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Abstract. The analysis of stability ensures that a dynamical system’s output remains bounded for given bounded inputs

and manages the system behavior. The concept of strongD-stability extends the idea of stability requiring the system’s

poles to stay within a predefined D-region in the complex plane C subject to uncertain parameter variations. This

ensures robustness and performance of the dynamical system. We offer some new findings on stability analysis, strong

D-stability analysis, and their interconnections with structured singular values. The theoretical findings were gained

by using several tools from linear algebra and system theory. The numerical experimentation shows the behavior of

the spectrum and hence the stability of dynamical systems. For the computation and analysis of pseudo-spectrum, the

Eigtool has been utilized.

1. Introduction

For a class of structured matrices, Arrow and McManus [1] first proposed the idea ofD-stability,

followed by Enthoven and Arrow [2]. The fundamental idea was to make use of multiple tools

from linear algebra and control system theory to develop mathematical methods to study and

analyze stability of equilibrium in the competitive market dynamical models. The study and

analysis ofD-stability theory plays a significant part in multi-parameter singular perturbation for

stability of systems in higher dimensions, see [3–6]. The characterization of D-stability is very

hard to verify, particularly for matrices having dimensions n ≥ 2, see [7, 8].

The single value that is structured (a.k.a µ-values) is a widely used mathematical tool for

examining and evaluating the performance, adaptability, and stability of linear time invariant (LTI)
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systems. The µ-value was first introduced by Doyle [9] for the complex structured uncertainties.

The µ-value’s accurate computation is an NP-hard issue [10], and this motivates the development

of numerical methods to approximate it from above and below.

A new algorithm [11] was presented for the computation of tight lower bounds of µ-values.

This algorithm considers real, uncorrelated parametric perturbations. The main advantage of this

algorithm is that it consists of simple matrix algebra and returns the actual values of worst-case

parameters. A non-linear programming technique was developed [12] for the computation of

lower bounds of real µ-values. A novel numerical approach was developed [13] for providing

sufficient conditions to check whether a given matrix whose elements depend polynomially on

uncertain parameters isD-stable or not. A novel iterative method was developed in [14] to study

and analyze the stability of LTI systems.

The close connection between µ-values andD-stability for a class of real-valued square matrices

was studied by [15]. It was shown that for a given real-valued square matrix to be D-stable,

its real structured singular values must be strictly less than 1. Several necessary and sufficient

conditions were provided for an interconnection between µ-values and D-stability. The novel

theoretical results on the relationship between Schur stability, µ-values for n-dimensional matrices

were established and presented in [16].

In [17,18], it was shown thatM+ G is a stable matrix with ||G|| < γ for a given stable matrixM,

and γ > 0. This, as a result, shows that stability is the property that is resilient to minor allowable

perturbations across the system. If we assume that the given matrixM is aD-stable matrix, then

for a positive diagonal matrix P, both PM, and P(M+ G) are stable matrices. The important

point to discuss is that there is a possibility for the existence of a γ > 0 so that the matrixM+ G
is a D-stable matrix when ||G|| < γ. Unfortunately, the answer is no in general. A given matrix

M ∈ Rn,n is strongly D-stable matrix if there is scalar γ > 0 in such a way thatM+ G is D-stable

matrix to each real-valued matrix G with ||G|| < γ. It is important to note here that each strongly

D-stable matrix is aD-stable matrix. The simpler conditions to study and analyzeD-stability were

developed in [19]. New findings about the relationships amongD-stability, strongD-stability, and

µ-values for a class of square matrices were given and examined in [20].

We have provided some fresh findings on stability computation in this study, and strong D-

stability of structured matrices. Further, we have analyzed the interlinks between strong D-

stability and structured singular values. The findings are obtained using a mix of methods from

system theory, matrix analysis, and numerical linear algebra in the suggested approach.

