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Abstract. This paper introduces a novel accelerated shrinking projection algorithm for approximating Cesiro mean
sequences and solving split equilibrium problems in real Hilbert spaces. The iterative scheme is constructed using
finite families of commutative, normally m-generalized hybrid mappings, with a step size chosen independently of
the spectral radius to facilitate computation. We prove that the generated sequence converges strongly to a common
element in the intersection of the fixed point sets of the mappings, which also solves the associated split equilibrium
problem. The proposed method yields new and extended strong convergence theorems for various classes of hybrid
mappings, including normally generalized hybrid, m-generalized hybrid, and normally 2-generalized hybrid mappings.
A numerical example is provided to demonstrate the superior convergence rate of our algorithm compared to existing

methods. These results generalize and unify several known findings in this direction.

1. INTRODUCTION

Let H be a real Hilbert space and C C H a nonempty closed convex set. Let S : C — H be a

nonlinear mapping, and denote its fixed point set by
F(S) ={xeC:Sx =ux}.
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Definition 1.1. A mapping S : C — H is called normally m-generalized hybrid [21] if there exist
scalars ay, B € R fork = 0,1, ..., m, such that

m m

Z 1 > 0, Z(akﬂ + Brs1) 20,

k=0 k=0

and forall x,y € C,

m
Y aallS"Fx =Syl + ) BeallS"Fx —yI? <. (1.1)
k=0 k=0

Remark 1.1. The class of normally m-generalized hybrid mappings unifies and generalizes several known
mappings:
(1) For m = 1, it reduces to the normally generalized hybrid mapping in the sense of Takahashi et
al. [28].
(2) With ay = =y = 1, it recovers the m-generalized hybrid mapping of Maruyama et al. [24].
(8) Form = 2, it coincides with the 2-generalized hybrid and normally 2-generalized hybrid mappings
[16,21].
(4) The generalized hybrid mapping [19] is a special case of both normally generalized hybrid and
2-generalized hybrid mappings.

(5) This class includes nonspreading, hybrid, and nonexpansive mappings as subclasses.

In 1975, Baillon [6] proved a nonlinear version of the classical mean ergodic theorem for nonex-

pansive mappings in Hilbert spaces. Specifically, he showed that the Cesaro sequence

1 v
Snx:n_i_lkZ‘OSx

converges weakly to a point in F(S). This result laid the foundation for a wide range of iterative

schemes in nonlinear functional analysis and fixed point theory.

Cesaro-type averaging has since become a powerful tool for regularizing and stabilizing iterative
processes, especially when direct convergence of iterates is not guaranteed. It has been employed in
the analysis of nonexpansive, hybrid, and generalized hybrid mappings, and has proven effective
in both weak and strong convergence frameworks.

Beyond its theoretical significance, Cesiro averaging has found wide-ranging applications across
various disciplines. In optimization and variational inequality problems, it serves to mitigate
oscillations in subgradient and proximal algorithms, enhancing stability and convergence. In
signal and image processing, Cesiro means are employed to stabilize iterative reconstruction
methods, particularly in the context of ill-posed inverse problems. In equilibrium modeling such
as in economics and game theory Cesaro type iterations are instrumental in approximating Nash
equilibria and saddle points. Moreover, in machine learning and data science, ergodic averages
underpin stochastic approximation techniques and online learning algorithms, contributing to

robust performance in dynamic and noisy environments.
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The ergodic principle also underpins convergence analysis in monotone operator theory, convex
feasibility problems, and fixed point algorithms for nonexpansive mappings. Embedding Cesaro
means into projection type methods such as shrinking projection algorithms has led to significant
advances in strong convergence results, especially in the context of hybrid mappings and split
structures.

Kocourek et al. [19] extended Baillon’s work by considering generalized hybrid mappings and

proving weak convergence of

to a point in F(S). Takahashi et al. [28] further generalized this for normally generalized hybrid
mappings, while Hojo et al. [17] introduced a double Cesiro mean for commutative 2-generalized

hybrid mappings:

Spx = ———— n+1 ZZsle

and embedded it into a shrinking projection algorithm to obtain strong convergence. These
developments have inspired a variety of algorithms for approximating fixed points and solving
equilibrium problems.

