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Abstract. The stability analysis of transportation and economic models plays a fundamental role in understanding

dynamic systems. The term stability means the ability of a system under consideration to return to an equilibrium

state subject to perturbations. The analysis on D-stability extends the concept of stability by ensuring that the system

is stable under a predefined set of various uncertainties. The computation of structured singular values plays a critical

role in analyzing the dynamical system’s robustness and performance. For transportation models, structured singular

value analysis helps evaluate traffic demand fluctuations. On the other hand, in economic systems, structured singular

values aid in understanding the impacts of interest rates or supply chain disruptions on the performance and stability of

the system. This article discusses the interplay between stability analysis, D-stability analysis, and structured singular

values, and then emphasizes their applications to transportation and economic models. The aim is to study how one can

ensure a robust and resilient system design. Through practical and numerical examples, the study illustrates how these

concepts may set up a mathematical foundation for advancing robust modeling practices in dynamic and uncertain

environments.

1. Introduction

This article is concerned with the study of recent mathematical methods to analyze the spectral

characterization of structured matrices appearing across economic and transportation models.
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The primary focus is to study and analyze the interconnection between µ-values, stability, and D-

stability of transportation and economic models. The µ-value is a positive homogeneous function

quantifying the effect of uncertainty on a linear dynamical system. The µ-values for the class

of complex or real-valued matrices, and an uncertainty set, that is, the set of block diagonal

uncertainties, were first mentioned in a classical paper by J. C. Doyle. The determination of an

exact certainty about the description of the physical world is almost impossible, even by using the

most powerful mathematical techniques. For instance, a bus station is located about 5 kilometers

away from a certain predefined position, and a packet of sugar taken from a shop is round about

1 kilogram in weight. The mathematical treatment and measurements of these physical quantities

mainly depend upon the accuracy of the instrument capable of measurement. The same kind of

principle is applicable for the modeling to analyze a physical system under consideration.

For the structured uncertainty and µ-value analysis, there exist several different sources of un-

certainties. The mathematical quantity ∆i( jw) represent uncertain elements across the dynamical

system. The elements of ∆i( jw) may be consider as values varying linearly in time. The block

diagonal structure ∆i are called as the complex uncertainties or perturbation corresponding to

dynamical system. The block structures ∆i are called as real block diagonal uncertainties for

∆i ∈ [−1, 1]. On the other hand, in the presence of real and complex uncertainties, the uncertainties

∆is are called as mixed type of uncertainties. To each of ∆i = 0, we label it as a nominal system,

while on the other hand if ∆i , 0, the dynamical system is label as a perturbed system.

The computation of µ-value maybe considered as a straightforward generalization to singular

values for coefficient matrices across the dynamical system. It does provides tools in order to

analyze, synthesize the robustness and performance of dynamical systems. The µ-value tool is

further helpful for stability analysis of structured or unstructured eigenvalue perturbation theory.

This tool can also be used for the analysis of uncertain linear dynamical systems. The study and

analysis of robust stability problems corresponding to feedback interconnection for a class of stable

structured matrices M(s) and ∆(s) for some given s ∈ C+ is also an important research topic in

system theory.

The instability analysis of a dynamical system may be directly linked with the measurement of

the mathematical quantity (In −M ∆), and it must remain singular, Here, In denotes an identity

matrix having its dimension similar to given matrix M and an uncertainty ∆. This restrict the

selection of uncertainty ∆ with ‖∆‖∞ which causes the closed loop system to be unstable. The

quantity ‖∆‖∞ < α, α ∈ R, α > 0 for the stability analysis of dynamical system under consideration.

The small increment in α up to αmax may allow the dynamical system to remain unstable. The

computation of αmax may yield the robust stability of under consideration dynamical system. The

stability of dynamical system may depends upon the fact that mathematical quantity (I −M ∆) is

such that M has atleast one of its eigenvalue to be exactly equal to zero. We describe a few specific

cases below:
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Case-1: The uncertainty ∆ from set of block diagonal matrices acts as a stable transfer function

matrix and it does describes either dynamical system is well-posed and internally stable or not.

This is described by following Small Gain Theorem.

Theorem 1.1. (Small Gain Theorem). The dynamical system is well-posed as well as stable for each ∆ from
the set of block diagonal matrices having σ̄(∆) ≤ 1 if and only if,

1
αmax

= ‖M‖∞ := max (σ̄ (M)) < 1.

The mathematical quantity σ̄(M) is the maximum singular value of a stable matrix M.

Case-2: The structured uncertainty ∆ is a family of complex or real block diagonal matrices or

a family of structured stable transfer matrices.

By Small Gain Theorem,
1

αmax
= ‖M‖∞ := max (σ̄(M)).

For structured ∆, σ̄(M) maybe presented as,

σ̄(M) = (min {σ̄(∆) : det(I −M ∆) = 0})−1. (1.1)

The concept of computing the singular value σ̄(M) needs to be generalized for the case of structured

∆ which destabilizes the feedback system. The quantity µ(M) with respect to a structured ∆ is

defined as

µ∆(M) := (min {σ̄(∆) : det(I −M ∆) = 0})−1. (1.2)

The robust margin αmax of feedback system with uncertainty ∆ is,

1
αmax

= max (µ∆(M)).

The quantity µ∆(M) as defined in Equ. (2) known as to be µ-value of constant matrix M with

respect to perturbation ∆.

The D-stability theory for real-valued square matrices [1] is a mathematical tool for the analysis

of the models to study and perform analysis on the competitiveness in the markets. The D-

stability theory is a versatile, and a fundamental concept from system theory. It generalizes the

classical notions of matrix stability to define stability regions in the domain of complex plane C.

The D-stability theory further generalizes left-half plane for a class of continuous-time dynamical

system. Furthermore, it generalized the unit circle for discrete-time dynamical systems. The D-

stability theory discuss the stability of a dynamical systems subject to structured or unstructured

perturbations.

In various economic models the D-stable matrices appears in input-output setting, for example,

consider Leontief production model. The D-stability theory analyze the robustness and perfor-

mance of equilibrium states across an economy models. The input-output matrix corresponding to

an economic model is a D-stable matrix suggesting that the economy can withstand across various

changes to factor productivity. The D-stable matrices does appears in economic growth models.
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An interesting example could be multi-sector growth models. Mathematically, D-stable matrices

represent the Jacobian of an equilibrium state corresponding to a macroeconomic systems in order

to study stability. This further analyze the interactions among various sectors of the economy, for

example, consumption, production, etc.

The structured D-stable matrices, and structured additive D-stable matrices have very many

important properties and are of interests of research in many research directions but not limited to

science and engineering. This particularly includes study and analysis of mathematical techniques

in economics, dynamical analysis of population models, analysis of neural networks, electrical en-

gineering, and the control engineering, we recommend interested reader to see [2–9] and the

references therein. The interconnection between structured singular values, and D-stability anal-

ysis for a class of real-valued n-dimensional square matrix as presented in a great detail in [10]. A

more simpler condition to analyze the strong D-stability was derived in [11].

The H-stability analysis, and H-semistability analysis being as two strong and effective notions

of structured matrix stability were studied in [12]. Theoretical results were established for study of

both necessary, and sufficient conditions to a given matrix to be structured H-stable or structured

H-semistable. The study and analysis of H-stability does imply the stability for continuous-time

linear dynamical systems. The H-stability has various important applications in engineering

discipline, this includes but not limited to: Control engineering, electrical engineering, mechanical

engineering. Furthermore, H-stability allow to study the modeling and analysis of economic

problems. The H-stability implies that coefficient matrix to given linear dynamical system may

have negative real parts for all of its eigenvalues.

The D(α) structured stability for choice of α = (α1,α1, · · ·,αp) was studied by Khalil and Koko-

tovic [13,14]. The study and analysis of D(α) stability is effective to very many important dynamical

problems, for instance, time-invariant multi-parameter singular perturbations problems, specially,

the dynamical systems represented by mathematical equation of the form E(ε)ż = Dz. For the

structured uncertainty and µ-value analysis, there exist several different sources of uncertainties.

The mathematical quantity ∆i( jw) represent uncertain elements across the dynamical system. The

elements of ∆i( jw) may be consider as values varying linearly in time. The block diagonal struc-

ture ∆i are called as the complex uncertainties or perturbation corresponding to dynamical system.

The block structures ∆i are called as real block diagonal uncertainties for ∆i ∈ [−1, 1]. On the other

hand, in the presence of real and complex uncertainties, the uncertainties ∆is are called as mixed

type of uncertainties. To each of ∆i = 0, we label it as a nominal system, while on the other hand

if ∆i , 0, the dynamical system is label as a perturbed system.

The computation of µ-value maybe considered as a straightforward generalization to singular

values for coefficient matrices across the dynamical system. It does provides tools in order to

analyze, synthesize the robustness and performance of dynamical systems. The µ-value tool is

further helpful for stability analysis of structured or unstructured eigenvalue perturbation theory.

This tool can also be used for the analysis of uncertain linear dynamical systems. The study and
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analysis of robust stability problems corresponding to feedback interconnection for a class of stable

structured matrices M(s) and ∆(s) for some given s ∈ C+ is also an important research topic in

system theory.

The instability analysis of a dynamical system may be directly linked with the measurement of

the mathematical quantity (In −M ∆), and it must remain singular, Here, In denotes an identity

matrix having its dimension similar to given matrix M and an uncertainty ∆. This restrict the

selection of uncertainty ∆ with ‖∆‖∞ which causes the closed loop system to be unstable. The

quantity ‖∆‖∞ < α, α ∈ R, α > 0 for the stability analysis of dynamical system under consideration.

The small increment in α up to αmax may allow the dynamical system to remain unstable. The

computation of αmax may yield the robust stability of under consideration dynamical system. The

stability of dynamical system may depends upon the fact that mathematical quantity (I −M ∆) is

such that M has atleast one of its eigenvalue to be exactly equal to zero. We describe a few specific

cases below:

Case-1: The uncertainty ∆ from set of block diagonal matrices acts as a stable transfer function

matrix and it does describes either dynamical system is well-posed and internally stable or not.

This is described by following Small Gain Theorem.

Theorem 1.2. (Small Gain Theorem). The dynamical system is well-posed as well as stable for each ∆ from
the set of block diagonal matrices having σ̄(∆) ≤ 1 if and only if,

1
αmax

= ‖M‖∞ := max (σ̄ (M)) < 1.

The mathematical quantity σ̄(M) is the maximum singular value of a stable matrix M.

Case-2: The structured uncertainty ∆ is a family of complex or real block diagonal matrices or

a family of structured stable transfer matrices.

By Small Gain Theorem,
1

αmax
= ‖M‖∞ := max (σ̄(M)).

For structured ∆, σ̄(M) maybe presented as,

σ̄(M) = (min {σ̄(∆) : det(I −M ∆) = 0})−1. (1.3)

The concept of computing the singular value σ̄(M) needs to be generalized for the case of structured

∆ which destabilizes the feedback system. The quantity µ(M) with respect to a structured ∆ is

defined as

µ∆(M) := (min {σ̄(∆) : det(I −M ∆) = 0})−1. (1.4)

The robust margin αmax of feedback system with uncertainty ∆ is,

1
αmax

= max (µ∆(M)).

