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Abstract. This paper introduces a novel accelerated shrinking projection algorithm for approximating Cesàro mean

sequences and solving split equilibrium problems in real Hilbert spaces. The iterative scheme is constructed using

finite families of commutative, normally m-generalized hybrid mappings, with a step size chosen independently of

the spectral radius to facilitate computation. We prove that the generated sequence converges strongly to a common

element in the intersection of the fixed point sets of the mappings, which also solves the associated split equilibrium

problem. The proposed method yields new and extended strong convergence theorems for various classes of hybrid

mappings, including normally generalized hybrid, m-generalized hybrid, and normally 2-generalized hybrid mappings.

A numerical example is provided to demonstrate the superior convergence rate of our algorithm compared to existing

methods. These results generalize and unify several known findings in this direction.

1. Introduction

Let H be a real Hilbert space and C ⊂ H a nonempty closed convex set. Let S : C → H be a

nonlinear mapping, and denote its fixed point set by

F(S) = {x ∈ C : Sx = x}.
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Definition 1.1. A mapping S : C → H is called normally m-generalized hybrid [21] if there exist
scalars αk, βk ∈ R for k = 0, 1, . . . , m, such that

m∑
k=0

αk+1 > 0,
m∑

k=0

(αk+1 + βk+1) ≥ 0,

and for all x, y ∈ C,
m∑

k=0

αk+1‖Sm−kx− Sy‖2 +
m∑

k=0

βk+1‖Sm−kx− y‖2 ≤ 0. (1.1)

Remark 1.1. The class of normally m-generalized hybrid mappings unifies and generalizes several known
mappings:

(1) For m = 1, it reduces to the normally generalized hybrid mapping in the sense of Takahashi et
al. [28].

(2) With αk = −βk = 1, it recovers the m-generalized hybrid mapping of Maruyama et al. [24].
(3) For m = 2, it coincides with the 2-generalized hybrid and normally 2-generalized hybrid mappings

[16, 21].
(4) The generalized hybrid mapping [19] is a special case of both normally generalized hybrid and

2-generalized hybrid mappings.
(5) This class includes nonspreading, hybrid, and nonexpansive mappings as subclasses.

In 1975, Baillon [6] proved a nonlinear version of the classical mean ergodic theorem for nonex-

pansive mappings in Hilbert spaces. Specifically, he showed that the Cesàro sequence

Snx =
1

n + 1

n∑
k=0

Skx

converges weakly to a point in F(S). This result laid the foundation for a wide range of iterative

schemes in nonlinear functional analysis and fixed point theory.

Cesàro-type averaging has since become a powerful tool for regularizing and stabilizing iterative

processes, especially when direct convergence of iterates is not guaranteed. It has been employed in

the analysis of nonexpansive, hybrid, and generalized hybrid mappings, and has proven effective

in both weak and strong convergence frameworks.

Beyond its theoretical significance, Cesàro averaging has found wide-ranging applications across

various disciplines. In optimization and variational inequality problems, it serves to mitigate

oscillations in subgradient and proximal algorithms, enhancing stability and convergence. In

signal and image processing, Cesàro means are employed to stabilize iterative reconstruction

methods, particularly in the context of ill-posed inverse problems. In equilibrium modeling such

as in economics and game theory Cesàro type iterations are instrumental in approximating Nash

equilibria and saddle points. Moreover, in machine learning and data science, ergodic averages

underpin stochastic approximation techniques and online learning algorithms, contributing to

robust performance in dynamic and noisy environments.
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The ergodic principle also underpins convergence analysis in monotone operator theory, convex

feasibility problems, and fixed point algorithms for nonexpansive mappings. Embedding Cesàro

means into projection type methods such as shrinking projection algorithms has led to significant

advances in strong convergence results, especially in the context of hybrid mappings and split

structures.

Kocourek et al. [19] extended Baillon’s work by considering generalized hybrid mappings and

proving weak convergence of

Snx =
1
n

n−1∑
k=0

Skx

to a point in F(S). Takahashi et al. [28] further generalized this for normally generalized hybrid

mappings, while Hojo et al. [17] introduced a double Cesàro mean for commutative 2-generalized

hybrid mappings:

Snx =
1

(n + 1)2

n∑
k=0

n∑
l=0

SkTlx,

and embedded it into a shrinking projection algorithm to obtain strong convergence. These

developments have inspired a variety of algorithms for approximating fixed points and solving

equilibrium problems.

To obtain strong convergence, Hojo et al. [18] defined a sequence {xn} ⊂ C by embedding the

Cesàro mean into the following shrinking projection algorithm:
x1 = x ∈ C;

yn = γnxn + (1− γn)
1
n
∑n

k=0 Tkxn;

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖};
xn+1 = PCn+1un+1, ∀n ∈N,

(1.2)

where T is a 2-generalized hybrid mapping and {γn} ⊂ [0, 1] satisfies 0 ≤ γn ≤ a < 1. They proved

that the sequence {xn} converges strongly to PF(T)x, where {un} ⊂ H and un → u.

In 2018, Hojo et al. [16] proposed a modified shrinking projection algorithm for two commutative

normally 2-generalized hybrid mappings S, T : C→ H, defined as:
x1 = x ∈ C;

yn = αnxn + (1− αn)
1

(n+1)2

∑n
k=0

∑n
l=0 SkTlxn;

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖};
xn+1 = PCn+1un+1, ∀n ∈N,

(1.3)

They proved that {xn} converges strongly to z0 = PF(S)∩F(T)x, the metric projection of x onto the

common fixed point set.

More recently, Kondo [20] considered two normally 2-generalized hybrid mappings S, T and

proposed the following shrinking projection algorithm:
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
x1 = x ∈ C, C1 = C;

yn = anxn + bn
1
n
∑n

k=0 Skxn + cn
1
n
∑n

k=0 Tkxn;

Cn+1 = {z ∈ Cn : ‖yn − z‖ ≤ ‖xn − z‖};
xn+1 = PCn+1un+1, ∀n ∈N,

(1.4)

He proved that the sequence {xn} converges strongly to a point p ∈ F(S)∩ F(T).
On the other hand, the split equilibrium problem (SEP) involves finding a point

u ∈ C such that F(u, v) ≥ 0 ∀v ∈ C, (1.5)

and

u∗ = Bu ∈ Q such that G(u∗, w) ≥ 0 ∀w ∈ D, (1.6)

where C ⊂ H1 and D ⊂ H2 are nonempty closed convex subsets of real Hilbert spaces, B : H1 → H2

is a bounded linear operator, and F : C×C→ R, G : D×D→ R are bifunctions.

