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Abstract. Modeling extreme events is crucial in various disciplines such as environmental sciences, hydrology, finance,

and engineering. This paper introduces the KM-transformed Generalized Extreme Value (KMGEV) distribution, a

novel and flexible model that generalizes the classical Generalized Extreme Value (GEV) distribution using the KM

transformation framework recently proposed by Kavya and Manoharan. We derive the key statistical properties of

the KMGEV distribution, including the probability density function (PDF), cumulative distribution function (CDF),

survival function, hazard rate function, and quantile function. Additionally, we explore order statistics and their

expected values. Parameter estimation is carried out via Maximum Likelihood Estimation (MLE) methods. Through

Monte Carlo simulations, we investigate the impact of the shape parameter on moments such as skewness and kurtosis.

Graphical analysis highlights the flexibility of the KMGEV model, suggesting its potential in modeling a variety of

extreme value phenomena.

1. Introduction

Researchers have applied extreme value theory in various fields to identify the most suitable

model for parameter estimation [1–4]. To present a data model that is suitable for the data from

the actual situation, in such a situation, extreme values are necessary for the occurrence of various

events. Therefore, it is necessary to determine the probability of an event with extreme values

occurring, which will be at the tail of the distribution. Examples include the maximum or minimum

daily rainfall, which has been extensively studied in various regions [5–8], the maximum wind

speed in a month, especially in coastal zones or for energy applications [9], and the maximum or
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minimum daily temperature, in relation to long-term climate variability [10, 11]. These examples

can be analyzed more accurately using extreme value (EV) theory [12–14]. This theory examines

the behavior of EVs to estimate parameters based on the probability of an event, in order to obtain

the estimation of the EV that is consistent with the data set [15].

In EV theory, the choice of distribution models plays a crucial role in estimating parameters

based on the nature of observed extreme events. Although the classical framework often utilizes the

generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD), recent

developments have focused on constructing new, more flexible distribution families. These include

the exponentiated Kumaraswamy exponential distribution [16], the exponentiated Kumaraswamy

inverse Weibull distribution for survival analysis [17], and the generalized transmuted-G family

[18]. These models enhance the modeling of tail behavior and provide better fits for datasets where

classical GEV or GPD structures may not capture the underlying complexity. Therefore, selecting

an appropriate distribution requires an understanding of the data’s tail behavior and the ability of

the model to adapt to such features.

Parameter estimation plays an important role in studying probability distributions, as shown

in the above literature, which applies or creates new distributions to suit the data and events that

occur [19–21]. These new distributions often provide a better fit and insight into the underlying

processes, allowing researchers to make more accurate predictions and informed decisions based

on the observed data. By refining parameter estimates, analysts can enhance the reliability of

models used across various fields, from finance to environmental science [22–24]. Researchers

cannot completely adapt the existing probability distribution formats. Therefore, the current

concept of the generalized distribution is of interest to researchers because it is more flexible by

adding at least one parameter and is mostly related to other distributions in a specific manner

[25–27].

The theoretical method for developing EV theory is to create a new distribution based on the

basic GEV distribution, which extends the EV distribution that includes the Gumbel, Fréchet,

and Weibull distributions into a family of distributions that can change continuously. Over the

years, various distributions developed based on the GEV distribution have been investigated.

For example, in 2016, Fernando Nascimento et al. [22] proposed an extended GEV distribution

with an application to environmental data. They suggested new versions of the GEV distribution

that include extra parameters, such as the double gamma generalized extreme value (GGEV), the

exponential generalized extreme value (EGEV), and the transformed generalized extreme value

(TGEV). Guloksuz et al. [25] proposed the Uniform-GEV distribution, a new extension of the

GEV distribution, and applied it to a magnitude model of the Turkish earthquake data from 1970

to 2018. Jin Zhao et al. [26] proposed a new class of heavy-tailed distributions by studying the

power transformation. In 2025, N. Deetae et al. [27] introduced a new heavy-tailed distribution

called A New Extended Kumaraswamy Generalized Pareto Distribution with Rainfall Application,
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which combines the Kumaraswamy and Generalized Pareto distributions for improved parameter

estimation of financial data.

In this research, a new distribution is presented as a combination of the GEV distribution

and the KM transformation, called the KM-transformed generalized extreme value (KMGEV)

distribution, to estimate the parameter value that is appropriate for the data by estimating the

maximum likelihood and checking the distribution with a goodness-of-fit test. Therefore, the

properties of the KMGEV distribution with CDF, PDF, hazard rate, quantile functions, and return

function, along with data simulation models, will be shown to demonstrate the efficiency of the

KMGEV distribution.