To obtain strong convergence, Hojo et al. [18] defined a sequence {x,} C C by embedding the

Cesaro mean into the following shrinking projection algorithm:

x1 =x€C;

Yn = YnXn + (1 - )/n)% ZZ:() Tkxn; (1 2)
Cur1 =1z € Cy : lyn —2ll < |lxn — 2|15
Xnt1 = Pc, uny1, Yn €N,

where T is a 2-generalized hybrid mapping and {y,} C [0, 1] satisfies 0 < y,, < a < 1. They proved
that the sequence {x,} converges strongly to Pr1)x, where {u,} Cc Hand u,, — u.
In 2018, Hojo et al. [16] proposed a modified shrinking projection algorithm for two commutative

normally 2-generalized hybrid mappings S, T : C — H, defined as:

x1 =x€C

Yn = anXy + (1 - an)m Yo o SKT'x,;
(1.3)

Cor1 =1z €Cy i lyn —2ll < |lxn —2I%;

X1 = PC,1+1u71+1I VYn e N/

They proved that {x,} converges strongly to zo = Pp(s)nr(1)%, the metric projection of x onto the
common fixed point set.
More recently, Kondo [20] considered two normally 2-generalized hybrid mappings S, T and

proposed the following shrinking projection algorithm:
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x1=x€C, C1=¢C
Yn = AnXy + bn% ZZ:() Skxn + Cn% ZZ:() Tkxn}

(1.4)
Cor1 ={z € Cu : llyn —2ll < llxn —zll};
Xnt+1 = PCHHMH-H/ VYn e N,
He proved that the sequence {x,} converges strongly to a point p € F(S) N F(T).
On the other hand, the split equilibrium problem (SEP) involves finding a point
ueC suchthat F(u,v)>0 VYoveC(C, (1.5)
and
u'=BueQ suchthat G(u",w)>0 VYweD, (1.6)

where C C Hy and D C H; are nonempty closed convex subsets of real Hilbert spaces, B : Hy — H»
is a bounded linear operator,and F : CXC — R, G : DX D — IR are bifunctions.
Let the solution set of the SEP defined by (1.5)-(1.6) be denoted by

I := {u € EP(F) : Bu € EP(G)}.

It is easy to observe that if Hy = Hy, C = D, and B = [ is the identity operator, then the SEP
reduces to the classical equilibrium problem in the sense of Blum and Oettli [7], with solution
set EP(F) = EP(G). Furthermore, if F(u,v) = (f(u),v—u) and G(u*,w) = (g(u*), w — u*), then
the SEP reduces to the split variational inequality problem (SVIP) [11], which has been successfully
applied to real-world problems such as image reconstruction, phase retrieval, signal processing,
data compression, sensor networks, and inverse problems; see, for example, [8-10,12,13] and
references therein.

Several researchers have proposed and analyzed iterative algorithms for finding common el-
ements in the solution sets of fixed points of the aforementioned mappings and equilibrium
problems. For instance, Alizardeh and Moradlou [5] established weak convergence theorems for
approximating a common element in the solution set of an equilibrium problem and the fixed
point set of a 2-generalized hybrid mapping S in Hilbert spaces. They considered the sequence
{xn} generated by:

X1 =x €E;
uy, € E such that f(uy,, y) + %(y—un,un -x,)20, YyeC;

Yn = (1 - ﬁn)xn + ﬁnsxn;'
Xn+1 = (1—an)xn + anSyn, YnelN,

(1.7)

They proved that {x,} converges weakly to v = lim,—c Pr(s)nep()X1, Where Prs)npp(f)X1 is the
metric projection of x; onto the set F(S) NEP(f), E € H is a nonempty closed convex set, and
f : EXE — Ris a bifunction.

In another development, Zhao et al. [29] proposed a strongly convergent algorithm for solving
the SEP and fixed point problem of a 2-generalized hybrid mapping S. The sequence {x,} is defined

by:
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x0€C, Di=0C;

y = Tyt 1=y A (I = T;) A

On = (1= Bty + B 170 SFuy;

Yn = (1= ap)u, + 2 Y170 Skoy,;
Dyy1 = {x € Dy : |lyn — xI| < [lx, — x]I};

(1.8)

Xn41 = Pp, . x0, Yn€N.

They proved that {x,} converges strongly to a common element in the solution set of the SEP
and the fixed point set of S.

More recently, Haruna et al. [14, 15] considered finite families of commutative normally n-

generalized hybrid mappings S1,S»,...,Sn : C — C, and defined the sequence {S,x} by:

1 n n n
o= (n+1)NZ Y Y SISE sy, (1.9)

71=017,=0 =0
for all n € IN, where 71,72,...,7v € N U {0}. They showed that {S,x} converges weakly to a
point g € N, F(S;), where

= lim PTUTR?2...TWx
1 7,72,aneD 1 72 N

P is the metric projection of H onto (Y, F(T;), and D is a directed set.

Motivated by these developments, this work proposes an accelerated algorithm that incorporates
Cesaro averaging within a shrinking projection framework. The algorithm targets the common
tixed point set of a finite family of commutative normally m-generalized hybrid mappings, while
simultaneously solving a split equilibrium problem. The proposed scheme is designed to achieve
strong convergence under mild assumptions, and contributes to the growing literature on ergodic
methods in nonlinear analysis.