Let the solution set of the SEP defined by (1.5)-(1.6) be denoted by

Γ := {u ∈ EP(F) : Bu ∈ EP(G)}.

It is easy to observe that if H1 = H2, C = D, and B = I is the identity operator, then the SEP

reduces to the classical equilibrium problem in the sense of Blum and Oettli [7], with solution

set EP(F) = EP(G). Furthermore, if F(u, v) = 〈 f (u), v − u〉 and G(u∗, w) = 〈g(u∗), w − u∗〉, then

the SEP reduces to the split variational inequality problem (SVIP) [11], which has been successfully

applied to real-world problems such as image reconstruction, phase retrieval, signal processing,

data compression, sensor networks, and inverse problems; see, for example, [8–10, 12, 13] and

references therein.

Several researchers have proposed and analyzed iterative algorithms for finding common el-

ements in the solution sets of fixed points of the aforementioned mappings and equilibrium

problems. For instance, Alizardeh and Moradlou [5] established weak convergence theorems for

approximating a common element in the solution set of an equilibrium problem and the fixed

point set of a 2-generalized hybrid mapping S in Hilbert spaces. They considered the sequence

{xn} generated by:
x1 = x ∈ E;

un ∈ E such that f (un, y) + 1
rn
〈y− un, un − xn〉 ≥ 0, ∀y ∈ C;

yn = (1− βn)xn + βnSxn;

xn+1 = (1− αn)xn + αnSyn, ∀n ∈N,

(1.7)

They proved that {xn} converges weakly to v = limn→∞ PF(S)∩EP( f )x1, where PF(S)∩EP( f )x1 is the

metric projection of x1 onto the set F(S) ∩ EP( f ), E ⊂ H is a nonempty closed convex set, and

f : E× E→ R is a bifunction.

In another development, Zhao et al. [29] proposed a strongly convergent algorithm for solving

the SEP and fixed point problem of a 2-generalized hybrid mapping S. The sequence {xn} is defined

by:
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

x0 ∈ C, D1 = C1;

un = TF1
rn

[
I − γA∗(I − TF2

rn
)A

]
xn;

vn = (1− βn)un +
βn
n

∑n−1
k=0 Skun;

yn = (1− αn)un +
αn
n

∑n−1
k=0 Skvn;

Dn+1 = {x ∈ Dn : ‖yn − x‖ ≤ ‖xn − x‖};
xn+1 = PDn+1x0, ∀n ∈N.

(1.8)

They proved that {xn} converges strongly to a common element in the solution set of the SEP

and the fixed point set of S.

More recently, Haruna et al. [14, 15] considered finite families of commutative normally n-

generalized hybrid mappings S1, S2, . . . , SN : C→ C, and defined the sequence {Snx} by:

Snx =
1

(n + 1)N

n∑
τ1=0

n∑
τ2=0

· · ·

n∑
τN=0

Sτ1
1 Sτ2

2 · · · S
τN
N x, (1.9)

for all n ∈ N, where τ1, τ2, . . . , τN ∈ N ∪ {0}. They showed that {Snx} converges weakly to a

point q ∈
⋂N

i=1 F(Si), where

q = lim
τ1,τ2,...,τN∈D

PTτ1
1 Tτ2

2 · · ·T
τN
N x,

P is the metric projection of H onto
⋂N

i=1 F(Ti), and D is a directed set.

Motivated by these developments, this work proposes an accelerated algorithm that incorporates

Cesàro averaging within a shrinking projection framework. The algorithm targets the common

fixed point set of a finite family of commutative normally m-generalized hybrid mappings, while

simultaneously solving a split equilibrium problem. The proposed scheme is designed to achieve

strong convergence under mild assumptions, and contributes to the growing literature on ergodic

methods in nonlinear analysis.

Key contributions include:

(1) The normally m-generalized hybrid mappings used here generalize those considered in

[5], [16], [17], [18], [29] as special cases.

(2) Our algorithm approximates a common element in the intersection of fixed point sets of

finitely many commutative nonlinear mappings that also solve split equilibrium problems.

In contrast, algorithms in (1.2), (1.3), and (1.4) target only one or two mappings, and those

in (1.7), (1.9) yield weak convergence.

(3) The step size is independent of the spectral radius, simplifying computation compared to

Zhao et al. [29] (see (1.8)).

(4) Numerical results show that our algorithm converges faster than (1.8).

In light of these contributions, our results extend and generalize the foundational work of

Alizardeh and Moradlou [5], Baillon [6], Haruna et al. [14, 15], Hojo et al. [16–18], and Zhao et

al. [29].
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2. Preliminaries

In this section, we present relevant definitions and existing results that will be used in establish-

ing our main theorems.

Lemma 2.1 ( [25]). Let H be a real Hilbert space. Then for all x, y ∈ H and α ∈ R, the following identities
hold:

(i) ‖x− y‖2 = ‖x− z‖2 + ‖z− y‖2 + 2〈x− z, z− y〉;
(ii) ‖αx + (1− α)y‖2 = α‖x‖2 + (1− α)‖y‖2 − α(1− α)‖x− y‖2.

Let C ⊂ H be a nonempty closed convex set. It is well known that for each v ∈ H, there exists a

unique point u = PCv ∈ C such that

‖v− u‖ = inf
w∈C
‖v−w‖,

where PC : H→ C is called the metric projection of H onto C.

Lemma 2.2 ( [25]). Let v ∈ H and u ∈ C. Then u = PCv if and only if

〈v− u, w− u〉 ≤ 0, ∀w ∈ C.

Moreover, for all z, w ∈ C, the following inequality holds:

‖z− u‖2 + ‖u−w‖2 ≤ ‖z−w‖2. (2.1)

The following identity, due to Maruyama et al. [24], will also be useful:

‖αx + βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβ‖x− y‖2 − αγ‖x− z‖2 − βγ‖y− z‖2, (2.2)

for all x, y, z ∈ H and α, β,γ ∈ R with α+ β+ γ = 1.

To solve equilibrium problems, we assume the bifunction g : C×C→ R satisfies the following

conditions (see [7]):

(A1) g(x, x) = 0 ∀x ∈ C;

(A2) g is monotone, i.e., g(x, y) + g(y, x) ≤ 0 ∀x, y ∈ C;

(A3) lim supt→0+ g(x + t(z− x), y) ≤ g(x, y) ∀x, y, z ∈ C;

(A4) For each fixed x ∈ C, the function y 7→ g(x, y) is convex and lower semicontinuous.

Lemma 2.3 ( [7]). Let C ⊂ H be a nonempty closed convex set, and let g : C × C → R be a bifunction
satisfying conditions (A1)–(A4). Then for any r > 0 and x ∈ H, there exists z ∈ C such that

g(z, y) +
1
r
〈z− x, z− y〉 ≥ 0, ∀y ∈ C.