The quantity µ∆(M) as defined in Equ. (2) known as to be µ-value of constant matrix M with

respect to perturbation ∆.



6 Int. J. Anal. Appl. (2025), 23:297

The D-stability theory for real-valued square matrices [1] is a mathematical tool for the analysis

of the models to study and perform analysis on the competitiveness in the markets. The D-

stability theory is a versatile, and a fundamental concept from system theory. It generalizes the

classical notions of matrix stability to define stability regions in the domain of complex plane C.

The D-stability theory further generalizes left-half plane for a class of continuous-time dynamical

system. Furthermore, it generalized the unit circle for discrete-time dynamical systems. The D-

stability theory discuss the stability of a dynamical systems subject to structured or unstructured

perturbations.

In various economic models the D-stable matrices appears in input-output setting, for example,

consider Leontief production model. The D-stability theory analyze the robustness and perfor-

mance of equilibrium states across an economy models. The input-output matrix corresponding to

an economic model is a D-stable matrix suggesting that the economy can withstand across various

changes to factor productivity. The D-stable matrices does appears in economic growth models.

An interesting example could be multi-sector growth models. Mathematically, D-stable matrices

represent the Jacobian of an equilibrium state corresponding to a macroeconomic systems in order

to study stability. This further analyze the interactions among various sectors of the economy, for

example, consumption, production, etc.

The structured D-stable matrices, and structured additive D-stable matrices have very many

important properties and are of interests of research in many research directions but not limited to

science and engineering. This particularly includes study and analysis of mathematical techniques

in economics, dynamical analysis of population models, analysis of neural networks, electrical en-

gineering, and the control engineering, we recommend interested reader to see [2–9] and the

references therein. The interconnection between structured singular values, and D-stability anal-

ysis for a class of real-valued n-dimensional square matrix as presented in a great detail in [10]. A

more simpler condition to analyze the strong D-stability was derived in [11].

The H-stability analysis, and H-semistability analysis being as two strong and effective notions

of structured matrix stability were studied in [12]. Theoretical results were established for study of

both necessary, and sufficient conditions to a given matrix to be structured H-stable or structured

H-semistable. The study and analysis of H-stability does imply the stability for continuous-time

linear dynamical systems. The H-stability has various important applications in engineering

discipline, this includes but not limited to: Control engineering, electrical engineering, mechanical

engineering. Furthermore, H-stability allow to study the modeling and analysis of economic

problems. The H-stability implies that coefficient matrix to given linear dynamical system may

have negative real parts for all of its eigenvalues.

The D(α) structured stability for choice of α = (α1,α1, · · ·,αp) was studied by Khalil and Koko-

tovic [13,14]. The study and analysis of D(α) stability is effective to very many important dynamical

problems, for instance, time-invariant multi-parameter singular perturbations problems, specially,

the dynamical systems represented by mathematical equation of the form E(ε)ż = Dz.
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2. State-of-the-ArtMethods to Compute µ-Values

In this section, we present review on some of well established mathematical techniques for

the computation of µ-values. This includes to review three types of mathematical approaches:

An exact computation, approximation techniques, and geometric based techniques to compute

µ-values and its lower and upper bounds.

2.1. Feedback systems analysis via structured perturbations. A more generic technique to dis-

cuss and analyze the stability and instability of time varying linear dynamical systems which are

subject to structured uncertainties consists upon generalized spectral theory of structured ma-

trices [15]. This theory addresses a class of norm-bounded kind of uncertainty problem. For a

given matrix M ∈ Cn,n or Rn,n having a block diagonal perturbation structure, a mathematical

function associated with it is the computation of µ-value. The µ-value provides both necessary

and sufficient conditions to structured perturbation problems subject to structured or unstructured

uncertainties. A number of algebraic and geometric properties for µ function were developed over

a long period of time while developing numerous mathematical techniques. These mathematical

techniques were developed in order to determine the µ-value in some particular and an important

cases. Further, for a better understanding, a detailed discussions was provided on the computation

of µ-values.

Block-diagonal uncertainties: The analysis consisting of computation of singular values estab-

lishes a framework in order to develop the multi-loop generalizations to the classical single-loop

mathematical techniques. The singular value techniques have their own limitations, for example,

the analysis of linear multi-variable feedback system with two multiplicative uncertainties does

appears at the input stage, and the output stage of dynamical system.

The dynamical system may be isolated at two perturbations/uncertainties resulting a single per-

turbation having two-block-diagonal structures. Then the block-diagonal perturbation is written

as a one full matrix perturbation.

The differential sensitivity analysis to singular values at a single point relative to perturbations

at other points is an extension to singular values. But, this does not holds true for the case of large

perturbations, and finally this yields to directional sensitivity information.

The matrix problem to determine both necessary and sufficient conditions in such a way that

λi(I + M∆) , 0, ∀i. The partial solution corresponding to general block-diagonal perturbation,

and its solution to three or fewer blocks is presented in [15].

A number of important properties corresponding to µ-value are provided in [15], these proper-

ties include:

P1 : For any matrix A, µB1(A) ≥ 0.

P2 : For any matrix A, and ∀ α ∈ C, µB1(αA) = |α|µB1(A).

P3 : µB1(AB) ≤ σ1(A)µB1(B), with σ1(A) being as largest singular value of matrix A.

P4 : µB1(∆) = σ1(∆), ∀ ∆ ∈ B1.
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P5 : Let ∆0 = {λI : λ ∈ C}, the block-diagonal structure, then µB1(A) = ρ(A), with ρ(A) being

as spectral radius of matrix A.

P6 : For ∆̂ = {∆0 : ∆ ∈ Cn,n
}, then µ∆̂(A) = σ1(∆).

P7 : SupµB1(A) = ||A||∞.

P8 : For ∆ = {diag(∆1, ∆2, · · ·, ∆n) : ∆i ∈ Cn,n
}, then µ∆(A) = µ∆(D−1MD), D = {diag(d1, · ·

·, dn), |di| ≥ 0}.

P9 : For ∆̂0 = {diag(∆1, ∆2, · · ·, ∆n) : ∆i ∈ Cn,n
}, then ρ(A) < µ∆̂0

(A) < σ1(A).

P10 : From P8, and P9, we obtain an inequality µ∆(A) = µ∆(D−1AD) ≤ in f σ1(D−1AD). The inf
must be taken over D.

In [15], for the differentiability properties of singular values, the necessary tools were developed

for the analysis and approximation to the gradients of singular values. The following novel results

on the computation of µ−values were established and analyzed.

Theorem 2.1. The structured singular value is exactly equal to 1 if and only if 0 ∈ ∇2(M), with ∇2(M)

defined in [15].

Theorem 2.2. The computation of largest singular value is exactly equal to its structured singular value if
and only if 0 ∈ Co∇2, with Co∇2 defined in [15], and n ≤ 3.

We refer [15] to see two numerical examples, and a detailed discussions for the computational

and numerical testings.

2.2. An iterative method to yield the lower bounds of µ. A novel iterative method for the

approximation of µ-values was developed in [16]. The numerical method consist of two-level

algorithm. That is an inner algorithm and an outer algorithm. The main objective in the inner

algorithm is the formulation and then solving a system of ordinary differential equations (ODE’s).

The system of ODE’s is corresponding to an optimization problem which is induced on the

manifold defined by the structure. In outer algorithm, an iteration technique, in our case a fast

Newton’s iterative scheme is utilized for the approximation of desired perturbation level which is

denoted with ε. The inner-outer algorithm computes the µ-values from below instead of above.

2.2.1. Inner-Algorithm. Theorem 2.3 is to compute an admissible perturbation ∆ ∈ B∗, with B∗

being as the set of block-diagonal structured uncertainties consisting only pure type of complex

perturbations. We further refer to see [16] for the definitions of sets of block diagonal matrices.

Theorem 2.3. Let ∆opt = diag (δ1Ir1 , δ2Ir2 , · · · , δ2IrS; ∆1, ∆2, · · · , ∆F) : ||∆opt||2 = 1, be a local extremizer
of structured spectral value set ∆B

ε (M). Additionally, we suppose εM∆opt has a largest simple eigenvalue
λ = |λ|eιθ, 0 ≤ θ ≤ 2π with right and left eigenvectors denoted as x and y. These eigenvectors are then
scaled so that s = eιθy∗x > 0. Also, consider partition the eigenvectors given as

x =
(
xT

1 , · · · , xT
S ; xT

S+1, · · · , xT
S+F

)T
,
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and

z = M∗y =
(
zT

1 , · · · , zT
S ; zT

S+1, · · · , zT
S+F

)
.

We consider z∗kxk , 0, ∀ k = 1, 2, · · · , S and ||zS+h||2 · ||xs+h||2 , 0, ∀ h = 1, 2, · · · , F. Then, this further
yields that |δk| = 1, ∀ k = 1, 2, · · · , S, and ||∆h||2 = 2, ∀ h = 1, 2, · · · , F.

An important conclusion [16] is to replace the total number of full blocks having a rank-1

structured matrices. This further enable us to work with matrix Frobenius norm rather than

working with matrix 2-norm. The reason to work with rank-1 matrices is that the matrix 2-norm,

and matrix Frobeneius norm turns out to be exactly the same. This finally helps to search for al

local extremizer too.

Theorem 2.4. [16] Let ∆opt = diag (δ1Ir1 , δ2Ir2 , · · · , δ2IrS; ∆1, ∆2, · · · , ∆F) be a local extremizer. Suppose
the non-degeneracy conditions for all full blocks holds. Then, for each block of ∆h possesses singular value
which is being an exactly equal to 1, and the corresponding singular vectors are

uh = γh
zS+h

||zS+h||2
, νh = γh

xS+h

||xS+h||2
; for |γh| = 1 .

Further, matrix valued function of the form

∆∗ = diag
(
δ1Ir1 , δ2Ir2 , · · · , δ2Irs; u1ν

∗

1, · · · , uFν
∗

F

)
is a local extremizer, implying that ρ(εM∆opt) = ρ(εM∆∗).

The system of ordinary differential equation (gradient system) is constructed and was solved

in [16]. The optimial solution to the gradient system of ordinary differential equations yields a

local extremizer on manifold B∗:

∆̇ = D1PB∗(zx∗) −D2∆ ,

with ||x(t)||2 = 1, and is corresponding to simple eigenvalue (with algebraic multiplicity 1) λ(t)
of the perturbed matrix εM∆(t), ε > 0. The diagonal structured matrices D1(t), D2(t) depends on

∆(t), and PB∗(zx∗) is being an orthogonal projection of the structured matrices zx∗ on B∗. Finally,

stationary points of ∆̇(t) are computed with following Theorem 6.

Theorem 2.5. [16] Let ∆(t), and assume that λ(t) be the maximum and simple non-zero eigenvalue
corresponding to the perturbed matrix εM∆. Let x(t), y(t) are right and left eigenvectors. Further, we
consider that z(t) = M∗y(t), then

d
dt

∣∣∣λ(t)∣∣∣2 = 0⇔ ∆̇(t) = 0⇔ ∆(t) = D PB∗ (z(t) x∗(t)) ,

for a diagonal structured matrix D ∈ B∗. Additionally, assume that if z(t) has maximum modulus over the
set ∆B∗

ε (M), then D is a positive diagonal matrix.