2. KM Transformation and GEV Distribution

The KM transformation class of statistical models is a new transformation framework that was

recently introduced by Kavya and Manoharan [28]. By modifying the existing baseline PDFs and

CDFs, this transformation makes it possible to create more flexible distributions. In particular, the

transformed distribution using the KM approach for a given baseline distribution with CDF and

PDF is defined by

F(y) =
e

e− 1

(
1− e−G(y)

)
, y ∈ R, (2.1)

f (y) =
e

e− 1
· g(y)e−G(y), y ∈ R. (2.2)

The primary advantage of the KM transformation is its ability to enhance the resulting distribu-

tion’s skewness control and tail flexibility without overly complicating the model. When modeling

EVs, this capability is especially helpful because conventional distributions, like the GEV distri-

bution, might not be flexible enough to account for the different tail behaviors seen in empirical

data.

For the GEV distribution with parameters µ, σ, and ξ, the baseline CDF and PDF are given by

G(z) = exp
(
−

(
1 + ξ ·

z− µ
σ

)−1/ξ
)

, for 1 + ξ ·
z− µ
σ

> 0, (2.3)

g(z) =
1
σ

(
1 + ξ ·

z− µ
σ

)−1/ξ−1
· exp

(
−

(
1 + ξ ·

z− µ
σ

)−1/ξ
)

. (2.4)

Using the KM transformation with the GEV framework creates a new distribution that is a

better fit for adaptation. which shows how important the GEV distribution is in EV theory. This

situation drives the generalized form of the GEV distribution produced by the KM transformation,

KM-transformed GEV distribution, to be developed.

Applying the transformation in Equations (2.1) and (2.2) to the baseline GEV distribution, we

show the KMGEV distribution in the section following. Which derives its statistical features and

shows how the KMGEV model provides better flexibility in modeling extreme events than the

conventional GEV distribution.
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3. KMGEV Distribution

Let X ∼ KMGEV(µ, σ, ξ). The CDF, PDF, survival function, quantile function, and hazard rate

function of the KMGEV distribution are given as follows

• CDF of KMGEV Distribution

F(x;µ, σ, ξ) =
e

e− 1

(
1− exp

(
− exp

(
−

(
1 + ξ ·

x− µ
σ

)−1/ξ
)))

.

Let z = 1 + ξ ·
x−µ
σ , then

F(x) =
e

e− 1

(
1− exp

(
− exp

(
−z−1/ξ

)))
.

• PDF of KMGEV Distribution

f (x) =
e

e− 1
·

1
σ
· u1+ξ

· e−u
· e− exp(−u)

where

u = z−1/ξ, z = 1 + ξ ·
x− µ
σ

.

The PDF of the KMGEV distribution with certain parameter settings are shown in Figure

1, demonstrating how changing ξ affects the shape of the distribution.
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Figure 1. PDF of KMGEV Distribution for Various ξ Values

• Survival Function

S(x) = 1− F(x) = exp
(
− exp

(
−z−1/ξ

))
−

( 1
e− 1

) (
1− exp

(
− exp

(
−z−1/ξ

)))
.

• Hazard Rate Function

h(x) =
f (x)
S(x)

=

(
e

e−1 ·
1
σ · u

1+ξ
· e−u
· e− exp(−u)

)
S(x)

.
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• Quantile Function

Given F(x) = p, the quantile function Q(p) is derived by solving for x as follows

p =
e

e− 1

(
1− exp

(
− exp

(
−z−1/ξ

)))
.

Solving for z as

z−1/ξ = − ln
(
− ln

(
1−

p(e− 1)
e

))
.

Hence,

z =

[
− ln

(
− ln

(
1−

p(e− 1)
e

))]−ξ

Q(p) = µ+
σ
ξ
(z− 1) = µ+

σ
ξ

[− ln
(
− ln

(
1−

p(e− 1)
e

))]−ξ
− 1

 .

4. Moments of the KMGEV Distribution

In this section, we derive essential mathematical properties of the KMGEV distribution, includ-

ing its PDF and moment generating function (MGF). The derivations are based on exponential and

binomial expansions.

Let

u =
[
1 + ξ

(x− µ
σ

)]−1/ξ
, σ > 0, ξ ∈ R.

Then, the PDF of the KMGEV distribution is defined as

f (x;µ, σ, ξ) = Wu1+ξe1−u−exp(−u), x > 0, (4.1)

where the constant W is given by

W =
1

σ(e− 1)
.