The following result, due to Combettes [13], characterizes the resolvent operator associated with

g:

Lemma 2.4 ( [13]). Let r > 0 and x ∈ H. Define the operator Tr : H→ C by

Trx =
{
z ∈ C : g(z, y) +

1
r
〈y− z, z− x〉 ≥ 0, ∀y ∈ C

}
.

Then the following properties hold:
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(i) Tr is single-valued;
(ii) Tr is firmly nonexpansive;

(iii) F(Tr) = EP(g);
(iv) EP(g) is closed and convex;
(v) For all x ∈ H and p ∈ F(Tr), one has

‖p− Trx‖2 + ‖Trx− x‖2 ≤ ‖p− x‖2.

Finally, we recall a useful property of normally m-generalized hybrid mappings, which will play

a key role in our analysis.

Lemma 2.5 ( [21]). Let H be a real Hilbert space and C ⊂ H a nonempty set. Let T : C→ H be a normally
m-generalized hybrid mapping with nonempty fixed point set F(T). Then T is quasi-nonexpansive.

Proof. Since T is normally m-generalized hybrid mapping, then there exist αk, βk ∈ R (k =

0, 1, · · · , m) such that
m∑

k=0

αk+1||Tm−kx− Ty||2 +
m∑

k=0

βk+1||Tm−kx− y||2 ≤ 0, ∀y ∈ C. (2.3)

By hypothesis, F(T) , ∅. Thus, let x ∈ F(T) so that from (2.3) we get
m∑

k=0

αk+1||x− Ty||2 +
m∑

k=0

βk+1||x− y||2 ≤ 0, ∀y ∈ C.

This implies,
m∑

k=0

αk+1||x− Ty||2 ≤ −
m∑

k=0

βk+1||x− y||2 ∀y ∈ C.

Since
∑m

k=0 αk+1 > 0, we get

||x− Ty||2 ≤ −
m∑

k=0

βk+1

αk+1
||x− y||2 ∀y ∈ C.

Using the fact that
∑m

k=0(αk+1 + βk+1) ≥ 0, we get

||x− Ty||2 ≤ ||x− y||2 ∀y ∈ C.

Therefore, ||x − Ty|| ≤ ||x − y|| ∀y ∈ C. Hence, T is quasi-nonexpansive. This completes the

proof. �

3. Main Results

In this section, we establish the strong convergence of a sequence generated by a new accelerated

shrinking projection algorithm. The algorithm approximates a common element in the solution

set of fixed points of finitely many commutative normally m-generalized hybrid mappings and

the solution set of a split equilibrium problem in real Hilbert spaces.

We begin by stating the assumptions and describing the iterative scheme.
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Assumption 3.1. Let the following conditions hold:

(A1) C1 ⊂ H1 and C2 ⊂ H2 are nonempty, closed, and convex subsets of real Hilbert spaces H1

and H2, respectively.

(A2) T : H1 → H2 is a bounded linear operator.

(A3) F : C1×C1 → R and G : C2×C2 → R are bifunctions satisfying the conditions of Lemma 2.3.

(A4) JF
rn

: H1 → C1 and JG
rn

: H2 → C2 denote the resolvent operators associated with F and G,

respectively.

(A5) S1, S2, . . . , SN : C1 → C1 and T1, T2, . . . , TN : C1 → C1 are finite families of commutative,

normally m-generalized hybrid mappings. The indices µ1, . . . ,µN and τ1, . . . , τN belong to

N∪ {0}.

(A6) The sequences {αn}, {βn}, {γn} ⊂ (0, 1) satisfyαn + βn +γn = 1 for all n ∈N, and limn→∞ αn =

0.

(A7) The solution set

S :=

 N⋂
i=1

Fix(Si)

∩
 N⋂

i=1

Fix(Ti)

∩ Γ , ∅, where Γ :=
{
u ∈ EP(F) : Bu ∈ EP(G)

}
.

Here, EP(F) and EP(G) denote the solution sets of the equilibrium problems associated

with F and G, respectively.

Algorithm 3.1 Accelerated Shrinking Projection Algorithm
Let u0, u1, v1 ∈ C1, and set C1 = C. Generate sequences {un}, {vn} ⊂ C1 as follows:

Step 1. Compute:

xn = un + θn(un − un−1), θn ∈ (0, 1).

Define: 
Sn =

1
(n + 1)N

∑n
µ1=0 · · ·

∑n
µN=0 Sµ1

1 · · · S
µN

N ,

Tn =
1

(n + 1)N

∑n
τ1=0 · · ·

∑n
τN=0 Tτ1

1 · · ·T
τN
N .

(3.1)

Step 2. Compute:

yn = αnvn + βnSnxn + γnTnxn.

Choose a step size δn such that for any fixed η > 0,
0 < η < δn ≤

‖(I − JG
rn
)Tyn‖

2

‖T∗(I − JG
rn
)Tyn‖2

− η, if Tyn = JG
rn

Tyn;

δn = δ > 0, otherwise.

(3.2)

Step 3. Compute:

vn+1 = JF
rn

(
yn − δnT∗(I − JG

rn
)Tyn

)
.

Update the constraint set:

Cn+1 =
{
p ∈ Cn : ‖vn+1 − p‖2 ≤ αn‖vn − p‖2 + (1− αn)‖xn − p‖2

}
.

Step 4. Compute:

un+1 = PCn+1 u0.

Set n := n + 1 and return to Step 1.
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Theorem 3.2. Let Assumption 3.1 holds and the sequence {un} be defined by the Algorithm 3.1. Then {un}

converges strongly to an element v ∈ S = ∩N
i=1F(Ti)∩∩

N
i=1F(Si)∩ Γ.

Proof. Let u ∈ S and zn = (yn − δnT∗(I − JG
rn
)Tyn). Since the mappings S1, S2, · · · , SN and

T1, T2, · · · , TN are quasi-nonexpansive, then

||Snxn − u|| = ||
1

(n + 1)N

n∑
µ1=0

n∑
µ2=0

· · ·

n∑
µN=0

Sµ1
1 Sµ2

2 · · · S
µN
N xn − u||

≤
1

(n + 1)N

n∑
µ1=0

n∑
µ2=0

· · ·

n∑
µN=0

||Sµ1
1 Sµ2

2 · · · S
µN
N xn − u||

≤
1

(n + 1)N

n∑
µ1=0

n∑
µ2=0

· · ·

n∑
µN=0

||xn − u||

= ||xn − u||.

