(M)®A) A+ A(log(M)®A) >0,¢ >0,
means a positive definite matrix. This allows us to have
(log(M) 4+ (log(M)®A) A+ A (log(M)® A))
is a D-stable matrix. m]

The subsequent Theorem 4.6 demonstrates that a real-valued n-dimensional matrix M, a Jacobi
matrix, is a strongly D-stable matrix if its j-th order principal minors are with sign(—1)/.

Theorem 4.6. Let M € R™" be a Jacobi matrix. Then M is strongly D-stable matrix if all j-th order

principal minors have sig(—1)/.

Proof. For given M € R™", we construct M = PM where P = diag(py,pa, ..., pn) with

s Pk = Pk+1 , k=23,...,n

k
M(i-1),i My, (k+1)

pum— 1, pum—
P P2 H mi (i-1) M (k+1) k
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The matrix M is also a Jacobi matrix with jth principal minors having sig(—1)/. This means that
matrix M + M is such that Re(A;(M + MT)) > 0 Vi, where T represents a matrix’s transposition.
This also suggests that A;(PM + MTP) > 0. Thus, 3 a matrix Q such that [|Q|| < a so that

Ai((PIM+Q)+ M+Q)TP) >0,
means that M is a strongly D-stable matrix. m]

Theorem 4.7. Let M € C"". Then M = e* (A is Hermitian matrix) is strongly D-stable, and M = PA
for a diagonal matrix P, and M satisfies

n
nﬁii<—2|ﬁ1ij|, 1<i<n.
j=1
J#i
Proof. The inequality
n
i < —Z|mij|, 1<i<mn,
j=1
J#i
yields
up(Pe) < 0.

This implies that up(e?) < 0. For given M € R"™" to be strongly D-stable, we have

up (Pe’) + up(PQ) <0,
where Q € R™" with ||Q|| < a. In turn, this further implies that
Re [1; (P(e* + Q)] < us (P(e! + Q) < pup(Pe’) + up(PQ) < 0.
This is further equivalent to
pii(mi; + qii) < — [Z Ipiimij| + Z |Piiqz'j|] < - Z Ipii(mij + q:j)| < 0.
j#i j#i j#i
Thus, finally, we have that
' +Q,

a D-Stable matrix, and hence M = e is a strongly D-stable matrix. m]

5. NUMERICAL EXPERIMENTATION

In this segment, we provide numerical experiments on spectrum computation, i.e., the pseudo-
spectrum, u-values, singular values, and eigenvalues of structured matrices that appear in eco-
nomic models. The graphical representations of the pseudo-spectrum denote the level sets for the

resolvent norm ||(zI,, — M)‘lll for the given matrix M. Here I, denotes an n X n identity matrix.
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Example 1. We take 4 X 4 the composite coefficient matrix to the workhorse New Keynesian

model [21]
1.5057 -0.5355 -3.2133 -0.0607

~0.0648 1.4821 0 0.0648
Y7 1200039 00576 17171  0.0043
05847 —19717 —54962 5.4962

For the offered matrix M;, Figure 1 shows the spectrum, singular values, structured singular
values, and pseudo-spectrum calculations.

We plot the eigen-mode corresponding to the eigenvalues of M; in Figure 2 (left-hand figure).
In Figure 2 (left-hand figure), the top plot shows an envelope produced by plotting the absolute
value of an eigen-mode. The cyan line shows the real part. The plot at the bottom level of Figure 2
(left-hand figure) shows the absolute value of the eigen-mode, and it is plotted on a log scale. The
condition number is shown in the top plot. The larger value of the condition number implies the
greater sensitivity of the eigenvalue to perturbations.

In Figure 2 (Right-hand figure), we plot the value of the inverse of the resolvent norm. We
further show the real part of the pseudo-mode in magenta. In pseudo-mode, the right singular

vector for the matrix zI — M’s least singular value has been displayed.