The kth raw moment about zero is defined by

µ′k = E[Xk] = W
∫
∞

0
xku1+ξe1−u−exp(−u) dx. (4.2)

Using binomial expansion, the integral becomes

µ′k = W
k∑

j,m=0

(−1)k−m−1k!2µk− jσk

j!m!(k− j)!(k−m)!ξk

∫
∞

0
u−ξme1−u−exp(−u) du. (4.3)

Through further series manipulation, we obtain

µ′k = Wτ

∫
∞

0
u−ξm−s−re−su du

= Wτsξm−s+r−1Γ(1− ξm + s− r), (4.4)

where Γ(·) denotes the gamma function, and the coefficient τ is defined by

τ =
k∑

j,m=0

∞∑
n=0

n∑
r=0

r∑
s=0

(−1)r+k−m−1k!2r!s!µk− jσk

(k− j)!(k−m)!(r− n)!(s− r)! j!m!n!2r!ξk
. (4.5)
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The momentsµ′k can be obtained by substituting k = 1, 2, 3, 4 into the general moment expression.

The MGF of MX(t) = E[etX] is expressed as

MX(t) =
∞∑

k=0

tk

k!
µ′k =

∞∑
k=0

tk

k!
τsξm−s+r−1Γ(1− ξm + s− r). (4.6)

The kth central moment µk is calculated from the raw moments via as

µk =E[(X − µ′1)
k]

=
k∑

n=0

(−1)n
(
k
n

)
(µ′1)

nµ′k−n. (4.7)

A Monte Carlo simulation was done to study how the KMGEV distribution behaves with fixed

parameters µ = 0.5, σ = 0.3, and different values of ξ ranging from −0.2 to 0.2. For each selected

value of ξ, random samples were generated using the inverse transform sampling method based

on the KMGEV quantile function. We used simulation sample sizes of n = 25, 50, 100, 500, and

1000. For each case, we calculated the mean, variance, skewness, and kurtosis to evaluate how the

KMGEV changes as it ξ varies.

Table 1. Monte Carlo simulation results for the KMGEV distribution with fixed

(µ, σ) = (0.5, 0.3), and varying ξ = [−0.2, 0.2].
n ξ Mean Variance Skewness Kurtosis
25 -0.2 0.6442 0.1160 0.201 -0.682

-0.1 0.4953 0.0757 0.823 0.106
0.0 0.4724 0.0760 0.333 -0.683
0.1 0.5480 0.1273 1.888 4.015
0.2 0.6636 0.1709 0.965 -0.595

50 -0.2 0.5637 0.0979 0.490 -0.355
-0.1 0.5149 0.0806 0.430 0.697
0.0 0.4004 0.1302 -0.925 0.186
0.1 0.5813 0.0889 1.914 4.712
0.2 0.6231 0.1492 1.413 1.315

100 -0.2 0.5327 0.0875 0.355 0.110
-0.1 0.5670 0.0851 0.915 0.553
0.0 0.4421 0.1128 -0.890 0.331
0.1 0.6238 0.2482 2.607 9.891
0.2 0.6230 0.2465 2.625 8.785

500 -0.2 0.5351 0.0912 0.571 0.302
-0.1 0.5462 0.0994 0.568 0.379
0.0 0.4361 0.1219 -1.594 4.889
0.1 0.6021 0.1584 1.687 3.827
0.2 0.6286 0.2563 3.048 14.593

1000 -0.2 0.5322 0.0911 0.407 0.093
-0.1 0.5510 0.1037 0.880 1.288
0.0 0.4273 0.1259 -1.365 3.484
0.1 0.6034 0.1584 1.746 5.552
0.2 0.6011 0.2298 6.103 78.301
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The simulation results in Table 1 demonstrate how varying the shape parameter ξ influences

the moments of the KMGEV distribution under different sample sizes. For small values of ξ

(e.g., ξ = −0.2), the distribution exhibits moderate skewness and low kurtosis. As ξ increases,

both skewness and kurtosis increase significantly, particularly for ξ = 0.1 and ξ = 0.2, indicating

heavier right tails and increasing asymmetry. These effects become more pronounced with larger

sample sizes (e.g., n = 500, 1000), confirming the distribution’s sensitivity to shape parameter

changes and its flexibility in capturing diverse tail behaviors.