Similarly,

||Tnxn − u|| = ||
1

(n + 1)N

n∑
τ1=0

n∑
τ2=0

· · ·

n∑
τN=0

Tτ1
1 Tτ2

2 · · ·T
τN
N xn − u||

≤
1

(n + 1)N

n∑
τ1=0

n∑
τ2=0

· · ·

n∑
τN=0

||Tτ1
1 Tτ2

2 · · ·T
τN
N xn − u||

≤
1

(n + 1)N

n∑
τ1=0

n∑
τ2=0

· · ·

n∑
τN=0

||xn − u||

= ||xn − u||.

Also,

||zn − u||2 = ||yn − δnT∗(I − JG
rn
)Tyn) − u||2

= ||yn − u||2 − 2δn〈yn − u, T∗(I − JG
rn
)Tyn)〉+ δ2

n||T
∗(I − JG

rn
)Tyn)||

2

= ||yn − u||2 − 2δn〈Tyn − Tu, (I − JG
rn
)Tyn)〉+ δ2

n||T
∗(I − JG

rn
)Tyn)||

2

≤ ||yn − u||2 − δn||(I − JG
rn
)Tyn)||

2 + δ2
n||T

∗(I − JG
rn
)Tyn)||

2

= ||yn − u||2 − δn
[
||(I − JG

rn
)Tyn)||

2
− δn||T∗(I − JG

rn
)Tyn)||

2
]
. (3.3)

We see from

δn ≤
||(I − JG

rn
)Tyn)||2

||T∗(I − JG
rn
)Tyn)||2

− η

⇐⇒ η||T∗(I − JG
rn
)Tyn)||

2
≤ ||(I − JG

rn
)Tyn)||

2
− δn||T∗(I − JG

rn
)Tyn)||

2.

Also, the fact that η < δn implies

η2
||T∗(I − JG

rn
)Tyn)||

2 < ηδn||T∗(I − JG
rn
)Tyn)||

2

≤ δn
[
||(I − JG

rn
)Tyn)||

2
− δn||T∗(I − JG

rn
)Tyn)||

2
]
. (3.4)
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Using (3.4) in (3.3) we get

||zn − u||2 ≤ ||yn − u||2 − η2
||T∗(I − JG

rn
)Tyn)||

2. (3.5)

Thus, using (3.5)

||vn+1 − u||2 = ||JF
rn

zn − Jrnu||2

≤ ||zn − u||2

≤ ||yn − u||2 − η2
||T∗(I − JG

rn
)Tyn)||

2 (3.6)

≤ ||yn − u||2. (3.7)

But,

||yn − u||2 = ||αnvn + βnSnxn + γnTnxn − u||2

≤ αn||vn − u||2 + βn||Snxn − u||2 + γn||Tnxn − u||2

≤ αn||vn − u||2 + (βn + γn)||xn − u||2

= αn||vn − u||2 + (1− αn)||xn − u||2. (3.8)

It follows from (3.7) and (3.8) that

||vn+1 − u||2 ≤ αn||vn − u||2 + (1− αn)||xn − u||2. (3.9)

Therefore, u ∈ Cn+1. Hence Cn is nonempty, closed and convex subset of G since S ⊂ Cn+1 ⊂ Cn

for all n ≥ 1, it follows from un = PCnu0 and Lemma 2.2 that

||un − u0|| = ||PCnu0 − u0|| ≤ ||u− u0||, ∀u ∈ S.

Thus, the set {||un − u0||} is bounded. Hence the sequences {un}, {vn}, {xn} and {yn} are all bounded.

Furthermore, un = PCnu0 implies that

0 ≤ 〈u0 − un, un − un+1〉

=
1
2

[
||un+1 − u0||

2
− ||un+1 − un||

2
− ||un − u0||

2
]
.

Thus, we see that

0 ≤ ||un+1 − u0||
2
− ||un+1 − un||

2
− ||un − u0||

2 (3.10)

⇒ ||un − u0|| ≤ ||un+1 − u0||.

Therefore, {||un − u0||} is monotone increasing. Hence, lim
n→∞
||un − u0|| exists. It follows from (3.10)

that

||un+1 − un||
2
≤ ||un+1 − u0||

2
− ||un − u0||

2.

Taking limit as n→∞we get

lim
n→∞
||un+1 − un|| = 0. (3.11)

In similar passion, we may take for any n > m ≥ 1, um = PCmu0 so that

||un − u0||
2 = ||un − um + um − u0||

2
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= ||un − um||
2 + ||um − u0||

2 + 2〈un − um, um − u0〉

≥ ||un − um||
2 + ||um − u0||

2.

Thus,

||un − um||
2
≤ ||un − u0||

2
− ||um − u0||

2
→ 0 as n, m→∞.

Therefore, the sequence {un} is Cauchy. Hence, by completeness of H we see that

un → v ∈ H (say) as n→∞. (3.12)

Using Algorithm 3.1 and (3.11), we see that

lim
n→∞
||un − xn|| = lim

n→∞
θn||un − un−1|| = 0. (3.13)

It follows from (3.12) and (3.13) that xn → v. Also, it follows from (3.11) and (3.13) that

lim
n→∞
||un+1 − xn|| = 0. (3.14)

Since un+1 = PCn+1u0 ∈ Cn+1 ⊂ Cn, then

||vn+1 − un+1||
2
≤ αn||vn − un+1||

2 + (1− αn)||xn − un+1||
2.

With (3.14) and the fact that lim
n→∞

αn = 0, we get that

lim
n→∞
||vn+1 − un+1|| = 0. (3.15)

Using (3.13), (3.14) and (3.15), we get

lim
n→∞
||vn+1 − xn|| = 0, lim

n→∞
||vn+1 − un|| = 0. (3.16)

Combining (3.6), (3.8) and Cauchy-Schwartz inequality we get

η2
||T∗(I − JG

rn
)Tyn||

2
≤ ||yn − u||2 − ||vn+1 − u||2

≤ αn||vn − u||2 + (1− αn)||xn − u||2 − ||vn+1 − u||2

= αn(||vn − u||2 − ||xn − u||2) + (||xn − u||2 − ||vn+1 − u||2)

= αn(||vn − u||2 − ||xn − u||2) + (||xn − vn+1||
2 + 2〈xn − vn+1, vn+1 − u〉)

≤ αn(||vn − u||2 − ||xn − u||2)

+ ||xn − vn+1||(||xn − vn+1||+ 2||vn+1 − u||). (3.17)

Using (3.16) with the fact that lim
n→∞

αn = 0 and η > 0 on (3.17), we obtain

lim
n→∞
||T∗(I − JG

rn
)Tyn|| = 0. (3.18)

Thus, we see that

lim
n→∞
||zn − yn|| = lim

n→∞
δn||T∗(I − JG

rn
)Tyn|| = 0. (3.19)