Key contributions include:

(1) The normally m-generalized hybrid mappings used here generalize those considered in
[5], [16], [17], [18], [29] as special cases.

(2) Our algorithm approximates a common element in the intersection of fixed point sets of
finitely many commutative nonlinear mappings that also solve split equilibrium problems.
In contrast, algorithms in (1.2), (1.3), and (1.4) target only one or two mappings, and those
in (1.7), (1.9) yield weak convergence.

(3) The step size is independent of the spectral radius, simplifying computation compared to
Zhao et al. [29] (see (1.8)).

(4) Numerical results show that our algorithm converges faster than (1.8).

In light of these contributions, our results extend and generalize the foundational work of
Alizardeh and Moradlou [5], Baillon [6], Haruna et al. [14,15], Hojo et al. [16-18], and Zhao et
al. [29].
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2. PRELIMINARIES

In this section, we present relevant definitions and existing results that will be used in establish-

ing our main theorems.

Lemma 2.1 ( [25]). Let H be a real Hilbert space. Then for all x,y € H and o € IR, the following identities
hold:

Q) lx—ylP =llx=zI? +llz—yl> + 2{x —z,z— y);
(i) flax+ (1- a)yll2 = a|lx|]> + (1- oz)llyll2 —a(l-a)llx- yllz.

Let C C H be a nonempty closed convex set. It is well known that for each v € H, there exists a
unique point u = Pcv € C such that

o —ull = inf Jlo —wl],
where Pc : H — Cis called the metric projection of H onto C.
Lemma 2.2 ([25]). Let v € H and u € C. Then u = Pcv if and only if
(w—u,w—-uy<0, VYweC.
Moreover, for all z, w € C, the following inequality holds:
llz = ull® + Il = wl? < ||z wl|P. (2.1)
The following identity, due to Maruyama et al. [24], will also be useful:
llocx + By + yzI* = allxd? + Bllyl® + izl - apllx = yI* — ayllx —zI? = pylly -z, (2.2)
forallx,y,ze Hand a,8,y € Rwitha+p+y =1.

To solve equilibrium problems, we assume the bifunction g : C X C — R satisfies the following
conditions (see [7]):

(A1) g(x,x) =0 VxeC

(A2) gis monotone, ie., g(x,y)+g(y,x) <0 Vx,yeC;

(A3) limsup, . g(x+t(z—-x),y) <g(x,y) Vx,y,zeC

(A4) For each fixed x € C, the function y — g(x, y) is convex and lower semicontinuous.

Lemma 2.3 ( [7]). Let C C H be a nonempty closed convex set, and let g : C X C — R be a bifunction
satisfying conditions (A1)—(A4). Then for any r > 0 and x € H, there exists z € C such that

1
ez y)+ ;(z—x,z—y) >0, VyeC.
The following result, due to Combettes [13], characterizes the resolvent operator associated with
g
Lemma 2.4 ([13]). Let r > 0 and x € H. Define the operator T, : H — C by
1
Tyx = {z €eC:g(z,y)+ ;(y—z,z—x) >0, Vye C}.

Then the following properties hold:
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(i) T is single-valued;
(ii) Ty is firmly nonexpansive;
(iii) F(T,) = EP(g);
(iv) EP(g) is closed and convex;
(v) Forall x € Handp € F(T,), one has

llp = T,x|> + |Tyx — xII* < [|p — x|

Finally, we recall a useful property of normally m-generalized hybrid mappings, which will play

a key role in our analysis.

Lemma 2.5 ([21]). Let H be a real Hilbert space and C C H a nonempty set. Let T : C — H be a normally
m-generalized hybrid mapping with nonempty fixed point set F(T). Then T is quasi-nonexpansive.

Proof. Since T is normally m-generalized hybrid mapping, then there exist ay,fr € R (k =
0,1,---,m) such that

m m
Y aal T =Ty + Y pallT"*x -yl <0, vyeC. (2.3)
k=0 k=0
By hypothesis, F(T) # 0. Thus, let x € F(T) so that from (2.3) we get
m m
Y acale=TylP + ) peallk -yl <0, VyeC.
k=0 k=0
This implies,
m m
Y el =Tyl < =) el -yiP YyeC.
k=0 k=0

Since },;° ; ax1 > 0, we get
O Prst
=Tyl < =) “jx-yP vyeC.
o Fk+1

Using the fact that )" (ax+1 + Prs1) = 0, we get
lx = Tyl* < llx—yl> VyeC.