The new mathematical results for computation and analysis of lower bounds of µ-values corre-

sponding to a class of mixed uncertainties, that is, both real and complex uncertainties and even

for more general cases are presented and analyzed in [16].
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2.2.2. Outer Algorithm. For the case of outer algorithm, the following result is given in [16] for the

computation of a change in λ(ε) with respect to ε > 0.

Theorem 2.6. [16] Let ∆ ∈ B∗, and λ(ε), ε > 0 is a simple and largest eigenvalue corresponding to
perturbed matrix εM∆(ε). Consider that x(ε) and y(ε) are right and left eigen-vectors corresponding to
matrix function εM∆(ε). Consider that z(ε) = M∗y(ε), then

d|λ(ε)|
dε

=
1

|y(ε)∗x(ε)|

 s∑
i=1

∣∣∣zi(ε)
∗xi(ε)

∣∣∣+ F∑
j=1

∥∥∥zs+ j(ε)
∥∥∥ ‖ys+ j(ε)‖

 > 0.

For numerical statistics, the numerical results obtained in [16] are compared with Matlab func-

tion mussv. The numerical testing confirms the better results for the approximation of lower

bounds obtained in [16] than with mussv.

2.3. A nonlinear programming technique based methodology to compute lower bounds of real
µ-values. A novel mathematical formulation for approximation of real µ-values as a mathematical

problem for a non-linear programming problem was developed in [17]. Further, a mathematical

optimization technique known as F-modified sub-gradient (F-MSG) was developed for the compu-

tation and analysis of the bounds (from below) of real µ-values. The F-MSG algorithm is applicable

to a much greater class of non-convex programming models, and this is given as follows:

For given ε ≥ 0 a small non-negative parameter, and η denotes a compact hyper-rectangular

domain given as

(δ1, δ2, · · · , δm,λ1,λ2) ∈ η with δi,λ j ∈ R.

The mathematical quantity µ∆(M) is obtained in following two steps.

Step-1:

min(δ1,··· ,δm, λ1,λ2) maxi

(
|δi|+ (λr

1 + λr
2)

)
λ

so that 
fR(δ1, · · · , δm) − λ

p
1 = 0,

fI(δ1, · · · , δm) − λ
p
2 = 0,

(δ1, · · · , δm,λ1,λ2) ∈ η.

Step-2:

µ∆(M) =


1

max|δi|
if || fR, fI|| < ε,

0 else.

The penalty parameter λ ≥ 105 is fixed. In step-I, the powers are chosen to be r ∈ {2, 4, 6, · · · } and

p ∈ {1, 3, 5, · · · }. Also, algorithm make it possible to study stability analysis of pendulum (inverted),

and it approximate real µ-value lower bounds.
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This algorithm further generalizes the modeling associated with the problem under considera-

tion. For matrix function M(s), the definition of µ-value can be generalized as

µ∆(M(s)) = Sup µ∆(M(iω)),

where "Sup" is taken over ω ∈ R+, R+ represent the closed interval [0,∞], and i =
√
−1. The

matrix function M(s) is known as a transfer function, while ω denotes the frequency. The µ-value

can be computed at various discrete levels of frequencies [ωL,ωU] ⊂ R+. In such case, the µ-value

is obtained by maximizing over ω ∈ [ωL,ωU], means that,

µ∆(M(s)) = max µ∆(M(iω)).

The solution to above given mathematical optimization problem is given with following F-MSG

algorithm.

F-MSG Algorithm: The F-MSG algorithm was first developed by Karimbeyli. The aim was to

develop a generalized version of modified sub-gradient algorithm. The F-MSG algorithm is with

the help of following steps:

Initialization step: Take UB such that UB >> |δi| ∀i = 1 : m, and sufficiently small ε1, ε2 ≥ 0.

Furthermore, take LB = 0, and also let q a positive real number.

Step 1: Choose n = 1;

Step 2: Choose (vn
1 , cn

1) with vn
1 ∈ R2,1, cn

1 > 0, and φ(1) so that 0 < φ(1) < q. Take Hn =
LB+UB

2 , j = 1, and then go to Step 3.

Step 3: For (vn
1 , cn

1), solve the constraint problem:

Determine K ∈ Ω so that L(K, vn
j , cn

j ) = f (K) + cn
j ||h(K)|| − vn

j h(K) ≤ Hn.

If solution to the problem does not exist, then jump to Step 6. If solution to the problem does

exists, then jump to Step 5, otherwise move to Step 4.

Step 4: Update (vn
1 , cn

1) wile taking

vn
j+1 = vn

j − αh(K j), cn
j+1 = cn

j + (1 + α)p j||h(K j)||,

with p j, a positive scalar step size chosen as to be

0 ≤ p j =
δα(Hn − L(K j, vn

j , cn
j ))

(α2 + (1 + α)2||h(K j)||2)
,

with α > 0, 0 < δ < 2.

Step 5: Set up UB = f (K j). If ε2 > UB − LB, µ∆(M) = 1
UB

, and STOP; otherwise consider

n = n + 1, and go back to Step 2.
Step 6: Set up LB = Hn. If ε2 > UB − LB, µ∆(M) = 1

UB
, and STOP; otherwise let n = n + 1, and

jump back to Step 2.
In algorithm, the quantities LB, and UB denotes both lower and upper bounds of µ-values to

mathematical optimization problem

min f (K).
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The constraints are taken as h(K) = 0, K ∈ Ω, with K = (δ1, · · ·, δm,λ1,λ2), f (K) = maxi(δi)+ (λr
1 +

λr
2)λ, h(K) = [h1(K)h2(K)]T with h1(K) = fR(δ1, δ2, · · ·, δm) − λ

p
1 = 0, h2(K) = f1(δ1, · · ·, δm) − λ

p
2 =

0, and Ω is a large compact hyper-rectangle with values of K.

Theorem 2.7 show that if the value of Hn is feasible to obtain, then the sequence K j of the optimial

solutions to problem in Step 3 will start to converge to a solution of primal problem.

Theorem 2.7. Consider Ω denotes a compact set and assume that f and h are the continuous functions
defined on the set Ω. Let p j||h(K j)||+ cn

j − ||v
n
j || > φ( j) holds. Then, ||h(K j)|| → 0 as j → ∞, for each

Hn ≥ H̄ if {K j}, j = 1, 2, · · ·.

Theorem 2.8 gives the convergence for the F-MSG algorithm.

Theorem 2.8. Consider (K j, v j, c j) is an iteration obtained at steps 3 and 4 of the F-MSG algorithm for
Hn = H̄. Let {h(K j)} represents a bounded sequence, and each (v j+1, c j+1) is obtained for δ = 1. Also,
if steps 3-4 produces an infinite sequence L j = L(K j, v j, c j) of Augmented Lagrangian, then L j → H̄ as
j→∞.

2.4. Geometrical formulation of bounds of µ-value. The geometrical interpretation is presented

in [18] for the computation and analysis of the lower bounds of µ-value. The set of block-diagonal

structured matrices under consideration is with pure real types of uncertainties. This geometrical

approach is to reset the parametric search space. This parametric search space is independent

from the number of parameter repetition in the structured uncertainty matrix. An algorithm

was presented which combines randomization and optimization methods to deal with the µ-

value problem under consideration. This algorithm was successful to deal with two extremely

challenging and hard higher-order real µ-analysis problems taken from the field of aerospace and

system biology.

The geometrical analysis to subset of given uncertain parametric space must satisfy the singu-

larity constraint in the µ-value lower bound:

det(In −M(iω)∆),

where det(·) represent the determinant of a given matrix, and i =
√
−1, denotes an imaginary unit

while ω ∈ R, the frequency. The symbol ∆ represents the diagonal matrix denoting the structured

uncertainty from the set of block-diagonal structured matrices ∆̂.

The singularity condition can be written in both real and imaginary parts, means that,

fR(∆) = Re{det(In −M(iω))∆},

fI(∆) = Img{det(In −M(iω))∆},

with ∆ ∈ ∆̂ = {diag(δ1Ir1 , · · ·, δpIrp) : δi ∈ R}, ri is an element from set of the natural numbers,

the positive real integers, and Iri is ri × ri denotes an identity matrix for i = 1 : p. The singularity

condition may be formulated as follows, that is,

FR = {∆ ∈ ∆̂ : fR(∆) = 0},
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FI = {∆ ∈ ∆̂ : fI(∆) = 0},

and then µ−value is re-defined as

µ∆(M) =
1

min σ̄(∆)
, i f FR ∩ FI , φ,

otherwise it is exactly equal to 0.

For given ∆ = 0, the det(In −M∆) = 1, and as a result fR(0) = 1, and fI(0) = 0. This further

implies that the manifold FI must passes through the origin. On the other hands, the manifold FR

must not passes through the origin. We refer to see [18] for a complete discussions to solution and

the formulation of geometrical problems, examples, and applications.

2.5. Gain-based lower bound technique for mixed µ-problems. A new mathematical technique

for computation and analysis of the lower bounds of both real and mixed µ-problem was presented

in [19]. This mathematical technique make use of worse-case gain to the numerical approximation

to real blocks, and the power algorithm to determine the number of complex blocks. The numerical

testing provides tighter bounds for µ-values. The gain-based lower bounds algorithm (LBA) is

capable to compute an exact real µ-values in relatively lower dimensions. Also, it has an ability to

switch over to worst-case gain search for the class of larger-dimensional mathematical problems.

Gain-Based Algorithm (GBA): Let M ∈ CnR,nR , then the problem for computing tighter lower

bounds for the case of pure real µ-values, means that, µ∆R(MR), having ∆R := {∆ = diag(δ1Ik1 , · ·

·, δrIkr) : δi ∈ R}, MR is the complex-valued structured matrix with R representing the real block

structure being employed for the computation of µ-values. It is evident from Definition of µ-values

that ∆R must satisfies det(I−MR∆R) = 0, and in turn yields a lower bound 1
σ̄(∆R)

which is bounded

by µ∆R(MR). This further implies the existence of z ∈ CnR , w ∈ CnR satisfying z = MRw, and

w = ∆Rz. These equations can be represented with the help of Linear Fractional Transformations

(LFT) Fu(MR, ∆R) with z, w representing an output of MR and ∆R.

An algebraic equations:

ze
 = M̄R

wd
 , w = ∆Rz, and

M̄R =

 MR ik
iTk MR 1

 ,

with d, e ∈ C, denoting the scalar disturbance and an error signals, respectively. Furthermore, these

set of algebraic equations are also of well-posed nature. The external disturbance corresponding

to an error signals relation is obtained by e = Fu(M̄R, ∆R)d if det(I −MR∆R) , 0.