From (3.3) and Cauchy-Schwartz inequality, we get

δn||(I − JG
rn
)Tyn||

2
≤ ||yn − u||2 − ||zn − u||2 + δ2

n||T
∗(I − JG

rn
)Tyn||

2

= ||yn − zn||
2 + 2〈yn − zn, zn − u〉+ δ2

n||T
∗(I − JG

rn
)Tyn||

2
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≤ ||yn − zn||(||yn − zn||+ 2||zn − u||) + δ2
n||T

∗(I − JG
rn
)Tyn||

2. (3.20)

Taking limit of (3.20) as n→∞, it follows from (3.18), (3.19) and the fact that δn = δ > 0 that

lim
n→∞
||(I − JG

rn
)Tyn|| = 0. (3.21)

on the other hand, using the fact that JF
rn

is firmly nonexpansive and JF
rn

u = u we get

2||vn+1 − u||2 = 2||JF
rn

zn − JF
rn

u||2

≤ 2〈zn − u, vn+1 − u〉

= ||zn − u||2 + ||vn+1 − u||2 − ||vn+1 − zn||
2.

Thus,

||vn+1 − zn||
2
≤ ||yn − u||2 − ||vn+1 − u||2

≤ αn||vn − u||2 + (1− αn)||xn − u||2 − ||vn+1 − u||2

= αn(||vn − u||2 − ||xn − u||2) + (||xn − u||2 − ||vn+1 − u||2)

= αn(||vn − u||2 − ||xn − u||2) + (||xn − vn+1||
2 + 2〈xn − vn+1, vn+1 − u〉)

≤ αn(||vn − u||2 − ||xn − u||2)

+ ||xn − vn+1||(||xn − vn+1||+ 2||vn+1 − u||). (3.22)

By taking limit of (3.22) as n→∞, we get

lim
n→∞
||vn+1 − zn|| = 0. (3.23)

It follows from (3.16), (3.19) and (3.23) that

lim
n→∞
||vn+1 − yn|| = lim

n→∞
||un − yn|| = lim

n→∞
||xn − yn|| = 0. (3.24)

Also,

||yn − u||2 = ||αnvn + βnSnxn + γnTnxn − u||2

≤ αn||vn − u||2 + βn||Snxn − u||2 + γn||Tnxn − u||2

− βnγn||Snxn − Tnxn||
2

≤ αn||vn − u||2 + (1− αn)||xn − u||2 − βnγn||Snxn − Tnxn||
2.

This implies

βnγn||Snxn − Tnxn||
2
≤ αn||vn − u||2 + (1− αn)||xn − u||2 − ||yn − u||2

= αn(||vn − u||2 − ||xn − u||2) + (||xn − u||2 − ||yn − u||2)

= αn(||vn − u||2 − ||xn − u||2) + (||xn − yn||
2 + 2〈xn − yn, yn − u〉)

≤ αn(||vn − u||2 − ||xn − u||2) + ||xn − yn||(||xn − yn||+ 2||yn − u||).
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Taking limit as n→∞ keeping in mind that βn,γn ∈ (0, 1) and lim
n→∞

αn = 0 we get

lim
n→∞
||Snxn − Tnxn|| = 0. (3.25)

Using (3.25) and the fact that

||yn − Tnxn|| ≤ αn||vn − Snxn||+ βn||Snxn − Tnxn||,

implies,

lim
n→∞
||yn − Tnxn|| = 0. (3.26)

It follows from (3.24), (3.25) and (3.26) that

lim
n→∞
||xn − Tnxn|| = 0, lim

n→∞
||xn − Snxn|| = 0. (3.27)

It is known that for any subsequence {xn j} of {xn}, xn j ⇀ v, since xn → v. Thus, using (3.27) we

conclude that both Sn jxn j ⇀ v and Tn jxn j ⇀ v. We now show that v ∈ S. Since S1 is normally

m-generalized hybrid mapping, then by (1.1) there exist αk, βk ∈ R (k = 0, 1, · · · , m) such that

m∑
k=0

αk+1||Sm−k
1 x− S1y||2 +

m∑
k=0

βk+1||Sm−k
1 x− y||2 ≤ 0, ∀x, y ∈ C1. (3.28)

Using Lemma 2.1(1) on (3.28) we get for all x, y ∈ C1 that

m∑
k=0

αk+1

(
||Sm−k

1 x− y||2 + ||y− S1y||2 + 2〈Sm−k
1 x− y, y− S1y〉

)
+

m∑
k=0

βk+1||Sm−k
1 x− y||2 ≤ 0.

This implies, for all x, y ∈ C1 that

(
m∑

k=0

αk+1 +
m∑

k=0

βk+1)||Sm−k
1 x− y||2 (3.29)

+
m∑

k=0

αk+1

(
||y− S1y||2 + 2〈Sm−k

1 x− y, y− S1y〉
)
≤ 0. (3.30)

Since
∑m

k=0(αk + βk) ≥ 0, then we obtain from (3.29) that

m∑
k=0

αk+1

(
||y− S1y||2 + 2〈(Sm−k

1 x− x) + (x− y), y− S1y〉
)
≤ 0, ∀x, y ∈ C. (3.31)

Thus, inequality (3.31) becomes

m∑
k=0

αk+1

(
||y− S1y||2 + 2〈x− y, y− S1y〉

)
+ 2

m−1∑
k=0

αk+1〈Sm−k
1 x− x, y− S1y〉 ≤ 0, (3.32)
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for all x, y ∈ C1. Since {xn} is bounded, then ||xn − v|| ≤ K for some K > 0. Thus, ||Sµ1
1 Sµ2

2 · · · S
µN
N xn −

v|| ≤ ||Sµ2
2 · · · S

µN
N xn − v|| ≤ · · · ≤ ||SµN

N xn − v|| ≤ ||xn − v|| ≤ K. Therefore, the set {Sµ1
1 Sµ2

2 · · · S
µN
N xn} is

bounded in C1. Hence, by replacing x with Sµ1
1 Sµ2

2 · · · S
µN
N xn in (3.32) we get that for all y ∈ C1,

m∑
k=0

αk+1

(
||y− S1y||2 + 2〈Sµ1

1 Sµ2
2 · · · S

µN
N xn − y, y− S1y〉

)
+ 2

m−1∑
k=0

αk+1〈S
µ1+m−k
1 Sµ2

2 · · · S
µN
N xn − Sµ1

1 Sµ2
2 · · · S

µN
N xn, y− S1y〉 ≤ 0. (3.33)