Therefore, ||x —Ty|l| < |[lx—yl| Yy € C. Hence, T is quasi-nonexpansive. This completes the
proof. m]

3. Main ResuLrs

In this section, we establish the strong convergence of a sequence generated by a new accelerated
shrinking projection algorithm. The algorithm approximates a common element in the solution
set of fixed points of finitely many commutative normally m-generalized hybrid mappings and
the solution set of a split equilibrium problem in real Hilbert spaces.

We begin by stating the assumptions and describing the iterative scheme.
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Assumption 3.1. Let the following conditions hold:

(Al) C1 € Hy and C; C H; are nonempty, closed, and convex subsets of real Hilbert spaces H
and Hj, respectively.

(A2) T : Hy — H» is a bounded linear operator.

(A3) F: C1xC; = Rand G : C; X C; — R are bifunctions satisfying the conditions of Lemma 2.3.

(A4) ]fn : Hy — C; and ]g : Hy — C; denote the resolvent operators associated with F and G,
respectively.

(AB) 51,53,...,5v : C1 = Cqand Tq,Ty,..., Ty : C; — Cy are finite families of commutative,
normally m-generalized hybrid mappings. The indices yj,..., un and 71, ..., TN belong to
IN U {0}.

(A6) Thesequences {a,}, {Bn}, {yn} € (0,1) satisfy ay, 4+ n + yn = 1foralln € N, and lim,, 00 ay =
0.

(A7) The solution set

N N
S:= [ﬂ Fix(Si)] n (ﬂ Fix(Ti)] NT #0, where T :={ucEP(F):BucEP(G)}.
i=1 i=1

Here, EP(F) and EP(G) denote the solution sets of the equilibrium problems associated
with F and G, respectively.

Algorithm 3.1 Accelerated Shrinking Projection Algorithm

Let ug, 11,01 € Cq, and set C; = C. Generate sequences {1}, {v,} C C; as follows:

Step 1. Compute:
Xn = Up + On(un —uy—1), 6n€(0,1).

Define: .
R — n H HN
Sn= Gy nn Zm=0" D=0 S1 Sy (3.1)
1 . . .
fn= m Y=o Loy=o Ty TN
Step 2. Compute:
Yn = anon + ﬁnsnxn + YnTnxn.
Choose a step size 0, such that for any fixed n > 0,
(I = J5) Tyl
0<n<bp S ————— -, if Ty, =] Tyu;
1= on IT*(I=JS ) Tyul2 1 Yn = Jr.TYn (32)

Op=0>0, otherwise.
Step 3. Compute:
_ 1F ST G
Vi1 = b (yn = 0T (1= JS)Ty).
Update the constraint set:
Cus1 = {p € Cu : lonsr = pIP < aullon = pI? + (1= an)llxn - pI}.
Step 4. Compute:
Upy1 = Pcn+1 up.

Setn := n + 1 and return to Step 1.
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Theorem 3.2. Let Assumption 3.1 holds and the sequence {u,} be defined by the Algorithm 3.1. Then {u,}
converges strongly to an elementv € S = NN F(T;) NN F(S;) NT.

Proof. Let u € S and z, = (yn — 6nT*(I—]g)Tyn). Since the mappings Si,S2,---,Sy and
Ty, Ty, -+, Tn are quasi-nonexpansive, then

Similarly,

Also,

We see from

1Sy — ul|

([T, — u]

1 n n
— ||mz Z

1=0 p2=0

1 n n
e VP I

11=0 p2=0

1 n n
EEs P IOME

t1=0 p2=0

IA

= |lx; —ull.

A
=
+ |~
-
=
1
g

Z TIITEZ

n
LY Siish s, —
un=0

n
YISl S, — ul
un=>0

n
Y ke = ul

un=0

n
o Th, = ul
TNZO

n
Y TP Ty, — ul

=0

n
Yl =l

’Z,'N:O

lzn = ull® = 1y = 0T (I = J ) Tyn) — ull?

= llyn =l = 26,Cyn — 1, T*(I= J7 ) Tyn)) + 651 T (1= ] ) Ty I
= llyn =l = 26,(Ty = Tut, (1= J5 ) Tyn)) + 51T (I = J57 ) Ty I
< lyn = ullP® = 8ull(T= T2 ) Tyu)IP + 65T (I = J72) Ty IP

=y = ull® = 8a (T = J5) Tyl = 8ulIT* (1= JS) Ty IP]

n

(L= J5)Tyn)IP

< Z -1
IT*(I=T5) Tyn)II?