5. Order Statistics of KMGEV Distribution

Let X1, X2, . . . , Xn ∼ KMGEV(µ, σ, ξ) be independent and identically distributed (i.i.d.) random

variables. The rth order statistic, denoted X(r), has the following properties.

• PDF of X(r)

fX(r)(x) =
n!

(r− 1)!(n− r)!
[F(x)]r−1[1− F(x)]n−r f (x)

where f (x) and F(x) denote the PDF and CDF of the KMGEV distribution, respectively.

• CDF of X(r)

FX(r)(x) =
n∑

k=r

(
n
k

)
[F(x)]k[1− F(x)]n−k

• Expected Value of X(r)

E[X(r)] =

∫
∞

−∞

x · fX(r)(x)dx

6. Confidence Interval of Return Level

In the analysis of EVs, the return level associated with the return period T is the quantile function

that corresponds to the probability not exceeding ν = 1 − T−1 for the KMGEV distribution. The

return level RKMGEV
T is obtained by computing the quantile function Q(p) at p = ν as follows

RKMGEV
T = Q(ν) = µ+

σ
ξ

[− ln
(
− ln

(
1−

ν(e− 1)
e

))]−ξ
− 1

 , ν = 1−
1
T

.

The Delta method is employed to approximate the variance of the return level estimate RKMGEV
T

it provided by

Var
(
RKMGEV

T

)
≈

(
∇RKMGEV

T

)>
V

(
∇RKMGEV

T

)
,

where V is the covariance matrix of the estimated parameters (µ, σ, ξ)>, and ∇RKMGEV
T is the

gradient vector of partial derivatives:

∇RKMGEV
T =

∂RKMGEV
T

∂µ
,
∂RKMGEV

T

∂σ
,
∂RKMGEV

T

∂ξ

>
=

[
1,

1
ξ
(z− 1), −

σ

ξ2 (z− 1) −
σ
ξ
· z · ln z · ln

(
− ln

(
1−

ν(e− 1)
e

))]>
,
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where

z =

[
− ln

(
− ln

(
1−

ν(e− 1)
e

))]−ξ
, ν = 1−

1
T

.

Using the estimated variance, the Wald confidence interval for the return level RKMGEV
T at a

confidence level 1− α is then constructed as:

RKMGEV
T ±Zα/2 ·

√
Var

(
RKMGEV

T

)
,

In this, Zα/2 represents the critical value derived from the standard normal distribution. This

interval provides a probabilistic range within which the true return level is expected to lie with

the specified confidence.

7. Log-Likelihood Function of the KMGEV Distribution

Let X1, X2, . . . , Xn be a random sample from the KMGEV distribution with parameters µ, σ, and

ξ. The log-likelihood function for the observed data is given by

`(µ, σ, ξ) =
n∑

i=1

ln f (xi;µ, σ, ξ)

where f (x;µ, σ, ξ) is the PDF of the KMGEV distribution, defined as

f (x;µ, σ, ξ) =
e

e− 1
·

1
σ
· u1+ξ

· e−u
· e− exp(−u)

with

zi = 1 + ξ ·
xi − µ

σ
, ui = z−1/ξ

i

Substituting the PDF into the log-likelihood function, we obtain

`(µ, σ, ξ) = n · ln
( e
e− 1

)
− n · ln σ+ (1 + ξ)

n∑
i=1

ln ui −

n∑
i=1

ui −

n∑
i=1

exp(−ui)

where ui = z−1/ξ
i , zi = 1 + ξ ·

xi − µ

σ
. The partial derivatives are as follows

• Derivative with respect to µ

∂`
∂µ

=
1
σ

n∑
i=1

z−1
i [ξ+ exp(−ui)]

• Derivative with respect to σ

∂`
∂σ

= −
n
σ
+

1
σ2

n∑
i=1

(xi − µ)z−1
i [ξ+ exp(−ui)]

• Derivative with respect to ξ

First, compute ∂ui/∂ξ
∂ui

∂ξ
= ui

(
ln zi

ξ2 −
xi − µ

σξzi

)
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Then,
∂`
∂ξ

=
n∑

i=1

ln ui +
n∑

i=1

(ξ+ exp(−ui)) ·
∂ui

∂ξ

8. Monte Carlo Simulation for Estimation Efficiency

8.1. Simulation of Estimation Parameter. This section presents a Monte Carlo simulation study

designed to evaluate the efficiency and accuracy of the MLEs for the KMGEV distribution. Ran-

dom samples are generated from the KMGEV distribution using the inverse CDF method. All

simulations and subsequent analyses are conducted using the R programming language.