Let the inequality (3.33) be summed up with respect to µ1 = 0, 1, · · · , n

m∑
k=0

αk+1

(
(n + 1)||y− S1y||2 + 2〈

n∑
µ1=0

Sµ1
1 Sµ2

2 · · · S
µN
N xn − (n + 1)y, y− S1y〉

)
+ 2

m−1∑
k=0

αk+1〈(Sn+m−k
1 Sµ2

2 · · · S
µN
N xn + · · ·+ Sn+1

1 Sµ2
2 · · · S

µN
N xn)

− (Sm−(k+1)
1 Sµ2

2 · · · S
µN
N xn + · · ·+ Sµ2

2 · · · S
µN
N xn), y− S1y〉 ≤ 0, (3.34)

for all y ∈ C1. Again, let the inequality (3.34) be summed up with respect to µ2 = 0, 1, · · · , n

m∑
k=0

αk+1

(
(n + 1)2

||y− S1y||2 + 2〈
n∑

µ1=0

n∑
µ2=0

Sµ1
1 Sµ2

2 · · · S
µN
N xn

− (n + 1)2y, y− S1y〉
)

+ 2
n∑

µ2=0

m−1∑
k=0

αk+1〈(Sn+m−k
1 Sµ2

2 · · · S
µN
N xn + · · ·+ Sn+1

1 Sµ2
2 · · · S

µN
N xn)

− (Sm−(k+1)
1 Sµ2

2 · · · S
µN
N xn + · · ·+ Sµ2

2 · · · S
µN
N xn), y− S1y〉 ≤ 0, (3.35)

for all y ∈ C. Continue summing inequality (3.35) until with respect to µN = 0, 1, · · · , n we get for

all y ∈ C that

m∑
k=0

αk+1

(
(n + 1)N

||y− S1y||2 + 2〈
n∑

µ1=0

n∑
µ2=0

· · ·

n∑
µN=0

Sµ1
1 Sµ2

2 · · · S
µN
N xn

− (n + 1)N y, y− S1y〉
)

+ 2
n∑

µ2=0

· · ·

n∑
µN=0

m−1∑
k=0

αk+1〈(Sn+m−k
1 Sµ2

2 · · · S
µN
N xn + · · ·+ Sn+1

1 Sµ2
2 · · · S

µN
N xn)

− (Sm−(k+1)
1 Sµ2

2 · · · S
µN
N xn + · · ·+ Sµ2

2 · · · S
µN
N xn), y− S1y〉 ≤ 0. (3.36)

Dividing inequality (3.36) through by (n + 1)N keeping in mind that Sn =
1

(n+1)N

∑n
µ1=0

∑n
µ2=0 · · ·

∑n
µN=0
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Sµ1
1 Sµ2

2 · · · S
µN
N we get

m∑
k=0

αk+1

(
||y− S1y||2 + 2〈Snxn − y, y− S1y〉

)
+

n∑
µ2=0

· · ·

n∑
µN=0

m−1∑
k=0

2αk+1

(n + 1)N 〈(S
n+m−k
1 Sµ2

2 · · · S
µN
N xn + · · ·+ Sn+1

1 Sµ2
2 · · · S

µN
N xn)

− (Sm−(k+1)
1 Sµ2

2 · · · S
µN
N Sn + · · ·+ Sµ2

2 · · · S
µN
N xn), y− S1y〉 ≤ 0, ∀y ∈ C. (3.37)

Now replacing n with n j in (3.37) and allowing j→∞ (remembering that Sn jxn j ⇀ v) we get

m∑
k=0

αk+1

(
||y− S1y||2 + 2〈v− y, y− S1y〉

)
≤ 0, ∀y ∈ C1.

Using the fact that
∑m

k=0 αk+1 > 0, we get

||y− S1y||2 + 2〈v− y, y− S1y〉 ≤ 0, ∀y ∈ C1. (3.38)

Applying (1) of Lemma 2.1 on (3.39), we get

||y− S1y||2 + ||v− S1y||2 − ||v− y||2 − ||y− S1y||2 ≤ 0, ∀y ∈ C1.

Thus,

||v− S1y||2 ≤ ||v− y||2, ∀y ∈ C1. (3.39)

Since S1, S2, · · · , SN are commutative in nature, we can replace S1 with either of S2, · · · , SN. Thus,

we get from (3.39) that

||v− S2y||2 ≤ ||v− y||2 (3.40)
...

||v− SN y||2 ≤ ||v− y||2, ∀y ∈ C1. (3.41)

By setting y = v in (3.39), (3.40), ·, (3.41), we get v = S1v = S2v = · · · = SNv. Therefore,

v ∈ ∩N
i=1F(Si). Following similar argument, we see that v ∈ ∩N

i=1F(Ti).

Next we show that v ∈ Γ. We see from (3.24) that yn j ⇀ v. Since T is bounded and linear then

Tyn j ⇀ Tv. Since JG
rn

is nonexpansive and hence demiclosed, then Tv ∈ F(JG
rn
). We also have from

(3.19) that zn j ⇀ v. Since JF
rn

is nonexpansive and lim
n→∞
||JF

rn
zn − zn|| = ||vn+1 − zn|| = 0, then we have

v ∈ F(JF
rn
). Therefore, v ∈ Γ. Hence, v ∈ S. �

4. Applications

In this section, we apply Theorem 3.2, and obtain some new strong convergence theorems for

finite commutative normally generalized hybrid mappings, m-generalized hybrid mapping and

normally 2-generalized hybrid mappings in Hilbert spaces. These results extend and generalize

the corresponding ones in Alizardeh and Moradlou [5], Baillon [6], Haruna et al. ( [14], [15]), Hojo

et al. ( [16], [17], [18]) and Zhao et al. [29].
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Theorem 4.1. Let the mappings S1, S2, · · · , SN : C1 → C1 and T1, T2, · · · , TN : C1 → C1 be finite
commutative normally generalized hybrid mappings such that Assumption 3.1 holds and the sequence {un}

be defined by the Algorithm 3.1. Then {un} converges strongly to an element v ∈ S = ∩N
i=1F(Ti) ∩

∩
N
i=1F(Si)∩ Γ.

Proof. By setting m = 1, we see that the class of normally m-generalized hybrid mappings reduces

to that of normally generalized hybrid. Hence, by applying Theorem 3.2, we get the desired results.

This completes the proof. �

Theorem 4.2. Let the mappings S1, S2, · · · , SN : C1 → C1 and T1, T2, · · · , TN : C1 → C1 be finite
commutative m-generalized hybrid mappings such that Assumption 3.1 holds and the sequence {un} be
defined by the Algorithm 3.1. Then {un} converges strongly to an element v ∈ S = ∩N

i=1F(Ti)∩∩
N
i=1F(Si)∩

Γ.