The GBA main aim is to solve following mathematical optimization problem:

max |Fu(M̄R∆R)|,

with max is being taken over ∆R, ¯σ(∆R) ≤ µl, µl represents the lower bounds of µ-values. The

mathematical optimization problem is non-convex and its objective is to search for the global

maximizer. The search of such a global maximizer may be computationally expensive. Theorem
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2.9 establishes two interesting linkages between d− to− e gain and the distance of matrix (I−MR∆R)

to singularity.

Theorem 2.9. If ∃ a ∆R so that det(I −MR∆R) , 0, and |Fu(M̄R, ∆R)| ≥ γ ≥ 0, then we have that:
1. ∃ a δ ∈ C, |δ| ≤ 1

γ so that det(I −MR∆R − δikiTk ) = 0.

2. The smallest singular value σmin(I −MR∆R) ≤
1
γ .

Input: MR ∈ Cn,n, ∆R, ub, lb
Initilize lb f ac =

3
4 , and cnt = 1

while cnt ≤ Ntry AND lb < ub tolstop

lbtry = lb + (ub − lb) lb f ac,

k := mod(cnt− 1, nR) + 1

M̄R =

 MR ik
iTk MR 1


∆R,try := arg max|Fu(M̄R, ∆R)|

if rcound(I −MR∆R,try) < tolreal

lb = 1
σ̄(∆R,try)

∆R = ∆R,try

lb f ac := 1
2

else

lb f ac := max( 1
32 ,

lb f ac

2 )

end

cnt = cnt + 1

end

Return: = ∆R,lb
Algorithm 1: The GBA for real µ lower bound

2.6. Computation of µ via Moment LMI relaxation technique. A novel algorithm consist of

Moment Linear Matrix Inequalities (LMI) is presented in [20] to determine µ-values from above

subject to different types of uncertainties, for instance, a mixture of both real and complex uncer-

tainties. The main idea was to re-formulate µ-values approximation as a non-convex polynomial

optimization problem. In turn this yields convex mathematical optimization problems with help

of the moment relaxation methodologies. The experimental results show numerical computation

and behavior to the bounds of µ-values. It was observed that this yield more tighter lower bounds

as compared with Matlab function mussv.

The uncertainty ∆ possesses a block-diagonal structure, and is defined in [20]. The constraint

||∆|| < r may be re-written as follows r2I ∆

∆H I

 > 0.
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Input: M, ∆, ub, lb
Initilize lb f ac =

3
4 , and cnt = 1

while cnt ≤ Ntry AND lb < ub tolstop

lbtry = lb + (ub − lb) lb f ac,

k := mod(cnt− 1, nR) + 1

M̄R =

 MR ik
iTk MR 1


∆R,try := arg max|Fu(M̄R, ∆R)|

if rcound(I −MR∆R,try) < tolreal

lb = 1
σ̄(∆R,try)

∆ = diag(∆R,try, 0)

lb f ac := 1
2

else

M̄C := Fu(M, ∆R)

Power iteration on M̄C to find ∆C,try

∆try := diag(∆R,try, ∆C,try)

if rcound(I −M∆try) < tolcomplex AND 1
σ̄(∆try)

≥ lb

lb := 1
σ̄(∆try)

, Return := ∆, lb
Algorithm 2: The GBA for mixed µ lower bound

Theorem 2.10 provides both necessary as well as the sufficient conditions for robust non-singularity

of the perturbed matrix (I −M∆).

Theorem 2.10. For a given r ≥ 0, non-negative real number, the perturbation matrix I −M∆ must have
one of its eigenvalue to be exactly equal to zero for all possible uncertainties ∆ if and only if the optimal
solution to mathematical optimization problem (given bellow) is

max ||x||22, s.t (I −M∆)x = 0,

r2I ∆

∆H I

 > 0.

Here, the max is taken over x ∈ Cs2 , and ∆ ∈ ∆̂, ∆̂ having the block-diagonal structure.

Result: The µ-value of a given matrix M w.r.t uncertainty ∆̂ is given as

µ∆̂(M) =
1
√

t∗
,

with t∗ is an optimal solution to mathematical optimization problem:

t∗ = min t s.t t ≥ 0, ||x||22 ≥ x̄, (I −M∆)x = 0,

r2I ∆

∆H I

 > 0.

Note that here x̄ ≥ 0, can be chosen an arbitrary, and the min is taken over t ∈ R, x ∈ Cs2 , ∆ ∈ ∆̂.
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Theorem 2.11 show how the convergence of t∗ is the computation of µ-values.

Theorem 2.11. The following results are true:
1. h ≥ 1, t∗h be the lower bound of t∗, means that, t∗h ≤ t∗.
2. t∗h converges to t∗, from bellow, means that, t∗h ≤ t∗h+1 ≤ t∗, and limh→∞ t∗h = t∗

3. For every h ≥ 1, det(I −M∆) = 0, ∀∆ ∈ ∆̂.

Also, µ∆̂(M) ≤ 1√
t∗h+1

≤
1√
t∗h

, and limh→∞
1√
t∗h
= µ∆̂(M).

For further and a complete details on approximation to lower bound and numerical experimen-

tation on µ-values, see [21], and the references therein.

3. Stability and D-stability analysis of transportation models

The Hitchcock-Koopmans transportation problem is a well-known mathematical optimization

problem which focuses on minimization of the objective function. This objective function is

basically the transportation cost obtained from multiple sources corresponding to multiple desti-

nations. The novel results on the spectral properties of structured matrices appearing in Hitchcock-

Koopmans transportation problems are given in [43]. The results on the computation of singular

values are obtained with use of various mathematical tools from linear algebra and matrix analysis.

Furthermore, some new results are derived on the interconnection between µ-values of pseudo-

inverse and D-stable structured matrices corresponding to Hitchcock-Koopmans transportation

models. The numerical testing show overall behavior of the singular values. The use of Matlab

EigTool is for the computation of pseudo-spectrum corresponding to pseudo-inverse matrix for

transportation model.

3.1. Singular values for Hitchcock-Koopmans transportation problem. The Hitchcock-

Koopmans transportation problem was developed by Hitchcock in 1941. This method was also

investigated by Koopmans in 1947 too. From application view point this problem was applied to

simplex algorithm given by Dantzig in 1951. For given m numbers of origins and n numbers of

destinations, the Hitchcock-Koopmans transportation problem main objective involve the study,

analysis, and then to solve following mathematical optimization problem:

min{cTx : Mx = g, 1ma = 1nb, x ≥ 0},

with min is taken over x, Also,

aT = [a1, a2, · · ·, am], bT = [b1, b2, · · ·, bm], xT = [x11, x12, · · ·, xmn], cT = [c11, c12, · · ·, cmn],

and gT = [aT : bT]. The coefficient matrix M has the following form

M =

1n ⊗ Im

In ⊗ 1n

 ,

with Im is m-dimensional identity matrix, 1m denotes 1 × m vector of all 1′s. Also ⊗ denotes

kronecker product.
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A mathematical relation between eigenvectors of matrix products M+M and MMT was de-

veloped in [33]. The Moore-Penrose inverse M+ to a given matrix M was obtained in [34] as

follows

M+ =
1

mn

(
m1T

n ⊗ ((m + n)Im − Jm)n((m + n)In) − Jn ⊗ 1T
m

)
,

with Jm as an m×m matrix of all 1′s, that is, Jm = 1T
m1m. Furthermore, we have

M+M = I −
1

mn
(nIn − Jn) ⊗ (mIm − Jm) ,

with I−M+M, a symmetric and idempotent matrix. The relation between eigenvectors of matrices

Jn, Jm, and I −M+M was developed in the Theorem 3.2 [33].

Theorem 3.1 gives Moore-Penrose inverse for a given matrix M.

Theorem 3.1. Consider n-dimensional real-valued matrix M ∈ Rn,n. Then, the structured matrix M+ is
the Moore-Penrose inverse which must satisfy the matrix equation given as

M = MM+M.

Theorem 3.2. Consider v j denotes all eigenvectors of matrices Jm, and uk, the eigenvectors corresponding
to Jn. Then eigenvectors corresponding to eigenvalues with algebraic multiplicity 1 of matrix I −M+M are

v̂i = u j ⊗ xk,

with j = 1 : n− 1; k = 1 : m− 1; i = m + n, · · ·, (m− 1)(n− 1).

Definition 3.1. The singular values are the positive square roots of eigenvalue corresponding to matrix
MTM, where T represent the transpose of given square or rectangular matrix M.

Theorem 3.3. Consider n-dimensional real-valued matrix M ∈ Rn,n. Then ∃ unitary matrices U, V, and a
diagonal matrix Σ so that the matrix M may be decomposed as

M = UΣVT.

Furthermore, the singular values (non-zero) of M appear along the main diagonal of Σ.

Corollary 1 [33]. Let {a1, a2, · · ·, am+n−1} and {b1, b2, · · ·, bm+n−1} denotes the sets of eigenvectors

corresponding to eigenvalues of structured matrices MMT and MTM. Let σ1, σ2, · · ·, σm+n−1 are

singular values of given matrix M. Then,

MMTai = σ2
i ai, i = 1 : m + n− 1,

MTMbi = σ2
i bi, i = 1 : m + n− 1.

Corollary 2 [33]. The eigenvectors ai for the eigenvalue 0 and m + n are

Jmxi = mxi, Jnyi = nyi.

The eigenvectors for eigenvalues m and n are obtained as

Jmxi = ~0, Jnyi = ~0.
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Here, xi are m× 1 vectors and yi are n× 1 vectors.

Consider M+ = (M∗M)−1M∗ be the Moore-Penrose inverse matrix of the given structured matrix

M, and ∗ represent complex conjugate transpose. Further, let M∗(MM∗)−1 represents right inverse

of the given matrix M. Theorem 3.4 is about to discuss an orthogonality corresponding to leading

singular values.

Theorem 3.4. [43] Let (M∗M)−1M∗ and M∗(MM∗)−1 be n-dimensional given matrices. Let {σi}, ∀i =
1 : n denotes a sequence of singular values having {vi}, and {v̂i}, ∀i = 1 : n as left hand singular vectors
and right singular vectors so that ||vi||2 = 1 = ||v̂i||2, and {ui}, and {ûi}, ∀i = 1 : n denotes both left hand
singular vectors and right singular vectors for {σ̂i} so that ||ui||2 = 1 = ||ûi||2. The leading singular vectors
v1 and u1 are orthogonal to the singular values σ1 and σ̂1. Then, any non-zero vector ṽ = {ṽ1, ṽ2, · · ·, ṽn} is
an orthogonal to a vector en = 1

√
n
(1, 1, · · ·, 1)T and is not necessary to be a singular vectors corresponds to

σ1 and σ̂1.

Proof. Consider the singular value problem

Mṽ = σṽ,

with σ being as a singular value to given matrix M, and is corresponding to singular vector ṽ. The

vector ṽ is not essentially a singular vector to singular values σ1 and σ̂1. The matrix times vector

Mṽ, may be reformulated as

Mṽ =



m11ṽ1 + m12ṽ2 + · · ·m1nṽn

· · ·

· · ·

· · ·

mn1ṽ1 + mn2ṽ2 + · · ·mnnṽn


.