Overview of article: In section 2, we present the preliminary concepts related to our study in

this article. In part 3, we look back at several fundamental results on D-stability, and strong D-

stability. Theoretical findings on stability analysis, D-stability analysis, and their interconnection

with µ-value are given in section 4. In Section 5, we present the numerical experimentation

supporting theoretical results to discuss the stability of dynamical systems. For the stability of

a dynamical system, we have analyzed the behavior of the spectrum and pseudo-spectrum of
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constant structured matrices appearing as the coefficient in the matrix formulation. Finally, we

present the conclusion in Section 6.

2. Preliminaries

The notation M ∈ Kn,n, with K = C(R) means an n-dimensional complex-valued or a real-

valued matrix. The symbol µ(·) denotes the structured singular value or µ−value of a matrix

concerning a set of block-diagonal matrices. The notation σ2(·) indicates the second largest singular

value of a matrix. For ∆ ∈ B, it indicates that the collection of block-diagonal matrices contains

an admissible perturbation matrix. The symbol ⊗ denotes the entry-wise multiplication of two

matrices. The time derivative of a matrix-valued function ∆(t) is shown by ∆̇. The spectral radius

of a matrix is represented by the Greek symbol ρ(·).

B represents the set of block-diagonal matrices, which has the definition given below.

Definition 2.1. The set of block-diagonal matrices is a set containing matrices across its main diagonal,
that is,

B := {diag(δ1Ir1 , · · · , δsIrS , ∆1, · · · , ∆F) : δi ∈ K, ∆ j ∈ Km j,m j , ∀i = 1 : S, ∀ j = 1 : F}.

Remark 2.1. In definition of B,
∑

i ri +
∑

j m j = n.

Definition 2.2. For a given M ∈ Kn,n, and B the µ-value is defined as

µB(M) := (min (||∆||2 : ∆ ∈ B, det(I −M∆) = 0, ∀ ∆ ∈ B))−1 ,

otherwise, µB(M) = 0, if det(I −M∆) , 0, ∀∆ ∈ B.

Remark 2.2. In the definition of µ-value of a given matrix M, the quantity || · ||2 denotes the largest singular
value of a matrix. The min is taken over ∆ ∈ B.

Definition 2.3. If Re(λi(M)) > 0, ∀i = 1 : n., then a matrix M ∈ Rn,n is a stable matrix.

Definition 2.4. If Re(λi(PM)) > 0, ∀i = 1 : n, where P = diag(pii) such that all the diagonal elements
of P are strictly positive, then a matrix M ∈ Rn,n is referred to as aD-stable.

Definition 2.5. A stronglyD-stable matrix is defined as M ∈ Rn,n if there is γ > 0 such that Re(λi(P +

M)) > 0, ∀i = 1 : n, where P = diag(pii) such that every diagonal entry (real entries) of P are strictly
positive, and ||G|| < γ.

3. D-stability and strongD-stability

The computation of a D-stable matrix for a given matrix was studied in [2, 5, 7, 22]. The

computation of aD-stable matrix has played an important role in the study of large-scale systems

[6], and also for the multi-parameter singular perturbations, see [4,5]. In [7], 13 sufficient conditions

were presented to investigate and evaluate theD-stability of matrices.

The next theorem explains howD-stability and µ-value computation are related.
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Theorem 3.1. LetM ∈ Rn,n. ThenM is aD-stable matrix iff Re(λi(M)) > 0, ∀i, and

0 ≤ µB

(
(iIn +M)−1(iIn −M)

)
< 1, i =

√

−1,

with B, the set of block-diagonal matrices.

For givenM ∈ Rn,n, theD-stability can also be defined by using the following theoretical results

developed in [1].

Theorem 3.2. The matrixM ∈ Rn,n isD-stable iff it is a stable matrix, and

0 ≤ µB

(
(In +M)−1(In −M)

)
< 1,

where In is an identity matrix having the same dimension as the givenM.

The following result [1] shows that computation of aD-Stable matrix corresponds to a condition

on the upper bound of complex functions that is scaled diagonally µ-value.

Theorem 3.3. GivenM ∈ Rn,n,M is aD-stable matrix iffM is stable, and

minλmax(−M
TP− PM) < 0,

with min taken over P ∈ γ∩B, where γ is the set of positive diagonal matrices.