Proof. Since the class of normally m-generalized hybrid mappings reduces to that of m-generalized

hybrid by setting k = k − 1 and αk = βk = −1, then by applying Theorems 3.2, we get the desired

results. This completes the proof. �

Theorem 4.3. Let the mappings S1, S2, · · · , SN : C1 → C1 and T1, T2, · · · , TN : C1 → C1 be finite
commutative normally 2-generalized hybrid mappings such that Assumption 3.1 holds and the sequence
{un} be defined by the Algorithm 3.1. Then {un} converges strongly to an element v ∈ S = ∩N

i=1F(Ti) ∩

∩
N
i=1F(Si)∩ Γ.

Proof. By setting m = 2, the class of normally m-generalized hybrid mappings reduces to that of

normally 2-generalized hybrid. Hence, by applying Theorems 3.2, we get the desired results. This

completes the proof. �

5. Numerical Example

In this section, we give a numerical example and used it to compare our result with some existing

ones under consideration. Let H = R, C = [−1, 1], k = 0, 1, N = 2 and µ1 = µ2 = τ1 = τ2 = 0, 1.

Define F, G : C × C → R by F(x, y) = 2y2 + xy − 3x2 and G(x, y) = y2 + xy − 2x2, we see that

both F and G satisfy conditions (A1) − (A4). Also, following similar technique as in [5], we see

that the resolvents JF
r (x) = x

5r+1 and JG
r (x) = x

3r+1 for r > 0. Since F(JF
rn
) = F(JG

rn
) = 0, then

by Lemma 2.4 we get EP(F) = EP(G) = 0. Define S1, T1 : C → C by S1(x) = T1(x) = x
2 and

S2, T2 : C → C by S2(x) = T2(x) = 2
3 x for all x ∈ C, we see that S1S2x = S2S1x = x

3 and T1T2x =

T2T1x = x
3 . Hence the mappings are commutative normally 2-generalized hybrid mappings

with F(S1) = F(S2) = F(T1) = F(T2) = 0. With the choice of θn = n
2n+3 , an = αn = 1

3 + 1
2n ,

bn = βn = 1
3 −

1
3n ,cn = γn = 1

3 −
1

6n , δn = δ = 1
3 > 0 and r = 1

2 , we see that the algorithms (1.4), (1.8)
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and (3.1) respectively become,
x0 ∈ [−1, 1];

yn = ( 1
3 +

1
2n )xn +

1
n (

1
3 −

1
3n )(xn + Sxn) +

1
n (

1
3 −

1
6n )(xn + Txn);

Cn+1 = [εn,∞), where εn := xn+yn
2 ;

xn+1 = PCn+1un+1 , ∀n ∈N.

(5.1)



x0 ∈ [−1, 1];

un = 3
8 xn,

vn = ( 2
3 +

1
3n )un +

1
n (

1
3 −

1
3n )(un + Sun);

yn = ( 2
3 −

1
2n )un +

1
n (

1
3 +

1
2n )(vn + Svn);

Dn+1 = [εn,∞), where εn := xn+yn
2 ;

xn+1 = PDn+1x0, ∀n ∈N.

(5.2)

and 

u0, u1 ∈ [−1, 1], v1 = 1

xn = un +
n

2n+3 (un − un−1;

yn = ( 1
3 +

1
2n )vn +

1
(n+1)2 (

1
3 −

1
3n )(xn + S1xn + S2xn + S1S2xn)

+ 1
(n+1)2 (

1
3 −

1
6n )(xn + T1xn + T2xn + T1T2xn);

vn+1 = 3
8 yn;

Cn+1 = [εn,∞), where εn =
v2

n+1−x2
n+( 2

3+
1

3n )(x
2
n−v2

n)

2(vn+1−xn+( 2
3+

1
3n )(xn−vn))

;

xn+1 = PCn+1u0.

(5.3)

Hence, the sequence generated by algorithms (5.1),(5.2) and (5.3) converges to 0 as shown

graphically below. The codes use in generating the graphs are written using MATLAB R2015a.

Figure 1. Converging Process of the Sequence {xn} Generated by Algorithms (5.1),

(5.2) and (5.3) with initial point x0 = 0.7 and x1 = 0.5.
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6. Conclusion

We approximate Cesàro mean sequences generated by finite commutative normally m-

generalized hybrid mappings using a new accelerated shrinking projection algorithms. Also,

we chose a step size to be independent of the spectral radius for easy computation. We then prove

that the algorithm converges strongly to a common element in solution set of fixed point of the

said mappings which also solve some split equilibrium problem in the space. As an application,

we established new strong convergence theorems for finite commutative normally generalized hy-

brid, m-generalized hybrid and normally 2-generalized hybrid mappings in the space. We finally

give a numerical example that shows how our algorithm out performs the existing ones under

consideration in terms of convergence rate as seen from the graph.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

References

[1] B. Ali, L. Yusuf Haruna, Fixed Point Approximations of Noncommutative Generic 2-Generalized Bregman Non-

spreading Mappings with Equilibriums, J. Nonlinear Sci. Appl. 13 (2020), 303–316. https://doi.org/10.22436/jnsa.

013.06.01.

[2] A. Bashir, H. Lawal Yusuf, I. Yusuf, Hybrid Inertial Algorithm for Fixed Point and Equilibrium Problems in

Reflexive Banach Spaces, Fixed Point Theory 23 (2022), 429–446. https://doi.org/10.24193/fpt-ro.2022.2.01.

[3] B. Ali, L.Y. Haruna, Attractive Point and Nonlinear Ergodic Theorems Without Convexity in Reflexive Banach

Spaces, Rend. Circ. Mat. Palermo Ser. II 70 (2020), 1527–1540. https://doi.org/10.1007/s12215-020-00574-7.

[4] B. Ali, L.Y. Haruna, Iterative Approximations of Attractive Point of A New Generalized Bregman Nonspreading

Mapping in Banach Spaces, Bull. Iran. Math. Soc. 46 (2019), 331–354. https://doi.org/10.1007/s41980-019-00260-0.

[5] S. Alizadeh, F. Moradlou, Weak Convergence Theorems for 2-Generalized Hybrid Mappings and Equilibrium

Problems, Commun. Korean Math. Soc. 31 (2016), 765–777. https://doi.org/10.4134/ckms.c150232.

[6] J.B. Baillon, Un Theoreme de Type Ergodique Pour Less Contractions Nonlinears dans Un Espaces de Hilbert, C.

R. Acad. Sci. Paris, Ser. A-B 280 (1975), 1511–1541.

[7] E. Blum, W. Oettli, From Optimization and Variational Inequalities to Equilibrium Problems, Math. Stud. 6 (1994),

123–145. https://cir.nii.ac.jp/crid/1572261551155331712.