Consider
∑

on the components of vector Mṽ, this yields

∑
(Mṽ) =

∑


m11ṽ1 + m12ṽ2 + · · ·m1nṽn

· · ·

· · ·

· · ·

mn1ṽ1 + mn2ṽ2 + · · ·mnnṽn


= v1

∑
(mi1)+ · · ·+ vn

∑
(min) = v1(σ1)+ · · ·+ vn(σ1).

This further yields, ∑
(Mv) = σ1

∑
(v).

By considering
∑

of right hand side of Mv = σv, we obtain∑
(σv) = σ

∑
(v).

Finally, from last two equations, we conclude that

(σ− σ1) =
∑

(v) = 0.
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In turn this implies σ , σ1, and
∑
(v) = 0. This proves that v = (v1, v2, · · ·, vn) is orthogonal to

vector en = 1
√

n
(1, 1, · · ·, 1)T. The vector en is not necessary a singular vector for singular values σ1

and σ̂1. �

Theorem 3.5. [43] Consider that (M∗M)−1M∗ and M∗(MM∗)−1 are n-dimensional matrices, and assume
that σi and σ̂i are leading order singular values to singular vectors vi and v̂i, respectively. Further, assume
that

M̂ =

(M∗M)−1M∗ + αIn 2αv̂2vT
1

2αv1v̂T
2 M∗(MM∗)−1 + αIn

 ,

where In is an identity matrix, α be any scalar. The computation of singular values of matrix M̂ not possesses
the leading most singular values corresponding to structured matrices (M∗M)−1M∗ and M∗(MM∗)−1. The
leading singular values σ1 and σ̂1 does appear along the diagonal of M̂1 having

M̂1 =

3α+ σ1 0

0 α− σ̂1

 .

Proof. Assume that the singular value problem can be written in following form

M̂vi = (σ1 + α)vi, ∀i = 1 : n.

Consider that β1, σ2 + α, σ3 + α, · · ·, σn + α, and β̂2, σ̂2 + α, σ̂3 + α, · · ·, σ̂n + αwith β, β̂ ∈ {3α+ σ1,α−

σ̂1} be the singular values corresponding to matrix3α+ σ1 0

0 α− σ̂1

 .

For singular values σi, ∀i = 2 : n, singular vectors may be written as [vi 0]T, ∀i = 2 : m.

On the other hand for the singular values σ̂i, ∀i = 2 : n, the singular vectors may be written as

[0 v̂i]
T, ∀i = 2 : n. This further implies that singular vectors corresponding to M̂ may be expressed

as [βivi β̂iv̂i]
T. Finally, we have that [βi β̂i], ∀i = 2 : n are the singular vectors corresponding to

singular values σ1 + 3α and α− σ̂. �

Theorem 3.6 show theoretical results on the computation of singular values corresponding to a

given matrix and these may not depend continuously on the entries of the same matrix.

Theorem 3.6. [43] Consider n-dimensional matrices M1 = (M∗M)−1M∗ and M2 = M∗(MM∗)−1.
Suppose that limk→∞(Mk) = M, and q = min{m, n}. Furthermore, let σ1(M) ≥ σ2(M) ≥ · · · ≥ σq(M),

and σ1(Mk) ≥ · · · ≥ σq(Mk) are the non-increasing singular values of structured matrices M and Mk,
respectively for k = 1, 2, · · ·. Then, limk→∞ σi(Mk) = σi(M) for all i = 1 : q.

Proof. Consider that k1 < k2 < · · · is the sequence of some positive integers. Let ε > 0, we have

max|σi(Mkj) − σi(M)| > ε,

with the max taken over all i = 1 : q.
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The singular value decomposition of Mkj is

Mkj = UkjΣkjV∗kj,

where Ukj and Vkj be the unitary matrices, and Σkj is a diagonal matrix with structure

Σkj = [σ1(Mkj) · · · σq(Mkj)]
T.

Then,

lim
r→∞

Σkjr = lim
r→∞

U∗kjrMkjrVkjr =
(
lim
r→∞

U∗kjr

) (
lim
r→∞

Mkjr

) (
lim
r→∞

Vkjr

)
= U∗MV.

The matrix product U∗MV be a non-negative diagonal matrix. By the uniqueness of singular

values of given structured matrix M it implies that Diag Σ = [σ1(M), σ2(M), · · ·, σq(M)]T, which is

clearly a contradiction with the following inequality

max|σi(Mkj) − σi(M)| > ε.

�

Now, we give the numerical illustrations on approximation of singular values, and pseudo-

inverse of transportation matrices.

Example 1. We take a 7× 5 transportation matrix (a.k.a staircase matrix) from [35].

M =



1 1 1 0 0 0 0

1 1 1 0 0 0 0

0 0 1 1 1 0 0

0 0 1 1 1 1 0

0 0 0 0 1 1 1


.

The graphical interpretation of singular values and pseudo-inverse are shown in Figure 1.

Figure 1. The graphical interpretation of singular values and pseudo-inverse of M
in Example-1
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Example 2. We take 7× 5 transportation matrix (a.k.a distribution matrix) from [35].

M =



4 0 0 0 0 0 0

0 2 4 0 0 0 0

0 0 1 2 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1.4 0.6


.

The graphical interpretation of singular values and pseudo-inverse are shown in Figure 2.

Figure 2. The graphical interpretation of singular values and pseudo-inverse of M
in Example-2

Example 3. We take 7× 5 transportation matrix (a.k.a distribution matrix) from [35].

M =



1.6 0.8 1.6 0 0 0 0

2.4 1.2 2.4 0 0 0 0

0 0 0.6 1.8 0.6 0 0

0 0 0.4 1.2 0.2 0.2 0

0 0 0 0 1.2 1.2 0.6


.

The graphical interpretation of singular values and pseudo-inverse are shown in Figure 3.

3.2. Structured singular values for Hitchcock-Koopmans transportation problem. We present

novel mathematical results on the computation of µ-values for structured matrices which does

appear in Hitchcock-Koopmans transportation model. We use various mathematical tools from

linear algebra, matrix theory, and control to provide a detailed analysis on µ-values.

Definition 3.2. The given M ∈ Rn,n is a stable matrix if all real parts of its eigenvalues (or spectrum) are
strictly positive, means that Re(λi(M)) > 0.
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Figure 3. The singular values and pseudo-inverse of M in Example-3

Definition 3.3. The given M ∈ Rn,n is structured D-stable matrix having all real parts of eigenvalues (or
spectrum) of matrix product MD are strictly positive, means that Re(λi(MD)) > 0, where D = diag(dii) >

0, for all i = 1, · · ·, n.

The µ-values for a given M ∈ Rn,n w.r.t set of block-diagonal structured matrices ∆, having

∆ := {diag (δ1Ir1 , δ2Ir2 , · · ·, δSIrS ; ∆1, ∆2, · · ·, ∆F) : δi ∈ R(C), ∆ j ∈ Km j,m j , i = 1 : S; J = 1 : F},

with K = R(C), is the approximation of largest singular value of ∆̂ ∈ ∆. The µ-value is denoted

with µ, and for M ∈ Cn,n, and ∆, it is defined as (see [15]):

µ∆(M) :=
(
min{||∆̂||2 : det(In −M∆̂) = 0, ∀ ∆̂ ∈ ∆}

)−1
,

with the min taken over ∆̂ ∈ ∆, and µ∆(M) = 0 if det(In −M∆̂) , 0, ∀ ∆̂ ∈ ∆.

Remark 3.1. The block-diagonal structure ∆ may be connected with multi-index of some given positive
integers.

Remark 3.2. The number of the full blocks in block-diagonal structure ∆ may be considered as a class of
pure real blocks uncertainties, pure complex blocks uncertainties or a combination of both real and complex
blocks uncertainties.

These blocks can be chosen as rank-1 matrices.

Remark 3.3. For a given α ∈ C, µ∆(αM) = |α|µ∆(M).

Corollary 3.1. [15] The µ-values µ∆(M) is exactly equal to the computation of spectral radius ρ of VTMW,

means that

µ∆(M) = ρ(VTMV),

where V, W are with the block-diagonal structures.
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For a given M ∈ Cn,n, the µ-value µ∆(M) may be taken as the computation of spectral radius ρ

of M∆̂, ∆̂ ∈ ∆.

Lemma 3.1. For a given matrix M, and a set with the block-diagonal structure ∆,

µ∆(M) = maxρ(M∆̂),

with max chosen over ∆̂ ∈ ∆.

The following theorem 3.7 (see [10]) is a known mathematical result on the computation of

D-stability for a given matrix. This does involve computation of strictly positive real part of

all eigenvalues (or spectrum) of matrix product corresponding to a given matrix with a positive

diagonal matrix.

Theorem 3.7. Let all diagonal elements of a given matrix M are negative. Further, assume that there are no
negative off diagonal elements. D = diag(dii), the matrices M, and DM are stable, then D = diag(dii) >

0, ∀i.

The following theorem 3.8 is a characterization of D-stability. It further links the bridge between

µ-values and D-stable matrices.

Theorem 3.8. Let given matrix M is an n-dimensional matrix. Then matrix M is a D-stable matrix if and
only if M be a stable matrix, and

0 ≤ µ∆(iIn + M)−1(iIn −M) < 1.

Theorem 3.9. [43] Let (MM∗)−1M∗ is a n−dimensional complex-valued structure matrix. Then

0 ≤ µ∆((In + (MM∗)−1M∗)−1(In − (MM∗)−1M∗)) < 1.

Proof. We make use of definition and basic concept of D-stability of a matrix to prove our results. For

a given matrix M, the matrix (MM∗)−1M is D-stable, that is, λk(In + (MM∗)−1Mp) , 0,∀k = 1 : n,

with P = diag(p11, p22, . . . , pnn) > 0. Consider that P = (In + R)−1(In −R),∀R ∈ ∆, then we have

λk(In + (M∗M)−1M∗(In + R)−1(In −R)) , 0,∀k = 1 : n,∀R ∈ ∆.

This further yields that

λk((In + (M∗M)−1M∗) + (In − (M∗M)−1M∗R)) , 0,∀k = 1 : n,∀R ∈ ∆.

As,

λk(In + (M∗M)−1M∗) , 0 ∼ λk((In + (M∗M)−1M∗) + (In − (M∗M)−1M∗R)) , 0,∀k = 1 : n,∀R ∈ ∆

Thus finally, we have that

0 ≤ µ∆((In + (MM∗)−1M∗)−1(In − (MM∗)−1M∗)) < 1.

�
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Theorem 3.10. [43] Consider that for given M, the matrix (M∗M)−1M∗ is an n-dimensional complex-
valued matrix. Then we have 0 ≤ µ∆(A) < 1 if (M∗M)−1M∗ is D-stable matrix, where

A = (iIn + P(M∗M)−1M∗ + M((M∗M)−1)∗)(iIn − P(M∗M)−1M∗ −M((M∗M)−1)∗P)

with P = diag(p11, p22, . . . , pnn), pii > 0,∀i = 1 : n, i =
√
−1.