Remark 3.1. AnyM ∈ Cn,n, the µ-value can be calculated by resolving an optimization problem that is
convex.

Corollary 3.1. For n = 3, it can be shown analytically thatM is aD-stable matrix.

Corollary 3.2. Consider thatM is a stable matrix. Let

M̂ = (In +M)−1(In −M),

then M isD-stable matrix iff

σ̄(M) < 1, orρ(M) < 1,

where σ̄(·)and ρ(·) signify the greatest singular value and the spectral radius of a given matrix.

To examine and assess the integrity of D-stability, [1] introduced the concept of the strong D-

stability. IfM ∈ Rn,n is a D-stable matrix and must continue to be so even ifM is subject to a few

minor perturbations, then it is considered a strongly D-stable matrix. For instance, assume that

given M ∈ Rn,n is D-stable, and let δ > 0, a small positive parameter such that ∆M ∈ Rn,n, having

σmax(∆M) < ε, andM+ ∆M to be a D-stable matrix. The strong D-stability is known to imply

D-stability, but the opposite may not be true, see [1].

The following theorem shows that givenM ∈ Rn,n, it is a stronglyD-stable matrix if it is a stable

matrix and a structured singular value is less than 1.
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Theorem 3.4. Let M ∈ Rn,n. Then M is strongly D-stable matrix iff M is stable, and ∃ some small
positive parameter ε such that

0 ≤ µB(M) < 1,

where

M =

(iIn +M)−1(iIn −M) 2i(iIn +M)−1

ε(iIn +M)−1
−ε(iIn +M)−1

 .

The following results forM ∈ Rn,n to be a stronglyD-stable matrix were proven in [3].

Result 3.1. Suppose thatM ∈ Rn,n. The matrixM is stronglyD-stable if

λi(PM+MTP) < 0, ∀i = 1, 2, . . . , n.

Result 3.2. Suppose thatM ∈ Rn,n. IfM is an M-matrix, thenM is a stronglyD-stable matrix.

Result 3.3. Assume that M ∈ Rn,n. Consequently, if M is a triangular matrix, it is a strong D-stable
matrix, and mii < 0, ∀i = 1, 2, . . . , n.

Result 3.4. Suppose thatM ∈ Rn,n. IfM is a sign-stable matrix with no zero entries, thenM is a Strongly
D-stable matrix.

Result 3.5. Suppose thatM ∈ Rn,n. IfM is an oscillatory matrix, thenM is a stronglyD-stable matrix.

Result 3.6. Suppose thatM ∈ Rn,n. If there is a positive diagonal matrix P such that for every x ∈ Cn,
x , 0,M is a stronglyD-stable matrix then

Re(λi(x∗PMx)) < 0, ∀i = 1, 2, . . . , n.

Result 3.7. LetM ∈ R2,2. ThenM is stronglyD-stable matrix iff all j-th order principal minors are with
sign(−1) j.

Consider the partition ofM =

M11 M12

M21 M22

, withM11 as the principal sub-matrix. LetMC
22 :=

M22 −M21M
−1
11M12 whenM11 exists.

The following lemma shows that if M is strongly D-stable, then M22 and MC
22 are strongly

D-stable matrices.

Lemma 3.1. LetM ∈ Rn,n be a strongly D-stable matrix. The matricesM22 andMC
22 are also strongly

D-stable matrices. This means that M̂ =M22 orMC
22, ∃ ε > 0, a small positive parameter such that

n∏
i=1

λi

(
(In − (iIn + M̂+ En)

−1(iIn − M̂ − En))P
)
, 0, ∀i,

where P is a positive diagonal matrix.
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4. New results

In this segment, we introduce new theoretical findings on the stability analysis, D-stability

analysis, and strong D-stability analysis of economic models. We employ several methods from

system theory, matrix analysis, and linear algebra to construct and analyze results to study the

dynamics of the economic model under consideration. In section 4.1, we provide results on stability

analysis. We study stability in the sense that non-complex parts of all the eigenvalues of the matrix

under consideration are strictly positive. In the subsequent section 4.2, we provide new results on

strongD-stability of economic models.