For each experimental condition, the simulation is replicated N = 10, 000 times to ensure

statistical reliability. Artificial datasets of varying sample sizes n = 25, 50, 100, 500, and 1, 000 are

drawn from the KMGEV distribution via the inverse transform sampling method. For each sample,

MLE method is employed to estimate the parameters µ, σ, and ξ. Optimization is performed using

the L-BFGS-B algorithm [29–31] due to the complexity of the likelihood function.

Across all simulations, the mean estimates, biases, and Mean Squared Errors (MSEs) are com-

puted for each parameter. These results, presented in Table 2, allow for a comprehensive evaluation

of the estimators’ performance under different sample sizes. The simulation outcomes provide

empirical support for the consistency and efficiency of MLEs in the context of the KMGEV distri-

bution.

Table 2. Monte Carlo simulation results for KMGEV distribution with (µ, σ, ξ) = (0.5, 0.3, 0.5).
n µ σ ξ

25 MLE 0.4826 0.2775 0.4869

Bias -0.0174 -0.0225 -0.0131

MSE 0.0129 0.0084 0.0767

50 MLE 0.4809 0.2823 0.4910

Bias -0.0191 -0.0177 -0.0090

MSE 0.0096 0.0051 0.0382

100 MLE 0.4850 0.2889 0.4969

Bias -0.0150 -0.0111 -0.0031

MSE 0.0086 0.0039 0.0216

500 MLE 0.4826 0.2899 0.4840

Bias -0.0174 -0.0101 -0.0160

MSE 0.0092 0.0035 0.0115

1000 MLE 0.4893 0.2935 0.4925

Bias -0.0107 -0.0065 -0.0075

MSE 0.0051 0.0019 0.0061



10 Int. J. Anal. Appl. (2025), 23:274

0.00

0.02

0.04

0.06

0.08

0 250 500 750 1000

Sample Size (n)

M
S

E

µ

σ

ξ

Figure 2. MSE of MLEs for KMGEV Parameters

The simulation results in Table 2 and Figure 2 demonstrate the efficiency of the MLE method for

the KMGEV distribution. As sample size increases, the bias and MSE for all parameters (µ, σ, ξ)

consistently decrease, confirming the consistency of MLE estimators.

The bias ofµ and σ remains small across all sample sizes, while the estimation of ξ shows slightly

larger MSE in small samples (e.g., n = 25) due to the sensitivity of shape parameter estimation.

For n ≥ 500, all estimators exhibit minimal bias and variance, validating the practical reliability of

the MLE approach for KMGEV distribution.

8.2. Simulation of Return Level Estimation. In the analysis of EV data, estimating the return

level for a specified return period T is of significant importance, especially in applications such as

hydrology, finance, and environmental risk assessment. The return level represents the quantile

corresponding to a non-exceedance probability ν = 1− 1/T, which quantifies the magnitude of an

event expected to be exceeded once every T periods.

To evaluate the accuracy and precision of return level estimation under the KMGEV distribution,

a Monte Carlo simulation study was conducted. The simulation aims to assess the performance

of point estimators and confidence intervals constructed via the Delta method. The study fixes

the parameters at (µ, σ, ξ) = (0.5, 0.3, 0.5), and considers return periods T = 5, 10, 20, 50, 100. For

each T, the simulation is replicated N = 10, 000 times of size n = 100 are generated using inverse

transform sampling. In each simulation replication, sample estimates of µ and σ were used to

compute the estimated return level RKMGEV
T , while ξ was assumed known for simplicity. The

Delta method was employed to construct 95% confidence intervals for RKMGEV
T , and key statistics

including bias, mean squared error (MSE), and interval coverage were recorded. Table 3 summa-

rizes the simulation results, providing insights into the estimation efficiency and the reliability of

confidence intervals as T increases.
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Table 3. Simulation results for return level estimation of the KMGEV distribution

with fixed parameters (µ, σ, ξ) = (0.5, 0.3, 0.5).
T Mean Bias MSE CI Lower CI Upper

5 2.2559 1.3419 8.7712 -23.1882 27.7000

10 3.6266 2.2825 28.6724 -45.8880 53.1411

20 5.3816 3.4358 27.4083 -25.0413 35.8045

50 8.9647 5.8284 89.1273 -54.5492 72.4786

100 13.5244 9.0473 213.9352 -98.1397 125.1885

The results in Table 3 reveal several important trends regarding the estimation of return levels

under the KMGEV distribution using the Delta method. First, the mean of the estimated return

levels increases with the return period T, as expected, since larger T values correspond to more

extreme quantiles. However, the bias and MSE of the estimates also increase notably with T,

indicating that estimating return levels in the extreme tail becomes more difficult and less reliable

as T grows. For instance, at T = 5, the bias is relatively modest (1.3419), while at T = 100, the bias

reaches 9.0473, with an MSE exceeding 200. Additionally, the 95% confidence intervals constructed

via the Delta method are observed to be increasingly wide for larger T. For example, the interval

at T = 5 spans approximately 50 units, while at T = 100, the interval width exceeds 220 units.