= T (= )Tyl < I =) Tya)IP = 6alIT* (I = J5 ) Tyn)IP.
Also, the fact that n < 6, implies
T (1= JE) Tyn)IP < 98alIT* (1= J$) Ty )|

< [l = J§)Tya)IP = Sall T (1 = JS) Ty ]

(3.3)

(3.4)
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Using (3.4) in (3.3) we get
120 = ull® < Ny = ull® =PI (1= J2 ) Ty I (3.5)
Thus, using (3.5)
lopsr —ul® = 1}, 20 = Jr,ull®
< lzn —ulP
< My =l = PIT (1= J37) Tya)IP (3.6)
< Ay —ulP. (3.7)
But,
Iy —ul® = llanvn + BuSuxn + yuTuxn — ull*
< agllvy — ull® + BallSuxn — ull® 4 yul Tnxn — ull®
< aullon — ull® + (B + yu)llxn — ull?
= aglloy —ull® + (1 - an)llx, — ull®. (3.8)
It follows from (3.7) and (3.8) that
0541 — ull® < aullo, — ull* + (1 = a) lx — el 3.9)

Therefore, u € C,11. Hence C, is nonempty, closed and convex subset of G since S € C,41 C C,

for all n > 1, it follows from u,, = Pc,up and Lemma 2.2 that

lun — uoll = |[Pc,uo — uoll < |lu —uoll, VueS.

Thus, the set {||u, — uol|} is bounded. Hence the sequences {u,}, {v,}, {x,} and {y,} are all bounded.

Furthermore, u, = Pc,uo implies that

0 <

Thus, we see that

0 <

(U — Uy, Uy — Up41)

1
2

=

2 2 2
[t i1 = w0l =t 1 — 2l = I, = wi0]?]-

2 2 2
14141 — uoll”™ = 1 — unll™ = |l — uol|

lltn = uoll < lltns1 — uoll.

(3.10)

Therefore, {||u, — up|l} is monotone increasing. Hence, lim ||u, — ug|| exists. It follows from (3.10)
n—oo

that

2 2 2
11 — unll™ < g1 — uoll” = ey — uoll.

Taking limit as n — oo we get

lim [[,41 — uyl| = 0.
n—oo

In similar passion, we may take for any n > m > 1, u,, = Pc,, up so that

2
llttn = uioll

2
[t47 — vty + 1y — 1|

(3.11)
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=y — il * + ot — 1ol + 2y — U, thy — 10

et — thul® + o — uol*.

\%

Thus,

= al® < N1t = a0l = s = wol* — 0 as 1, m — co.
Therefore, the sequence {u,} is Cauchy. Hence, by completeness of H we see that
Uy, — v e H (say) asn — oo. (3.12)
Using Algorithm 3.1 and (3.11), we see that
lim [|ut, = xl| = 1im Oplfuen = -1l = 0. (3.13)
It follows from (3.12) and (3.13) that x,, — v. Also, it follows from (3.11) and (3.13) that
Tim a1 = ] = 0. (3.14)
Since 1,11 = Pc, ,up € Cyy1 C Cy, then
041 = 111 < @nllon = w1 lP + (1= @) ln = st

With (3.14) and the fact that lim a, = 0, we get that

n—oo
nli_{{}oﬂvnﬂ — U1l = 0. (3.15)
Using (3.13), (3.14) and (3.15), we get
Tim|fo, 1 = xll = 0, Tim [lon41 = sl = 0. (3.16)

Combining (3.6), (3.8) and Cauchy-Schwartz inequality we get

PIT (= o) Tyl < llyn = wl? = llogs1 = ull®

< agllog —ull® + (1= an)llxn — ull® = o1 — ull®
= an(llon — ull® =1 = ulP?) + (lhn = ull® = llo1 = )
= ap(llon — ull® = e = ull®) + (IIxn = Vusall® + 2¢n = Vpy1, Vur1 — 1))
< an(llon — ull® = llx, — ull®)
+ Mxn = vl (ln — Opgall 4 2l0n1 — ull). (3.17)
Using (3.16) with the fact that nh_r){}o a, = 0and 1 > 0 on (3.17), we obtain
Lm||T"(I= J2) Tyall = 0. (3.18)
Thus, we see that
lim Iz = yull = r}ggoénllT*(I—]ﬁ)Tynll =0. (3.19)

From (3.3) and Cauchy-Schwartz inequality, we get
Sull (1= T ) Tyull® < Ny = ull? = llzn = ull* + S50T* (I = J57 ) Tyull?
= Nyn = 2zall® + 20y = 20,20 = w) + GGIT (1= J;7 ) Tyl
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< Ny = 2zall (= zall -+ 2llz0 = ull) + SRIT (I =I5, Tyl (3.20)
Taking limit of (3.20) as n — oo, it follows from (3.18), (3.19) and the fact that 6, = 6 > 0 that
T ||(I = J2) Tyull = 0. (3.21)
on the other hand, using the fact that J; 5 _is firmly nonexpansive and | i u=uwe get
g —ull® = 20J7,z0 =I5, ull®