4.1. Stability.

Theorem 4.1. The dynamical system

dx(t)
dt

=
(
M

TSM− S
)

x(t), xT(t)x(t) = 1, t ∈ R+

is stable if

Re
[
λi(M

TSM− S)
]
> 0, ∀i = 1 : n,

with S is a symmetric positive definite matrix.

Proof. Let β ∈ {1, 2, . . . , m}, and let x(t) ∈ Rn,1, t ∈ R+. Further, consider that x[β] , 0. To prove, we

take x(t) , 0, meaning that

x[β]T
(
M

TSM− S
)

x[β] = xT(t)
(
M

TSM− S
)

x(t) > 0.

The above equality may be rewritten as

xT(t)Re[λi(t)]x(t) > 0, ∀i, t ∈ R+.

This implies that

Re[λi(t)]xT(t)x(t) > 0.

Since, we know that for t ∈ R, xT(t)x(t) = 1, thus,

Re[λi(t)] > 0, ∀t ∈ R+.

Finally, we have that

Re[λi(M
TSM− S)] > 0, ∀i = 1 : n.

�

The subsequent Theorem 4.2 show that dynamical system is stable if non-complex part of all

eigenvalues of modified matrix (M̃TSMM̃ − M̃TSM̃) are strictly positive.

Theorem 4.2. The dynamical system

dx(t)
dt

=
(
M

TSM− S
)

x(t), xT(t)x(t) = 1, t ∈ R+

Re
[
λi

(
M̃

TSMM̃−M̃TSM̃
)]
> 0, ∀i = 1 : n.
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Furthermore, rank(M̃) = n, where n is the dimension of the coefficient matrix.

Proof. The fact

Re
[
λi

(
M̃

TSMM̃−M̃TSM̃
)]
> 0, ∀i = 1 : n

ensures that

rank(M̃) = rank
(
(MTSM− S)M̃

)
= rank

(
M̃

T(MTSM− S)M̃
)

.

As,

Re
[
λi

(
M

TSM− S
)]
, 0, ∀i = 1 : n,

yields that

rank
(
M̃

T(MTSM− S)M̃
)
= n,

where n is the rank of matrix M̃. �

The following Theorem 4.3 shows that a dynamical system with coefficient matrixMTSM− S
is stable if the real part of all eigenvalues of this matrix is strictly positive.

Theorem 4.3. The dynamical system

dx(t)
dt

=
(
M

TSM− S
)

x(t), xT(t)x(t) = 1, t ∈ R+

is stable if
Re

[
λi

(
M

TSM− S
)]
> 0, ∀i = 1 : n, t ∈ R+.

Furthermore, let (λ(t), x(t)) be an eigen-pair, and let∣∣∣∣Re
[
λi

(
M

TSM− S
)]∣∣∣∣ = ρ, then |x(t)| > 0, ∀t ∈ R+,

and
(MTSM− S)x(t) = ρ(MTSM− S)|x(t)|.

Proof. Suppose that

x̂(t) = (MTSM− S)|x(t)| > 0.

The above inequality implies that

x̂(t) = (MTSM− S)|x(t)| ≥ (MTSM− S)|x(t)| = Re
(
λi(M

TSM−M)
)
|x(t)|

Also,

x̂(t) =
∣∣∣∣Re

(
λi(M

TSM− S)
)∣∣∣∣ |x(t)| = ρ(MTSM− S)|x(t)|.

Let

x̂(t) = x(t) − ρ(MTSM− S)|x(t)| ≥ 0.

This further implies that,

ρ(MTSM− S)|x(t)| = (MTSM− S)|x(t)| ≥ a

Also,

ρ(MTSM− S) ≥ 0, and |x(t)| > 0, x̂(t) = 0.
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If x̂(t) , 0, we have

0 <
(
M

TSM− S
)

x̂(t) = (MTSM− S)x(t) − ρ(MTSM− S)|x(t)|

= (MTSM− S)x(t) − ρ(MTSM− S)x(t).