Proof. For matrix M, the modified matrix (M∗M)−1M∗ is a D-stable matrix if Re(λk(P(M∗M)−1M∗+
M(M∗M−1)∗)) > 0,∀k = 1 : n, for more detail see [36]. In order to prove that 0 ≤ µ∆(A) < 1, we let

a block-diagonal structure ∆̂ = (iIn − P)(iIn + P)−1 with ∆̂ ∈ ∆. For all positive definite diagonal

structured matrices, P, the eigenvalues

λk(P(M∗M)−1M∗ + M((M∗M)−1)∗P + i(iIn + ∆̂)−1(iIn − ∆̂)) , 0∀k = 1 : n.

In turn this implies that λk,∀k = 1 : n and this further takes following form

λk((iIn + P(M∗M)−1M∗ + M((M∗M)−1)∗P) − (iIn − P(M∗M)−1M∗ −M((M∗M)−1)∗P)∆̂) , 0,∀∆̂ ∈ ∆.

Thus we have that,

λk(In− (iIn +P(M∗M)−1M∗+M((M∗M)−1)∗P))(iIn−P(M∗M)−1M∗−M((M∗M)−1)∗P)∆̂) , 0,∀∆̂ ∈ ∆.

The last expression for the eigenvalues λk,∀k = 1 : n further implies that 0 ≤ µ∆(A) < 1. �

Theorem 3.11. [43] For given matrix M consider (M∗M)−1M∗ an n-dimensional complex-valued matrix.
Then we have that, 0 ≤ µ∆(A) < 1 if

x∗(M((M∗M)−1)∗P2 + P2(M∗M)−1M∗)x > 0

for x ∈ Cn,1, and for all positive definite matrices P = diag(p11, p22, . . . , pnn) > 0, with

A = (iIn + (M∗M)−1M∗)−1(iIn − (M∗M)−1M∗).

Proof. The µ-value is determination of the quantity αmax ≥ 0 in such a manner that for each P,

matrix inequality
‖P(M∗M)−1M∗x‖)

‖Px‖
≥ αmax.

For a given A, 0 ≤ µ∆(A) < 1 if ‖PAx‖ < ‖Px‖ for each x ∈ Cn,1, and for a positive diagonal matrix

P. The above obtained inequality holds true if iIn + (M∗M)−1M∗, that is,

‖PA(iIn + (M∗M)−1M∗)x‖ < ‖P(iIn + (M∗M)−1M∗)x‖.

Furthermore, we have,

‖PA(iIn + (M∗M)−1M∗)x‖2 < ‖P(iIn + (M∗M)−1M∗)x‖2.

In turn this further yields that

x∗((iIn + (M∗M)−1M∗)∗A∗P∗PA(iIn + (M∗M)−1M∗))x

<
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x∗((iIn + (M∗M)−1M∗)∗P∗P(iIn + (M∗M)−1M∗))x.

The above inequality reduces to

x∗((iIn + (M∗M)−1M∗)∗A∗P2A(iIn + (M∗M)−1M∗))x < x∗(iIn + (M∗M)−1M∗P2(iIn + (M∗M)−1M∗))x.

As,

A = (iIn + (M∗M)−1M∗)−1(iIn − (M∗M)−1M∗).

This maybe re-written as

x∗((iIn + (M∗M)−1M∗)∗(iIn − (M∗M)−1M∗)∗(iIn + (M∗M)−1M∗)−1P2(iIn + (M∗M)−1M∗)−1

(iIn − (M∗M)−1M∗)(iIn + (M∗M)−1M∗)x− x∗((iIn + (M∗M)−1M∗)∗P2(iIn + (M∗M)−1M∗))x < 0.

This yields

x∗((iIn − (M∗M)−1M∗)∗(iP2
− P2(M∗M)−1M∗) − (iIn + (M∗M)−1M∗)∗(iP2 + P2(M∗M)−1M∗))x < 0.

Thus finally, we have

x∗(M(M∗M)−1)∗P2 + P2(M∗M)−1M∗)x > 0,

�

3.3. Numerical Testing. We present comparison on numerical testing for µ-values. We use the

well-known numerical algorithms to approximate µ-values, this includes: The Matlab routine

mussv, power algorithm (PA) [37], the Gain Based Algorithm (GBA) [19], the Poles migration

Algorithm (PMA) [7], the Non-linear optimization Algorithm (NLA) [38], and an ODE’s based

Algorithm (LRA) given by first author [39]. We choose a class of structured matrices which

appears in the transportation models. The Matlab EigTool is has been utilized for the graphical

interpretation to the computation of pseudo-spectrum of the given structured matrices.

The graphical representations shown in 2-dimensional plane represents the spectrum and

pseudo-spectrum of structured matrices. The black dots around the spectrum and pseudo-

spectrum in each of such figures denotes the field of values (numerical range). The field of values

(also known as numerical range) enclose all the eigenvalues, and pseudo-spectrum of each of the

structured matrix. The visualization for the pseudo-spectrum in the complex plane represents

various level sets of the resolvent ||(M − zIn)−1
|| for the given matrix M. The visualizations of the

level sets paly an important and fundamental role for the analysis of the stability, and robustness

in different applications, for instance, control systems, and fluid dynamics.

Example 1. We take a 4-dimensional real-valued matrix for Traveling Salesman Problem [40].

A =


−1 1 0 0

1 1 0 0

0 1 1 1

3 0 2 1

 .

The numerical testing and comparison on numerical computation to lower bounds of µ-values are

as shown in following Table-1.
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The lower bounds approximation to µ-values

mussv PA GBA PMA NLA LRA

3.9984 3.9992 3.9987 3.9990 3.9988 3.9985

Figure 4. The pseudo-spectrum of matrix A given in Example-1.

Example 2. We take a 6-dimensional real-valued symmetric circulant matrix for Traveling

Salesman Problem [41].

A =



0 4 1 6 1 4

4 0 4 1 6 1

1 4 0 4 1 6

6 1 4 0 4 1

1 6 1 4 0 4

4 1 6 1 4 0


.

The numerical testing and comparison on numerical computation to lower bounds of µ-values

are as shown in following Table-2.

The lower bounds approximation to µ-values

mussv PA GBA PMA NLA LRA

3.9984 3.9992 3.9987 3.9990 3.9988 3.9985

Example 3. We take a 4-dimensional real-valued matrix taken from [42].

A =


3 5 1 −2

0 −1 5 10

3 5 1 9

−2 1 6 6

 .
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Figure 5. The pseudo-spectrum of A given in Example-2.

Figure 6. The pseudo-spectrum of A given in Example-3.

The numerical testing and comparison on numerical computation to lower bounds of µ-values

are as shown in following Table-3.

The lower bounds approximation to µ-values

mussv PA GBA PMA NLA LRA

16.4123 16.4176 16.4198 16.4183 16.4142 16.4130

4. Spectrum and Pseudo-Spectrum of D-Stable StructuredMatrices in EconomicModels

The main objective is to construct novel mathematical and theoretical results for interconnections

among structured H-stability and the computation of µ-values. The structured matrices under

consideration are squared real-valued or complex-valued.

The following Definition 4.1 is taken from [22].
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Definition 4.1. The given structured matrix A ∈ Rn×n is known as a structured H-stable matrix if matrix
multiplication HA have all real parts of eigenvalues to be strictly positive for each structured symmetric
positive-definite matrix H.

Theorem 4.1 shows that given matrix A ∈ Cn×n is a H-stable matrix whenever H possesses a

structured positive definite matrix.

Theorem 4.1. [44] Consider A, H ∈ Cn×n, H > 0. If the matrix A be a structured H-stable matrix to each
H > 0, then we have that H > 0, the positive definite structured matrix if A is structured H-stable.

Proof. Consider that matrix A ∈ Cn×n is a structured H-stable for each H. This implies that

Re(λi(AH)) > 0,∀i. Furthermore, we have that H > 0 and it does causes Re(λi(AH)) > 0,∀i for

given A ∈ Cn×n. From this we conclude that for a given A ∈ Cn×n, Re(λi(AH)) > 0,∀i and it holds

true only if H > 0, the positive definite structured matrix. �

Theorem 4.2 yields an interesting theoretical results on the interaction between H-stability and

µ-values.

Theorem 4.2. [44] Consider that A ∈ Rn×n is H-stable matrix. Then for each H ∈ H+, 0 ≤ µB

(
1

A2

)
< 1,

having

H+ = {H : λi(H) > 0,∀i = 1 : n},

and mathematical notation B represents set of perturbations with block diagonal structure.

Proof. The main objective is to prove that 0 ≤ µB

(
1

A2

)
< 1 holds true against each H ∈ H+. Since,

D-stability implies stability which further helps to prove required result. A ∈ Rn×n is D−stable

structured matrix iff the given matrix A is a stable matrix and

λi

 A −H
H A

 , 0, ∀i.

As, we know λi

 A −H
H A

 , 0, ∀i. As a result this implies that

λi

(
A2
−HA−1HA

)
, 0,∀i.

Thus finally, we have

λi

(
In −

1
A2 H

)
, 0,⇒ 0 ≤ µB

( 1
A2

)
< 1.

�

Theorem 4.3. [44] Consider that A, H ∈ Cn×n, H ≥ 0, a Hermitian and positive semi-definite. If
Re(λi(AH)) = Re(λi(H)) to each H ≥ 0, then Re(λi(A)) > 0,∀i and

0 ≤ µB

(
(iIn + A)−1(iIn −A)

)
< 1, i =

√

−1.
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Proof. The main objective is to prove that Re(λi(A)) > 0,∀i if Re(λi(AH)) = Re(λi(H)),∀i,∀H ≥ 0.

As, if Re(λi(A)) ≥ 0,∀i and A ∈ Cn×n is n × n-singular matrix, then we have that ∃U, a unitary

matrix so that

U∗AU =

 M11 + iN11 iN12

iN21 ·

 ,

with M11 > 0; for U∗AU =

 · ·
· In

 ≥ 0. In turn, this implies that

Re(λi(AH)) = Re(λi(H)),∀i.

Next, the aim is to prove that

0 ≤ µB

(
(iIn + A)−1(iIn −A)

)
< 1.

Let A = eH, a stable matrix whereas the matrix H ≥ 0, is positive semi-definite. Consider that

P > 0 in such a way that λi(iIn + eHP) , 0, ∀i whereas P = (iIn + ∆)−1(iIn − ∆) for all ∆ ∈ B. This

implies that

λi

(
iIn + eH(iIn + ∆)−1(iIn − ∆)

)
, 0 ∀i,∀∆ ∈ B.

Thus finally, we have that

λi

(
(iIn + A)−1(iIn −A)∆

)
, 0 ∀i,∀∆ ∈ B.

Thus,

0 ≤ µB

(
(iIn + A)−1(iIn −A)

)
< 1.

�

The following Definitions are taken from classical papers [23] and [24], respectively.

Definition 4.2. If the matrix product DA is stable, then the given structured matrix A ∈ Rn×n is known
as D(α)- structured stable matrix to each positive α-scalar structured matrix D.

Definition 4.3. If D[αk] is a scalar matrix for each k = 1 : p, means that,

D = Diag(d11I[α1], ..., d11I[αp]),

then diagonal structure matrix D is known as an α-scalar matrix.