[8] C. Byrne, Iterative Oblique Projection Onto Convex Sets and the Split Feasibility Problem, Inverse Probl. 18 (2002),

441–453. https://doi.org/10.1088/0266-5611/18/2/310.

[9] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A Unified Approach for Inversion Problems in Intensity-Modulated

Radiation Therapy, Phys. Med. Biol. 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001.

[10] Y. Censor, T. Elfving, N. Kopf, T. Bortfeld, The Multiple-Sets Split Feasibility Problem and Its Applications for

Inverse Problems, Inverse Probl. 21 (2005), 2071–2084. https://doi.org/10.1088/0266-5611/21/6/017.

[11] Y. Censor, A. Gibali, S. Reich, Algorithms for the Split Variational Inequality Problem, Numer. Algorithms 59

(2011), 301–323. https://doi.org/10.1007/s11075-011-9490-5.

[12] P. Combettes, The Convex Feasibility Problem in Image Recovery, Adv. Imaging Electron Phys. 95 (1996), 155–270.

https://doi.org/10.1016/s1076-5670(08)70157-5.

[13] P.L. Combettes, S.A. Hirstoaga, Equilibrium Programming in Hilbert Spaces, J. Nonlinear Convex Anal. 6 (2005),

117–136.

https://doi.org/10.22436/jnsa.013.06.01
https://doi.org/10.22436/jnsa.013.06.01
https://doi.org/10.24193/fpt-ro.2022.2.01
https://doi.org/10.1007/s12215-020-00574-7
https://doi.org/10.1007/s41980-019-00260-0
https://doi.org/10.4134/ckms.c150232
https://cir.nii.ac.jp/crid/1572261551155331712
https://doi.org/10.1088/0266-5611/18/2/310
https://doi.org/10.1088/0031-9155/51/10/001
https://doi.org/10.1088/0266-5611/21/6/017
https://doi.org/10.1007/s11075-011-9490-5
https://doi.org/10.1016/s1076-5670(08)70157-5


Int. J. Anal. Appl. (2025), 23:289 19

[14] .Y. Haruna, B. Ali, Y. Shehu, J. Yao, Attractive Point and Ergodic Theorems for Finite Generic N-Generalized

Bregman Nonspreading Mappings in Banach Spaces, J. Nonlinear Convex Anal. 24 (2023), 701–727.

[15] L.Y. Haruna, B. Ali, Y. Shehu, J. Yao, A Mean Convergence Theorem Without Convexity for Finite Commu-

tative Nonlinear Mappings in Reflexive Banach Spaces, Mathematics 10 (2022), 1678. https://doi.org/10.3390/

math10101678.

[16] M. Hojo, A. Kondo, W. Takahashi, Weak and Strong Convergence Theorems for Commutative Normally 2-

Generalized Hybrid Mappings in Hilbert Spaces, Linear Nonlinear Anal. 4 (2018), 117–134.

[17] M. Hojo, S. Takahashi, W. Takahashi, Attractive Point and Ergodic Theorems for Two Nonlinear Mappings in

Hilbert Spaces, Linear. Nonlinear Anal. 3 (2017), 275–286.

[18] M. Hojo, W. Takahashi, I. Termwuttipong, Strong Convergence Theorems for 2-Generalized Hybrid Mappings in

Hilbert Spaces, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 2166–2176. https://doi.org/10.1016/j.na.2011.10.

017.

[19] P. Kocourek, W. Takashi, J. Yao, Fixed Point Theorems and Weak Convergence Theorems for Generalized Hybrid

Mappings in Hilbert Spaces, Taiwan. J. Math. 14 (2010), 2497–2511. https://doi.org/10.11650/twjm/1500406086.

[20] A. Kondo, Mean Convergence Theorems Using Hybrid Methods to Find Common Fixed Points for Noncommu-

tative Nonlinear Mappings in Hilbert Spaces, J. Appl. Math. Comput. 68 (2021), 217–248. https://doi.org/10.1007/

s12190-021-01527-8.

[21] A. Kondo, W. Takahashi, Attractive Points and Weak Convergence Theorems for Normally N-Generalized Hybrid

Mappings in Hilbert Spaces, Linear Nonlinear Anal. 3 (2017), 297–310.

[22] A. Kondo, W. Takahashi, Weak Convergence Theorems to Common Attractive Points for Normally 2-Generalized

Hybrid Mappings With Errors, J. Nonlinear Convex Anal. 21 (2020), 2549–2570.

[23] L. Lin, W. Takahashi, Attractive Point Theorems and Ergodic Theorems for Nonlinear Mappings in Hilbert Spaces,

Taiwan. J. Math. 16 (2012), 1763–1779. https://doi.org/10.11650/twjm/1500406795.

[24] T. Maruyama, W. Takahashi, M. Yao, Fixed Point and Ergodic Theorems for New Nonlinear Mappings in Hilbert

Spasces, J. Nonlinear Convex Anal. 12 (2011), 185–197.

[25] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishers, Yokohama, (2009).

[26] W. Takahashi, Weak and Strong Convergence Theorems for Noncommutative 2-Generalized Hybrid Mappings in

Hilbert Spaces, J. Nonlinear Convex Anal. 19 (2018), 867–880.

[27] W. Takahashi, C.F. Wen, J.C. Yao, Strong Convergence Theorems by Hybrid Methods for Noncommutative Nor-

mally 2-Generalized Hybrid Mappings in Hilbert spaces, Appl. Anal. Optim. 3 (2019), 43–56.

[28] W. Takahashi, N.C. Wong, J.C. Yao, Attractive Point and Weak Convergence Theorem for New Generalized Hybrid

Mappings in Hilbert Spaces, J. Nonlinear and Convex Anal. 13 (2012), 745–757.

[29] J. Zhao, Y. Liang, Z. Liu, Strong Convergent Iterative Techniques for 2-Generalized Hybrid Mappings and Split

Equilibrium Problems, Filomat 33 (2019), 5851–5862. https://doi.org/10.2298/fil1918851z.

https://doi.org/10.3390/math10101678
https://doi.org/10.3390/math10101678
https://doi.org/10.1016/j.na.2011.10.017
https://doi.org/10.1016/j.na.2011.10.017
https://doi.org/10.11650/twjm/1500406086
https://doi.org/10.1007/s12190-021-01527-8
https://doi.org/10.1007/s12190-021-01527-8
https://doi.org/10.11650/twjm/1500406795
https://doi.org/10.2298/fil1918851z

	1. Introduction
	2. Preliminaries
	3. Main Results
	4. Applications
	5. Numerical Example
	6. Conclusion
	 Conflicts of Interest:

	References