Finally, we have

(MTSM− S)x(t) ≥ ρ(MTSM− S)x(t).

This is true if we drop x(t), which is not possible. This implies that x̂(t) , 0. �

4.2. Strong D-stability.

Theorem 4.4. LetM ∈ Cn,n and A ∈ Cn,n (Hermitian matrix). ThenM ∈ Cn,n is strongly D-stable if

inf σ2

P
 Re

(
(iIn + log(M)) (iIn − log(M))−1

)
Im

(
(iIn + log(M)) (iIn − log(M))−1

)
−Im

(
(iIn + log(M)) (iIn − log(M))−1

)
Re

(
(iIn + log(M)) (iIn − log(M))−1

) P−1

 < 1,

where σ2(·) denotes the 2nd largest singular value, and inf is taken over all positive diagonal matrices P.

Proof. Let P = diag(Pii) > 0, ∀i = 1, 2, . . . , n, and let ∆ ∈ B, where

B =
{
diag(δ1, δ2, . . . , δm) : δi ∈ C, |δi| ≤ 1, ∀i = 1, 2, . . . , n

}
.

rank


iIn − P


Re

(
(iIn + log(M)) (iIn − log(M))−1

)
Im

(
(iIn + log(M)) (iIn − log(M))−1

)
−Im

(
(iIn + log(M)) (iIn − log(M))−1

)
Re

(
(iIn + log(M)) (iIn − log(M))−1

)


P−1

∆ 0

0 ∆

 P


=

rank


iIn −


Re

(
(iIn + log(M)) (iIn − log(M))−1

)
Im

(
(iIn + log(M)) (iIn − log(M))−1

)
−Im

(
(iIn + log(M)) (iIn − log(M))−1

)
Re

(
(iIn + log(M)) (iIn − log(M))−1

)
∆ 0

0 ∆




=

rank


iIn −


Re

(
(iIn + log(M)) (iIn − log(M))−1

)
Im

(
(iIn + log(M)) (iIn − log(M))−1

)
−Im

(
(iIn + log(M)) (iIn − log(M))−1

)
Re

(
(iIn + log(M)) (iIn − log(M))−1

)
∆ 0

0 ∆




.

Since, for all P, the positive diagonal matrices, we posses that

λk

[
(iIn + log(M))−1(iIn − log(M))∆

]
, 0, ∀k = 1 : n.

Thus, finally we have

0 ≤ µB

[
(iIn + log(M))−1(iIn − log(M))

]
< 1,

this implies thatM ∈ Cn,n is stronglyD-stable matrix. �
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The following Theorem 4.5 shows the strongD-stability of a considered n-dimensional complex

valued matrix. Further, we prove that matrix (log(M) + (log(M) ⊗A)∗ ∆ + ∆ (log(M) ⊗A)) is a

D-stable matrix.

Theorem 4.5. Let M ∈ Cn,n, and A ∈ Cn,n (Hermitian matrix). Then M is strongly D-stable if M is
stable, and for some α > 0,

(log(M) + (log(M) ⊗A)∗ ∆ + ∆ (log(M) ⊗A))

is aD-stable matrix, with ∆ ∈ B, and ⊗ denotes the entry-wise product of two matrices.

Proof. Let ∆ = ∆(t) ∈ B be a valid perturbation from a collection of block-diagonal matrices B.

The structure of B is such that

B =
{
diag(δ1(t), δ2(t), . . . , δn(t)) : δi(t) ∈ C, |δi(t)| ≤ 1

}
.

Assume that λ(t) = |λ(t)|eiθ, 0 ≤ θ ≤ 2π is greatest eigenvalue with algebraic multiplicity 1 cor-

responding to matrix-valued function (log(M) ⊗A)∗ ∆ + ∆ (log(M) ⊗A), ∆ ∈ B, ε > 0. Consider

that x(t), y(t) are right and left eigenvectors corresponding to λ(t). Further, assume that

Z = (log(M) ⊗A)∗ ∆ + ∆ (log(M) ⊗A) · y(t).