Such wide intervals highlight the high uncertainty in estimating return levels in the far tail of the

distribution.

Furthermore, the simulation suggests that the Delta method, while straightforward, may not

provide sufficiently narrow intervals for large T. This underscores the potential need for alternative

methods such as bootstrap-based confidence intervals, which may offer improved finite-sample

performance in capturing the true return level. In conclusion, while return level estimation via

the Delta method is effective for moderate return periods, caution is warranted for large T, where

both point estimation and interval estimation become substantially less precise.

8.3. Application in Cryptographic Pseudo-Random Number Generation. The flexibility of the

KMGEV distribution in modeling tail behavior has implications for entropy generation in cryp-

tographic systems. In particular, the ability to control skewness and tail thickness via the shape

parameter ξ enables designers to fine-tune the unpredictability of pseudo-random outputs.

Since entropy quantifies the uncertainty in random variables, distributions like KMGEV with

heavy tails and asymmetric structures offer a rich source of high-entropy values. These are essential

in applications such as key generation, random masking, and probabilistic encryption schemes,

where predictable patterns could lead to security vulnerabilities.

Cryptographic protocols often rely on pseudo-random number generators (PRNGs) that must

produce unpredictable outputs with high entropy. The quantile function of KMGEV can be

used in the inverse transform method, where a uniformly generated value U ∼ Uniform(0, 1) is

transformed into a KMGEV-distributed value X = Q(U).
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The advantage of KMGEV is its ability to produce samples with tail-controlled variability, pro-

viding enhanced entropy characteristics. By adjusting the shape parameter ξ, designers can tune

the randomness to either minimize or emphasize extreme deviations, depending on the crypto-

graphic need. This makes KMGEV-based PRNGs particularly suitable for secure key generation,

random masking, and threshold secret sharing schemes.

Algorithm 8.1 KMGEV-based Pseudo-Random Number Generator

Require: Number of samples n, parameters µ, σ > 0, and ξ

Ensure: Array X[1..n] containing KMGEV-distributed random variables

1: for i← 1 to n do
2: Generate Ui ∼ Uniform(0, 1)

3: Compute z← − ln(− ln(1− Ui(e−1)
e ))

4: Compute Q← µ+ σ
ξ

(
z−ξ − 1

)
5: Set X[i]← Q
6: end for
7: return X

9. Conclusion

This study introduced the KM-transformed Generalized Extreme Value (KMGEV) distribution,

a novel and flexible class of distributions derived via the KM transformation applied to the

classical Generalized Extreme Value (GEV) distribution. By leveraging the KM transformation

framework, the KMGEV distribution achieves enhanced flexibility in modeling skewness and

tail behavior, which are crucial in extreme value analysis. The key statistical properties of the

KMGEV distribution, including the probability density function, cumulative distribution function,

survival function, hazard rate, and quantile function, were systematically derived. Additionally,

the behavior of order statistics and the moment generating function were discussed, underscoring

the distribution’s theoretical robustness. Parameter estimation was carried out using both the

Maximum Likelihood Estimation (MLE). Simulation studies revealed that the MLE approach

provides efficient and unbiased estimates as sample size increases, with corresponding reductions

in mean squared error. Monte Carlo simulations further examined the return level estimation

under the KMGEV model, using the Delta method to construct confidence intervals. Results

indicated that while point estimation remains stable for moderate return periods, the uncertainty

grows substantially for large return periods, as evidenced by widening confidence intervals and

increased estimation bias.

One limitation of the present work is the reliance on the Delta method for constructing con-

fidence intervals, which may underestimate uncertainty in small samples or extreme quantiles.

Additionally, parameter estimation for the shape parameter ξ was simplified in simulations, and

real-world applications may require more robust numerical optimization techniques. Future work
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may focus on applications in real-world data, further generalizations, and the derivation of closed-

form expressions for order statistics and return levels.
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