< 2z —u,vp41 —U)
= llzn — ull® + [vps1 — ull® = o1 — zall.
Thus,
10311 = zull* < llyn — ull® = o1 — ull®
< agllon —ull + (1= an)llxn — ulP? = o1 — ull?
= an(llvy — ull* = llxw — ull?) + (IIxn — ul* = llonsr — ul?)
= an(llvn — ull* =l — ull?) + (IIxn = Vpsall® 4+ 2¢t0 = Ong1, Vpy1 — 1))
< ap(llvn — ull® = lxn — ul?)
+ Ixn = 1 ll(Ixn = gl + 2lop41 — ull). (3.22)
By taking limit of (3.22) as n — oo, we get
r}i_{rolo”UnJrl —zyll = 0. (3.23)

It follows from (3.16), (3.19) and (3.23) that

Lim [[on1 = yull = Hm liey = yull = lim Jlx, = yull = 0. (3.24)
Also,
1y — ull® = lanon + PuSuxn + ynTuxn — ull®
< agllon — ull® + BullSnxn — ull* + yull Tuxy — ul?
— BuyullSuxn = Tuxall®
< allon —ullP + (1= @)l = ull® = BuyullSnxn — Tl .
This implies

,BnVnHSnxn - Tnxn”z < apllon, — qu + (1 - an)llxn - ullz - ”]/n - ullz
= an(llon = ull® = llxn — ull?) + (b — ull® = llyn — ull®)

= an(llon = ull® = llxn = ull®) + (10 = Yall* + 200 = Yo, yu — 1))

IA

(o = ull? = l1xn — ull?) + ln = yull (1160 = yall + 2llyn — ull)-
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Taking limit as n — co keeping in mind that ,,, , € (0,1) and nh_r}r(}o a, = 0we get
Tim [1S, 2 = Tuxull = 0. (3.25)
Using (3.25) and the fact that
Y0 = TnXull < anllon = Suxull + BullSnxn = Tuxall,
implies,
Tim|ly, = Tyl = 0. (3.26)
It follows from (3.24), (3.25) and (3.26) that
lim [lxy = Tuxull = 0, lim [lxy = Spxull = 0. (3.27)

It is known that for any subsequence {xnj} of {x,}, Xp, =0, since x, — v. Thus, using (3.27) we

conclude that both Snjxnj — pand Tnjxnj — v. We now show that v € §. Since S; is normally

m-generalized hybrid mapping, then by (1.1) there exist ay, fr € R (k=0,1,--- ,m) such that

m

m
Y acallSy =Syl + ) peallSyFx—ylP <0, VxyeCr.
k=0 k=0

Using Lemma 2.1(1) on (3.28) we get for all x, y € C; that

m
Y aea(ISy =yl +lly - Syl + 2SI Fx -y, y - S1y))
k=0

m
+ ) BrallSy ™ x -yl <.
k=0

This implies, for all x, y € C; that

m

m
Qe + Y BolISy e -yl
k=0 k=0
m

+ ) aa(lly = Syl + 281 Fx -y, y - Siy)) < 0.
k=0

Since ¥, (e + Bx) = 0, then we obtain from (3.29) that

m

Y acaa(ly = Syl + 2(SPFx —x) + (x—y), y - $19)) <0, Vx,yeC.
k=0

Thus, inequality (3.31) becomes

m m—1

Z aa(lly = Syl +2x =y, y = Si1y)) +2 Z a1 (ST x =2,y = S1y) <0,
k=0 k=0

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)
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for all x, y € C;. Since {x,} is bounded, then ||x, — v|| < K for some K > 0. Thus, IIST15§2 ‘e S;L]an

|| < IIS§2~--S§]an -7 <0 < IIS£]an - 9| < |Ix;, —vl| £ K. Therefore, the set {STISQZ---Sﬁijn} is
bounded in Cy. Hence, by replacing x with Sill ng S Sl’i]N x, in (3.32) we get that for all y € Cy,

m
Y aa(ly = Syl + 284185 - S — y, y - S1))
k=0
m=1
+ 2 (ST s, — S8 S, y = S1y) < 0, (3.33)
k=0

Let the inequality (3.33) be summed up with respectto u; =0,1,---,n

Y (- Dlly = SaylP +2( ) S84+ Sy — (n+ 1)y, y - S1y)
k=0 [.11:0
m—1

+ ZZ ak+1((5¥+m'k552 ... S%an NN 5111+1ng L SK[an)