Note: In above Definition 4.3, D[αk] denotes a sub-matrix obtained from a number of rows and

number of columns having the indices αk whereas α = (α1, ...,αp) denotes the partition of indices

set {1, ..., n} and 1 ≤ p ≤ n is as a positive integer.
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4.1. The novel theoretical results for interconnection among D(α)-stable structured matrices,
and µ-values. Theorem 4.4 is a bridge for class of structured matrices like D(α)-stable matrices,

and their µ-values.

Theorem 4.4. [44] Consider matrix A ∈ Rn×n, then it is a D(α) structured stable if and only if

Re
(
λi(Diag(dkkI[αk]))A + AT(Diag(dkkI[αk]))

)
> 0, ∀i = 1 : n,∀k = 1 : p, 1 ≤ p ≤ n,

and 0 ≤ µB(M) < 1, whereas the matrix M is obtained from A as

M =
(
iI + Diag(dkkI[αk])A + AT(Diag(dkkI[αk]))

)−1 (
iI −Diag(dkkI[αk])A−AT(Diag(dkkI[αk]))

)
.

Proof. The main aim is to prove that matrix A ∈ Rn×n is a D(α)-stable matrix iff 0 ≤ µB(M) < 1.

Consider that ∆ ∈ B possesses a block diagonal structure, that is

∆ = (iIn −Diag(dkkI[αk])) (iIn + Diag(dkkI[αk]))
−1 , ∀k = 1 : p, 1 ≤ p ≤ n.

Thus, we have that

λi

(
In −

(
iIn + Diag(dkkI[αk])A + ATDiag(dkkI[αk])

)−1(
iIn −Diag(dkkI[αk])A−ATDiag(dkkI[αk])

)
∆
)

is not exactly equal to zero, ∀i,∀k = 1 : p, 1 ≤ p ≤ n;∀∆ ∈ B. The mathematical expression λi, ∀i is

exactly equivalent to condition 0 ≤ µB(M) < 1, we refer to see [25] and the references therein. �

Theorem 4.5 gives the necessary condition to given structured matrix A ∈ Cn,n is to be a D(α)-

stable structured matrix.

Theorem 4.5. [44] Consider A ∈ Cn,n. For given matrix A to be D(α)-stable the necessary con-
dition is to write A = eB (the hermitian B ∈ Cn,n) is a stable structured matrix, and further
0 ≤ µB

(
(iI + eB)−1(iI − eB)

)
< 1.

Proof. The main objective it to prove that A is D(α)-stable matrix if λk(iIn + eB Diag(dkkI[αk])) ,

0, ∀ k = 1 : p, 1 ≤ p ≤ n. Let ∆ ∈ B having a block-diagonal structure, and suppose that

Diag(dkkI[αk]) = (iIn + ∆)−1(iIn − ∆).

We further conclude that

λk(iI + eB(iI + ∆)−1(iI − ∆)) , 0.

The definition of µ-values allows to compute

0 ≤ µB

(
(iIn + eB)−1(iIn − eB)

)
< 1.

�
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4.2. The rank-1 perturbation to D-semistable structured matrices. The main objective is to es-

tablish some novel theoretical results in order to study the interconnection between D-semistable

matrices, and µ-values. The following Theorem 4.6 show matrix A ∈ Cn,n is D-semistable matrix

iff it be a semi-stable matrix. Furthermore, all eigenvalues corresponding to rank-1 perturbation

for given matrix A, that is, A + vω∗ has to be non-zero.

Theorem 4.6. [44] Consider that A ∈ Cn,n, it is a D-semistable matrix iff matrix A is a semi stable
structured matrix, also λk(A + vω∗) , 0, ∀k, having vω∗, a rank-1 structure.

Proof. Suppose given matrix A is D-semistable matrix. This means that that Re(λk(AD)) ≥ 0, for all

k, for all D ∈ Ω. Our main objective it to prove given matrix A has semi-stable structure. Meaning

that Re(λk(A)) ≥ 0 for all k and λk(A + vω∗) , 0, ∀k, vω ∈ Cn,1. As, Re(λk(AD)) ≥ 0,∀k,∀D ∈ Ω.

This in turn implies that Re(λk(AIn)) ≥ 0,∀k or Re(λk(A)) ≥ 0. This further yields given matrix A
possesses a semi-stable structure. Further, if A is being subject to rank-1 admissible perturbations,

that is, (A + vω∗), then we need to prove

Re(λk(A + vω∗)) , 0, ∀k.

Suppose for v,ω ∈ Cn,1, z∗l v , 0 and ω∗zr , 0. Here we have, zl and zr are left eigenvectors, and

right hand eigenvectors corresponds to a simple eigenvalue of structured matrix A. Furthermore,

we assume y ∈ Ker(A + vω∗). This yields a system of linear equations (of homogeneous type)

z∗l vω
∗y = z∗l (A + vω∗)y = 0.

This further implies that ω∗y = 0 since z∗l v , 0. Also, (A + vω∗)y = 0, implying y = αzr for some

α ∈ C. In turn this reduces toω∗y = αω∗zr = 0⇒ α = 0, y = 0. Conversely, assume that ifω∗zr = 0,

then we have that

(A + vω∗)zr = 0.

Furthermore, z∗l (A + vω∗) = 0 if z∗ev = 0. �

Theorem 4.7 show that square complex-valued matrix is D-semistable type of matrix only if

structured matrix A is a semi-stable, further µ-values are bounded from above by 1.

Theorem 4.7. [44] Suppose A ∈ Cn,n then given matrix A is a D-semistable matrix iff A is a semi-stable
matrix, and 0 ≤ µB(M) < 1. Also,

M = (iIn + Â)−1(iIn − Â),

having Â = A + vω∗ to v,ω ∈ Cn,1.

Proof. The structured matrix A is a D-semistable matrix iff A is a semi-stable matrix. Also, λk(A +

vω∗ + iP) not exactly equal to zero for all k, and for all P ∈ Ω. We aim to prove that λk(A + vω∗ +
iP) , 0 for all k, for all P ∈ Ω. Let ∆ = (iI − P)(iI + P)−1 have a block-diagonal structure, and

∆ ∈ B. The diagonal matrix P have all positive entries on its main diagonal. Further, we have

P = (iIn + ∆)−1(iIn − ∆).
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Since, λk(A + vω∗ + iP) , 0, which implies that

λk

(
A + vω∗ + i(iI + ∆)−1(iI − ∆)

)
, 0, ∀∆ ∈ B.

Also,

rank
(
A + vω∗ + i(iIn + ∆)−1(iIn − ∆)

)
= rank ((iIn + A + vω∗) − (iIn −A + vω∗)∆) , ∀∆ ∈ B.

Thus finally, this yields

λk

(
In − (iIn + A + vω∗)−1(iIn −A + vω∗)∆)

)
, 0, ∀∆ ∈ B,

which is the necessary condition that 0 ≤ µB(A) < 1. �

4.3. Pseudo-spectrum. The pseudo-spectrum for M ∈ Cn,n is the set of all the eigenvalues corre-

sponding to M. The question may raise is either singularity of M does or doesn’t appear to be

robust in the sense that a small perturbation ε vary the answer from yes to no. We think either

||M−1
|| is large enough or this is not the case? For an eigenvalue λ of given matrix M, one may

ask a much better question: Does the matrix-norm ||(λIn −M)−1
|| is large or not? these questions

allows to write definitions given as below, see [26].

Definition 4.4. Consider that M is a given n-dimensional matrix, and let ε > 0, a small perturbation. The
pseudo-spectrum σε(M) is the collection of all the eigenvalues λ ∈ C such that

||(λIn −M)−1
|| >

1
ε

.

Remark 4.1. Theλ ∈ σ(M), σ(M) represents spectrum of given structured matrix M, ||(λIn−M)−1
|| = ∞.

The second definition of pseudo-spectrum is:

Definition 4.5. Let M is a n-dimensional matrix, and assume that ε > 0, a small perturbation. The
ε-pseudospectrum σε(M) is the set of eigenvalues λ ∈ C so that

λ ∈ σ(M + E),

for some E with ||E|| < ε.

The third definition of pseudo-spectrum is given as bellow:

Definition 4.6. Let M is a n-dimensional matrix, and assume that ε > 0, a small perturbation. The
ε-pseudospectrum σε(M) is the collection of all the eigenvalues λ ∈ C so that

||(λIn −M)v|| < ε

for some v ∈ Cn,1, ||v|| = 1.

The following Theorem results establishes an equivalence relation for all above definitions of

pseudo-spectrum.

Theorem 4.8. Let M is a n-dimensional complex-valued matrix, then all three definitions of pseudo-
spectrum are equivalent.
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4.4. Numerical Testing. We draw a comparison on the numerical computation ofµ-values bounds

from below. The well-known Matlab routine mussv provides best feedback on approximation of

lower and upper bounds of µ-values. Our methodology provides tighter outcomes on numerical

approximation of µ-values bounds approximated from below. The class of structured matrices

under consideration are taken from an economic models. The new results as compared to existing

techniques are are much sharper because:

(i) We make use of computation of singular values rather than computing only the eigenvalues of

structured matrices.

(ii) The singular values are obtained via singular value decomposition (SVD). We have used Matlab

command svd to approximate µ-values of given structured matrix.

(iii) The computation to the largest singular value of structured matrices helps to compute the

sharper lower bounds of µ-values.

(iv) The computational cost is not high as compared with exiting mathematical techniques.

A number of numerical examples are provided for economy models. The numerical testing are

performed to compute and compare µ-values bounds from below. The results on the numerical

computation on bounds ofµ-values guarantees the effectiveness of proposed technique as compare

with existing techniques.

Examples 1 and 2 are taken from [27]. In these examples the main objective was to determine the

capital demands which is a complicated procedure in economics. Each factory and company faces

some problems and they seek for an optimal but practically valid solutions. From mathematical

view point, this involve the demand of study of cost matrix which is obtain by calculating capital

demands.

Example 1. We take a real-valued cost matrices which is taken from [27].

A1 =

4 6

5 7

 , A2 =


10 30 20

80 70 90

40 50 60

 .

Figure 1 present the behavior of spectrum, singular values, µ-values, and pseudo-spectrum of

matrices A1, and A2.

Example 2. We take 30, 40, 50, 60, 70, 80, 100 and 120 dimensional real-valued matrices which

are generated with MATLAB command "rand".

A few comparison between the proposed methodology [16], and mussv as implemented in the

MATLAB Control Toolbox.
n µl

New = µl
PD µl

New > µ
l
PD µl

New < µ
l
PD

05 63 26 11

10 66 24 10

25 39 50 11

50 37 57 6

100 34 63 3
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Figure 7. The pseudo-spectrum of A1 (left), and A2 (right) from Example 1.

We present a comparison for an algorithm which is discussed in this article, and the algorithm

presented by Doyle and Packard. In first column, we give dimension of the randomly generated

examples. In second column, we give number of cases (total number of 100). The lower bounds

µl
New are computed with the new method while lower bound µl

PD computed by the MATLAB

function mussv are taken within a tolerance limit of 10−3; while across third column, we report a

number of cases where the new lower bound improves as compare to one computed by mussv.