The outcome of Kato’s eigenvalue perturbation applied to λ(t) is

d
dt
|λ(t)|2

∣∣∣∣∣∣
t=0

= 2ε
|λ(t)|
λ

Re
(
Z∗∆̇(t)x

)
,

where λ = eiθx > 0, ε > 0, and x = x(t), Z = Z(t). As, Re
(
Z∗∆̇(t)x

)
> 0, and in turn this further

means that

(log(M) ⊗A)∗ ∆ + ∆ (log(M) ⊗A) > 0, ε > 0,

means a positive definite matrix. This allows us to have

(log(M) + (log(M) ⊗A)∗ ∆ + ∆ (log(M) ⊗A))

is aD-stable matrix. �

The subsequent Theorem 4.6 demonstrates that a real-valued n-dimensional matrixM, a Jacobi

matrix, is a stronglyD-stable matrix if its j-th order principal minors are with sign(−1) j.

Theorem 4.6. Let M ∈ Rn×n be a Jacobi matrix. Then M is strongly D-stable matrix if all j-th order
principal minors have sig(−1) j.

Proof. For givenM ∈ Rn×n, we construct M̂ = PMwhere P = diag(p1, p2, . . . , pn) with

p1 = 1, p2 =
k∏

i=2

m(i−1),i

mi,(i−1)
, pk = pk+1

mk,(k+1)

m(k+1),k
, k = 2, 3, . . . , n.
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The matrix M̂ is also a Jacobi matrix with jth principal minors having sig(−1) j. This means that

matrix M̂+ M̂T is such that Re(λi(M̂+ M̂T)) > 0 ∀i, where T represents a matrix’s transposition.

This also suggests that λi(PM+MTP) > 0. Thus, ∃ a matrix Q such that ‖Q‖ < α so that

λi

(
(P(M+ Q) +M+ Q)T P

)
> 0,

means thatM is a strongly D-stable matrix. �

Theorem 4.7. LetM ∈ Cn,n. ThenM = eA (A is Hermitian matrix) is strongly D-stable, and M̂ = PA
for a diagonal matrix P, and M̂ satisfies

m̂ii < −
n∑

j=1
j,i

|m̂i j|, 1 ≤ i ≤ n.

Proof. The inequality

m̂ii < −
n∑

j=1
j,i

|m̂i j|, 1 ≤ i ≤ n,

yields

µB(PeA) < 0.

This implies that µB(eA) < 0. For given M ∈ Rn×n to be stronglyD-stable, we have

µB(PeA) + µB(PQ) < 0,

where Q ∈ Rn,n with ‖Q‖ < α. In turn, this further implies that

Re
[
λi

(
P(eA + Q)

)]
≤ µB

(
P(eA + Q)

)
≤ µB(PeA) + µB(PQ) < 0.

This is further equivalent to

pii(mii + qii) < −

∑
j,i

|piimi j|+
∑
j,i

|piiqi j|

 ≤ −∑
j,i

|pii(mi j + qi j)| < 0.

Thus, finally, we have that

eA + Q,

aD-Stable matrix, and henceM = eA is a stronglyD-stable matrix. �

5. Numerical experimentation

In this segment, we provide numerical experiments on spectrum computation, i.e., the pseudo-

spectrum, µ-values, singular values, and eigenvalues of structured matrices that appear in eco-

nomic models. The graphical representations of the pseudo-spectrum denote the level sets for the

resolvent norm ||(zIn −M)−1
|| for the given matrixM. Here In denotes an n× n identity matrix.
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Example 1. We take 4 × 4 the composite coefficient matrix to the workhorse New Keynesian

model [21]

M1 =


1.5057 −0.5355 −3.2133 −0.0607

−0.0648 1.4821 0 0.0648

−0.0039 0.0576 1.7171 0.0043

0.5847 −1.9717 −5.4962 5.4962

 .

For the offered matrix M1, Figure 1 shows the spectrum, singular values, structured singular

values, and pseudo-spectrum calculations.

We plot the eigen-mode corresponding to the eigenvalues ofM1 in Figure 2 (left-hand figure).