_ (Srln—(k+1)5!212 ... SKINXH 4ot ng ... SK,an),y— S1y) <0, (334)

for all y € Cy. Again, let the inequality (3.34) be summed up with respectto u =0,1,--- ,n

m n n
Y apa(n+ D2y -SiiP+ 1Y Y stsi s,
k=0 y1:0 yZ:O
- (n+1)1%yy 51}/))
n m—1
+ 2 ey 1 ((SITMRGE o SNy - 4 SIS L S )
u2=0 k=
— (ST—(kﬁ-l)ng...Si]an+...+SF212...SII~\1[an),y_Sly> <0, (335)

for all y € C. Continue summing inequality (3.35) until with respect to uy = 0,1,--- ,n we get for

all y € C that

Zakﬂ((wl)Nlly 51y||2+2<z Z Zs‘“s“z SN,

k=0 p1=0 u=0 un=0
= (n+)Vyy-Ssip)

n n m-1
+ 2 Z Z Z ak—i—l((S;ler_kng . "S%an 4+ 4 ST+1552 - SIF\l]an)
=0 uN=0k=0

(S’lﬂ—(kﬂ)sgz ... SK[an R 552 . SKINX”)’ y—=Si1y) <0. (3.36)

Dividing inequality (3 36) through by (n + 1)V keeping in mind that S, =

1
DN L =0 Ljip=0" " Liay=0
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SiSh? - ShY we get

Y ara(lly = S191P + 24Suxn = v,y = S1)
k=0

m—
2041 n+m—k g2 uN n+1 gk N
Z ((Snmkghz . gy, oo gnHLgER L gk, )

oo S (n+1)N
(5;’1—("“)5 ...S%Nsn+...+S§’2...S%an),y—51y)SO, Yy e C. (3.37)

Now replacing n with 7; in (3.37) and allowing j — co (remembering that S, x,;, — v) we get

m

Z ak+1(lly ~S1ylP+ 2w -y, y— Sly>) <0, YyeC.
k=0

Using the fact that )" ; a1 > 0, we get
lly =Syl + 2w -y, y—S1y) <0, YyeCy. (3.38)
Applying (1) of Lemma 2.1 on (3.39), we get
ly = S1ylP +llo = Sayl? = llo = yI? = lly = Syl <0, VyeCu.

Thus,

llo—Siyl* <llo-yl*>, VyeCy. (3.39)
Since S1, Sy, - -+, Sy are commutative in nature, we can replace S; with either of Sy, -+, Sy. Thus,
we get from (3.39) that

lo-Soyl* < llo—ylP (3.40)
lo-Snyl? < llo-yl>, YyeCi. (3.41)
By setting ¥y = v in (3.39), (3.40), -, (3.41), we get v = S51v = Syv = --- = Syv. Therefore,

v € NI F(S;). Following similar argument, we see that v € N F(T;).

Next we show that v € I'. We see from (3.24) that y,, — v. Since T is bounded and linear then
Tyn; — To. Since ]g is nonexpansive and hence demiclosed, then Tv € F( ]g) We also have from
(3.19) that zy;, — v. Since ]fn is nonexpansive and nh_r){)lo ||]fn Zy — Zull = |[vp21 — zull = 0, then we have

v € F(JF ). Therefore, v € I'. Hence, v € S. O

4. APPLICATIONS

In this section, we apply Theorem 3.2, and obtain some new strong convergence theorems for
finite commutative normally generalized hybrid mappings, m-generalized hybrid mapping and
normally 2-generalized hybrid mappings in Hilbert spaces. These results extend and generalize
the corresponding ones in Alizardeh and Moradlou [5], Baillon [6], Haruna et al. ( [14], [15]), Hojo
etal. ([16],[17], [18]) and Zhao et al. [29].
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Theorem 4.1. Let the mappings S1,S2,-+- ,Sn : C1 = Cyand T1,T2,--- ,Tn : C1 — Cj be finite
commutative normally generalized hybrid mappings such that Assumption 3.1 holds and the sequence {u,,}
be defined by the Algorithm 3.1. Then {u,} converges strongly to an element v € S = ﬂfi JF(Ti)n
NN F(S;)NT.