Pseudospectra (Log10 of Resolvent Norm) Singular Values (Log10 of Max Singular Value)

e)
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Log10(Singular Valu
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006k

F1GUure 1. Spectral properties of matrix M;
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IAhsnlute value (black) and real part (coloured) of eigenmode: A=5.4445 Ahsn]lule value (black) and real part (coloured) of pseudomode: A=7.4682+1.7076i

#(X) = 2.01e+00 ¢ =1.77e+00
-1
1 1.5 2 25 3 3.5 4 1 1.5 2 25 3 35 4

Ficure 2. Eigenmode (left) and inverse of resolvent norm (right) of matrix M;

Example 2. We take 4 x 4 the composite coefficient matrix to the workhorse New Keynesian

model [21]
—0.5253 0.2655 2.4934  0.0179

0.0222 -0.4768 0 -0.0222
0.0006 —0.0367 —0.7254 —0.0009|
-0.2740 1.0036 4.2124 -0.1464

) =

For the provided matrix My, Figure 3 shows the spectrum, singular values, structured singular
values, and pseudo-spectrum calculations.

We plot the eigen-mode corresponding to the eigenvalues of M, in Figure 4 (left-hand figure).
In Figure 4 (Left-hand figure), the top plot shows an envelope produced by plotting the absolute
value of an eigen-mode. The cyan line shows the real part. The plot at the bottom level of Figure 4
(left-hand figure) shows the absolute value of the eigen-mode, and it is plotted on a log scale. The
condition number is shown in the top plot. The larger value of the condition number implies the
greater sensitivity of the eigenvalue to perturbations.

In Figure 4 (right-hand figure), we plot the value of the inverse of the resolvent norm. We further
show the real part of the pseudo-mode in magenta. The right singular vector for the least singular
value of the matrix zI — M has been shown in pseudo-mode.
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Pseudospectra (Log10 of Resolvent Norm) Singular Values (Log10 of Max Singular Value)
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Ficure 4. Eigenmode (left) and inverse of resolvent norm (right) of matrix M>

Example 3. We take 4 x 4 the composite coefficient matrix to the workhorse New Keynesian

model [21]
0.0282 0.0203 -0.0405 -0.0132

—-0.0263 0.0048 0.0312 -0.0055
-0.0026 0.0004 0.0029  0.0006
0.2050 0 -0.2117 0

3 =

Figure 5 shows the spectrum, singular values, structured singular values, and pseudo-spectrum

calculations for the provided matrix Ms.
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We plot the eigen-mode corresponding to the eigenvalues of Mj in Figure 6 (left-hand figure).
In Figure 6 (Left-hand figure), the top plot shows an envelope produced by plotting the absolute
value of an eigen-mode. The cyan line shows the real part. The plot at the bottom level of Figure 6
(left-hand figure) shows the absolute value of the eigen-mode, and it is plotted on a log scale. The

condition number is shown in the top plot. The larger value of the condition number implies the

greater sensitivity of the eigenvalue to perturbations.

In Figure 6 (right-hand figure), we plot the value of the inverse of the resolvent norm. We

further show the real part of the pseudo-mode in magenta. The right singular vector for the lowest

singular value of the matrix zI — M has been shown in pseudo-mode.

Pseudospectra (Log10 of Resolvent Norm)
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& o
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FiGure 5. Spectral properties of matrix Mz
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Ficure 6. Eigenmode (left) and inverse of resolvent norm (right) of matrix Ms
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6. CONCLUSION

In this paper, we have studied stability analysis and strong D-stability analysis of economic
models. We have studied and analyzed the stability considering that each of the matrix’s eigenval-
ues has a strictly positive real part, while the real components of each matrix-product eigenvalue
of a given positive diagonal matrix also remain strictly positive. The new theoretical and com-
putational results are developed by using various elements from numerical linear algebra, matrix
analysis, and system theory. The numerical experimentation shows how the spectrum of struc-
tured matrices behaves. This includes the analysis of the behavior of the spectrum, singular values,
pseudo-spectrum, and the results on lower bounds of u-values allows us to discuss and analyze

the stability of economic models.
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