In Figure 2 (left-hand figure), the top plot shows an envelope produced by plotting the absolute

value of an eigen-mode. The cyan line shows the real part. The plot at the bottom level of Figure 2

(left-hand figure) shows the absolute value of the eigen-mode, and it is plotted on a log scale. The

condition number is shown in the top plot. The larger value of the condition number implies the

greater sensitivity of the eigenvalue to perturbations.

In Figure 2 (Right-hand figure), we plot the value of the inverse of the resolvent norm. We

further show the real part of the pseudo-mode in magenta. In pseudo-mode, the right singular

vector for the matrix zI −M’s least singular value has been displayed.

Figure 1. Spectral properties of matrixM1
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Figure 2. Eigenmode (left) and inverse of resolvent norm (right) of matrixM1

Example 2. We take 4 × 4 the composite coefficient matrix to the workhorse New Keynesian

model [21]

M2 =


−0.5253 0.2655 2.4934 0.0179

0.0222 −0.4768 0 −0.0222

0.0006 −0.0367 −0.7254 −0.0009

−0.2740 1.0036 4.2124 −0.1464

 .

For the provided matrix M2, Figure 3 shows the spectrum, singular values, structured singular

values, and pseudo-spectrum calculations.

We plot the eigen-mode corresponding to the eigenvalues ofM2 in Figure 4 (left-hand figure).

In Figure 4 (Left-hand figure), the top plot shows an envelope produced by plotting the absolute

value of an eigen-mode. The cyan line shows the real part. The plot at the bottom level of Figure 4

(left-hand figure) shows the absolute value of the eigen-mode, and it is plotted on a log scale. The

condition number is shown in the top plot. The larger value of the condition number implies the

greater sensitivity of the eigenvalue to perturbations.

In Figure 4 (right-hand figure), we plot the value of the inverse of the resolvent norm. We further

show the real part of the pseudo-mode in magenta. The right singular vector for the least singular

value of the matrix zI −M has been shown in pseudo-mode.
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Figure 3. Spectral properties of matrixM2

Figure 4. Eigenmode (left) and inverse of resolvent norm (right) of matrixM2

Example 3. We take 4 × 4 the composite coefficient matrix to the workhorse New Keynesian

model [21]

M3 =


0.0282 0.0203 −0.0405 −0.0132

−0.0263 0.0048 0.0312 −0.0055

−0.0026 0.0004 0.0029 0.0006

0.2050 0 −0.2117 0

 .

Figure 5 shows the spectrum, singular values, structured singular values, and pseudo-spectrum

calculations for the provided matrixM3.
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We plot the eigen-mode corresponding to the eigenvalues ofM3 in Figure 6 (left-hand figure).

In Figure 6 (Left-hand figure), the top plot shows an envelope produced by plotting the absolute

value of an eigen-mode. The cyan line shows the real part. The plot at the bottom level of Figure 6

(left-hand figure) shows the absolute value of the eigen-mode, and it is plotted on a log scale. The

condition number is shown in the top plot. The larger value of the condition number implies the

greater sensitivity of the eigenvalue to perturbations.

In Figure 6 (right-hand figure), we plot the value of the inverse of the resolvent norm. We

further show the real part of the pseudo-mode in magenta. The right singular vector for the lowest

singular value of the matrix zI −M has been shown in pseudo-mode.

Figure 5. Spectral properties of matrixM3

Figure 6. Eigenmode (left) and inverse of resolvent norm (right) of matrixM3
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6. Conclusion

In this paper, we have studied stability analysis and strong D-stability analysis of economic

models. We have studied and analyzed the stability considering that each of the matrix’s eigenval-

ues has a strictly positive real part, while the real components of each matrix-product eigenvalue

of a given positive diagonal matrix also remain strictly positive. The new theoretical and com-

putational results are developed by using various elements from numerical linear algebra, matrix

analysis, and system theory. The numerical experimentation shows how the spectrum of struc-

tured matrices behaves. This includes the analysis of the behavior of the spectrum, singular values,

pseudo-spectrum, and the results on lower bounds of µ-values allows us to discuss and analyze

the stability of economic models.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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