Proof. By setting m = 1, we see that the class of normally m-generalized hybrid mappings reduces
to that of normally generalized hybrid. Hence, by applying Theorem 3.2, we get the desired results.
This completes the proof. m]

Theorem 4.2. Let the mappings S1,S2,--- ,Sn : C1 = Cy and Tq1, Ty, ,Tn : C1 — Cy be finite
commutative m-generalized hybrid mappings such that Assumption 3.1 holds and the sequence {u,} be
defined by the Algorithm 3.1. Then {u,} converges strongly to an elementv € S = N F(T;) N NN F(S;) N
I

Proof. Since the class of normally m-generalized hybrid mappings reduces to that of m-generalized
hybrid by setting k = k —1 and ay = fr = —1, then by applying Theorems 3.2, we get the desired

results. This completes the proof. m]

Theorem 4.3. Let the mappings S1,S2,--- ,Sn + C1 = Cyand Tq1,T5,---,Tn : C1 — Cy be finite
commutative normally 2-generalized hybrid mappings such that Assumption 3.1 holds and the sequence
{uy} be defined by the Algorithm 3.1. Then {u,} converges strongly to an element v € S = ﬂf\i JE(Ti)n
NN F(Si)NT.

Proof. By setting m = 2, the class of normally m-generalized hybrid mappings reduces to that of
normally 2-generalized hybrid. Hence, by applying Theorems 3.2, we get the desired results. This
completes the proof. m]

5. NuMERIcAL ExaAMPLE

In this section, we give a numerical example and used it to compare our result with some existing
ones under consideration. Let H =R, C = [-1,1,k=0,1, N=2and y1 =y =11 =12 =0, 1.
Define F,G : CxC — R by F(x,y) = 2y*> + xy — 3x* and G(x,y) = y*> + xy — 2x%, we see that
both F and G satisfy conditions (A1) — (A4). Also, following similar technique as in [5], we see
that the resolvents J} (x) = 5 and JS(x) = 52 for r > 0. Since F(J}) = F(J¢) = 0, then
by Lemma 2.4 we get EP(F) = EP(G) = 0. Define 5;,T; : C — Cby Si(x) = Ti(x) = 5 and
S, T2 : C = Cby Sy(x) = Ta(x) = %x for all x € C, we see that 51Sox = S251x = § and T1Tox =
T>Tix = 3. Hence the mappings are commutative normally 2-generalized hybrid mappings
with F(S1) = F(S2) = F(Ty) = F(T2) = 0. With the choice of 0, = 3=, 4y = an = 3 + =,
by =Bn = % ———— Vn = % - é, Op=0= % >0andr = %, we see that the algorithms (1.4), (1.8)

3n’
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and (3.1) respectively become,

Xp € [—1,1],‘
Yn = (% + %)xn —+ %(% - 3%1)(9(,1 + an) + %(% - 61_1,[)(3511 + Txn);
nty (5.1)
Cny1 = [€n,0), where €, := =5,
Xp+1 = Pcn+lun+1’ VYn € IN.
Xo € [—1, 1],'
Up = %xn/
0= (3 o+ 303 ) 0+ S .
o= (3= )+ L3+ L) (0, + So);
Dy1 = [€4,0), where €, := x"JFTy";
Xp41 = Pp,.,x0, VYn€IN.

and

up,ui € [-1,1),v1 =1

Xy = Uy + ﬁ(un — Up-1,

Yn = @ + zln>vn + (n+11)2 (% - %)(xn + 51X, + Soxy, + S5152x,)

+ 517 (3~ &) (tn + Taxu + Taxy + Ti Toxn); (5.3)
Upn4+1 = %yn}
2 (3 (G —0%)

Cut+1 = [€n,0), where e, =

Xn+1 = Pc,, U0
Hence, the sequence generated by algorithms (5.1),(5.2) and (5.3) converges to 0 as shown
graphically below. The codes use in generating the graphs are written using MATLAB R2015a.

Converging Process of a Sequence {xn}

Graph Generated by Algorithm 5.1
— * — Graph Generated by Algorithm 5.2
ir — # — Graph Generated by Algorithm 5.3 |

08

< x|
5 X
@ 06 T\
goor Ty
g \
04 r *\
X
K
RS
L3
X*» B
0 ARl TOEY "Hu:;.A s e e e e e e e
0 5 10 15 20 25 30 35 40

no. of iterations(n)

Ficure 1. Converging Process of the Sequence {x,} Generated by Algorithms (5.1),
(5.2) and (5.3) with initial point xg = 0.7 and x; = 0.5.
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6. CONCLUSION

We approximate Cesiro mean sequences generated by finite commutative normally m-
generalized hybrid mappings using a new accelerated shrinking projection algorithms. Also,
we chose a step size to be independent of the spectral radius for easy computation. We then prove
that the algorithm converges strongly to a common element in solution set of fixed point of the
said mappings which also solve some split equilibrium problem in the space. As an application,
we established new strong convergence theorems for finite commutative normally generalized hy-
brid, m-generalized hybrid and normally 2-generalized hybrid mappings in the space. We finally
give a numerical example that shows how our algorithm out performs the existing ones under

consideration in terms of convergence rate as seen from the graph.
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