Finally, in the forth column, we report the number of cases with lower bounds approximated by

mussv is larger than the lower bound approximated with the new method.
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Figure 8. The pseudo-spectrum of the matrices with dimensions 30 (left), and 40

(right), respectively from Example 2.

n δmax δmin 〈δ〉 var(δ)

05 0.8115 -1.1650 0.0277 0.0454

10 1.0082 -0.8674 0.0364 0.0382

25 1.6358 -0.5046 0.1506 0.1070

50 0.8504 -0.0016 0.1775 0.0586

100 6.1290 -0.0782 0.5793 1.2956
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Figure 9. The pseudo-spectrum of the matrices with dimensions 50 (left), and 60

(right), respectively from Example 2.
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Figure 10. The pseudo-spectrum of the matrices with dimensions 70 (left), and 80

(right), respectively from Example 2.
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Figure 11. The pseudo-spectrum of the matrices with dimensions 100 (left), and

120 (right), respectively from Example 2.
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5. Conclusion

The interconnection between the analysis on stability, D-stability, and µ-values provides a much

deeper understanding about the behavior of dynamical systems. The stability analysis provides a

basic and foundational assurance to system behavior subject to normal conditions. The analysis on

D-stability offers insights into resilience subject to diagonal kind of uncertainties. The computation

of µ-values on the other hand, bridge the links between these concepts by quantifying the system’s

vulnerability subject to structured and unstructured uncertainties. The interconnection between

these quantities formulate a cohesive framework allowing to study and analyze the stability

properties of complex systems. In this article, we have presented:

(1) State-of-the-art methods for analytical and numerical treatments on the computation of µ-

values;

(2) Stability analysis and D-stability analysis of Hitchcock-Koopmans transportation model;

(3) Spectrum and pseud-spectrum of D-stability of structured matrices appearing across economic

models.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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[18] A. Yazıcı, A. Karamancıoğlu, R. Kasimbeyli, A Nonlinear Programming Technique to Compute a Tight

Lower Bound for the Real Structured Singular Value, Optim. Eng. 12 (2010), 445–458. https://doi.org/10.1007/

s11081-010-9120-4.

[19] P. Seiler, G. Balas, A. Packard, A Gain-Based Lower Bound Algorithm for Real and Mixed µ Problems, in: Proceed-

ings of the 45th IEEE Conference on Decision and Control, IEEE, 2006. https://doi.org/10.1109/CDC.2006.377123.

[20] A. Sideris, R.S.S. Pena, Robustness Margin Calculation with Dynamic and Real Parametric Uncertainty, in: 1988

American Control Conference, IEEE, 1988, pp. 1201-1206. https://doi.org/10.23919/ACC.1988.4789903.

[21] Piga, Dario, Computation of the structured singular value via moment lmi relaxations, IEEE Trans. Autom. Control.

61 (2015), 520–525. https://doi.org/10.1109/TAC.2015.2438452.

[22] K.J. Arrow, M. McManus, A Note on Dynamic Stability, Econometrica 26 (1958), 448–454. https://doi.org/10.2307/

1907624.

[23] H.K. Khalil, P.V. Kokotovic, D-Stability and Multi-Parameter Singular Perturbation, SIAM J. Control. Optim. 17

(1979), 56–65. https://doi.org/10.1137/0317006.

[24] D. Hershkowitz, N. Mashal, Palpha-Matrices and Lyapunov Scalar Stability, Electron. J. Linear Algebr. 4 (1998),

39–47. https://doi.org/10.13001/1081-3810.1024.

[25] M. Rehman, T.H. Rasulov, F. Amir, D-Stability, Strong D-Stability and µ-Values, Lobachevskii J. Math. 45 (2024),

1227–1233. https://doi.org/10.1134/s1995080224600754.

[26] L.N. Trefethen, M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators,

Princeton University Press, 2005.

[27] D.L.K. Oanh, S.H. Pan, Review of Matrix Theory with Applications in Economics and Finance, Adv. Decis. Sci. 26

(2022), 54–74. https://doi.org/10.47654/v26y2022i3p54-74.

[28] A. Packard, J. Doyle, The Complex Structured Singular Value, Automatica 29 (1993), 71–109. https://doi.org/10.

1016/0005-1098(93)90175-s.

[29] M. Newlin, R. Smith, A Generalization of the Structured Singular Value and Its Application to Model Validation,

IEEE Trans. Autom. Control. 43 (1998), 901–907. https://doi.org/10.1109/9.701088.

[30] R. Castellanos, A. Messina, H. Sarmiento, Robust Stability Analysis of Large Power Systems Using the Structured

Singular Value Theory, Int. J. Electr. Power Energy Syst. 27 (2005), 389–397. https://doi.org/10.1016/j.ijepes.2005.02.

001.

[31] K. Weischedel, T.J. McAvoy, Feasibility of Decoupling in Conventionally Controlled Distillation Columns, Ind.

Eng. Chem. Fundam. 19 (1980), 379–384. https://doi.org/10.1021/i160076a010.

[32] Y. Arkun, C. Morgan, On the Use of the Structured Singular Value for Robustness Analysis of Distillation Column

Control, Comput. Chem. Eng. 12 (1988), 303–306. https://doi.org/10.1016/0098-1354(88)85042-7.

[33] H. Bulut, Algebraic Characterizations of the Singular Value Decompositions in the Transportation Problem, J. Math.

Anal. Appl. 154 (1991), 13–21. https://doi.org/10.1016/0022-247x(91)90066-9.

[34] R.E. Cline, L.D. Pyle, The Generalized Inverse in Linear Programming—An Intersection Projection Method and

the Solution of a Class of Structured Linear Programming Problems, SIAM J. Appl. Math. 24 (1973), 338–351.

https://doi.org/10.1137/0124036.

https://doi.org/10.1049/ip-d.1982.0053
https://doi.org/10.1137/16m1074977
https://doi.org/10.23919/acc.1990.4791276
https://doi.org/10.1007/s11081-010-9120-4
https://doi.org/10.1007/s11081-010-9120-4
https://doi.org/10.1109/CDC.2006.377123
https://doi.org/10.23919/ACC.1988.4789903
https://doi.org/10.1109/TAC.2015.2438452
https://doi.org/10.2307/1907624
https://doi.org/10.2307/1907624
https://doi.org/10.1137/0317006
https://doi.org/10.13001/1081-3810.1024
https://doi.org/10.1134/s1995080224600754
https://doi.org/10.47654/v26y2022i3p54-74
https://doi.org/10.1016/0005-1098(93)90175-s
https://doi.org/10.1016/0005-1098(93)90175-s
https://doi.org/10.1109/9.701088
https://doi.org/10.1016/j.ijepes.2005.02.001
https://doi.org/10.1016/j.ijepes.2005.02.001
https://doi.org/10.1021/i160076a010
https://doi.org/10.1016/0098-1354(88)85042-7
https://doi.org/10.1016/0022-247x(91)90066-9
https://doi.org/10.1137/0124036


Int. J. Anal. Appl. (2025), 23:297 41

[35] F.L. Hitchcock, The Distribution of a Product from Several Sources to Numerous Localities, J. Math. Phys. 20 (1941),

224–230. https://doi.org/10.1002/sapm1941201224.

[36] M. Embree, N. Lloyd, Trefethen. Pseudospectra Gateway, http://www.comlab.ox.ac.uk/pseudospectra.

[37] A. Packard, M. Fan, J. Doyle, A Power Method for the Structured Singular Value, in: Proceedings of the 27th IEEE

Conference on Decision and Control, IEEE, pp. 2132-2137. https://doi.org/10.1109/CDC.1988.194710.

[38] M. Halton, M.J. Hayes, P. Iordanov, State-space µAnalysis for an Experimental Drive-by-wire Vehicle, Int. J. Robust

Nonlinear Control. 18 (2008), 975–992. https://doi.org/10.1002/rnc.1322.

[39] N. Guglielmi, M. Rehman, D. Kressner, A Novel Iterative Method to Approximate Structured Singular Values,

SIAM J. Matrix Anal. Appl. 38 (2017), 361–386. https://doi.org/10.1137/16m1074977.

[40] R.H. Warren, Classes of Matrices for the Traveling Salesman Problem, Linear Algebr. Appl. 139 (1990), 53–62.

https://doi.org/10.1016/0024-3795(90)90387-r.

[41] F. Greco, I. Gerace, The Symmetric Circulant Traveling Salesman Problem, InTech, 2008. https://doi.org/10.5772/

5581.

[42] D. Rückert, M. Stamminger, An Efficient Solution to Structured Optimization Problems Using Recursive Matrices,

Comput. Graph. Forum 38 (2019), 33–39. https://doi.org/10.1111/cgf.13758.

[43] M. Rehman, B. Aminov, M.N. Alshehri, M.M. Mohammed, A.O. Mustafa, et al., Spectral Properties of Structured

Matrices in Transportation Problems, Eur. J. Pure Appl. Math. 18 (2025), 5637. https://doi.org/10.29020/nybg.ejpam.

v18i1.5637.

[44] M. Rehman, S.H. Alshabhi, A.O. Mustafa, M.M. Mohammed, S. Aljohani, et al., Spectrum and Pseudspectrum of

D-Stable Matrices of Economy Models, J. Math. Comput. Sci. 38 (2024), 298–312. https://doi.org/10.22436/jmcs.038.

03.02.

https://doi.org/10.1002/sapm1941201224
http://www.comlab.ox.ac.uk/pseudospectra
https://doi.org/10.1109/CDC.1988.194710
https://doi.org/10.1002/rnc.1322
https://doi.org/10.1137/16m1074977
https://doi.org/10.1016/0024-3795(90)90387-r
https://doi.org/10.5772/5581
https://doi.org/10.5772/5581
https://doi.org/10.1111/cgf.13758
https://doi.org/10.29020/nybg.ejpam.v18i1.5637
https://doi.org/10.29020/nybg.ejpam.v18i1.5637
https://doi.org/10.22436/jmcs.038.03.02
https://doi.org/10.22436/jmcs.038.03.02

	1. Introduction
	2. State-of-the-Art Methods to Compute -Values
	2.1. Feedback systems analysis via structured perturbations
	2.2. An iterative method to yield the lower bounds of 
	2.3. A nonlinear programming technique based methodology to compute lower bounds of real -values
	2.4. Geometrical formulation of bounds of -value
	2.5. Gain-based lower bound technique for mixed -problems
	2.6. Computation of  via Moment LMI relaxation technique

	3. Stability and D-stability analysis of transportation models
	3.1. Singular values for Hitchcock-Koopmans transportation problem
	3.2. Structured singular values for Hitchcock-Koopmans transportation problem
	3.3. Numerical Testing

	4. Spectrum and Pseudo-Spectrum of D-Stable Structured Matrices in Economic Models
	4.1. The novel theoretical results for interconnection among D()-stable structured matrices, and -values
	4.2. The rank-1 perturbation to D-semistable structured matrices
	4.3. Pseudo-spectrum
	4.4. Numerical Testing

	5. Conclusion
	 Conflicts of Interest:

	References

