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Abstract. The study of D-stability in mathematical analysis is crucial for understanding and ensuring the stability of

linear dynamical systems. This article introduces novel findings on the characterization of D-stability, along with its

connections to additive D-stability concerning speed and coordinate transformations in linear dynamical systems with

n degrees of freedom

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

Consider the stiffness, mass, and damping matrices A, B, C ∈ Mn×n, and let µ(τ) ∈ Rn denote the vector of generalized

coordinates with dµ(τ)
dτ representing its corresponding velocity vector. This work derives new theoretical insights into

D-stability, additive D-stability with respect to velocity, and additive D-stability concerning coordinate transformations.

These results are established using techniques from linear algebra, matrix theory, dynamical systems, and their con-

nections to structured singular value computations. Additionally, numerical investigations of the spectrum, singular

values, and pseudospectra of the coefficient matrices A, B, C ∈ Mn×n are conducted using EigTool, providing further

validation of the theoretical framework.

1. Introduction

The notion of D-stability was first introduced in the seminal works of Arrow and McManus

[18] and Enthoven and Arrow [1], where they examined this property for a specific class of

structured matrices. The study of D-stability emerged from their analysis of equilibrium stability

in competitive market dynamics, particularly in the context of optimal steady-state behavior.

The analysis on D-stability and its utility in various mathematical problems has been found

across the large scale dynamical systems as well as in the multi-parameter singular perturbations,
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see [8, 10, 11, 14, 31]. The characterization of D-stability is an important but becomes very difficult

specially when sizes n of matrices are large, that is, n > 3, see [6, 7]. This lack of specification for

D-stability led to the establishment and introduction of 13 sufficient requirements for D-stability

by Johnson [6].

Numerous applications in the field of mathematical economics heavily rely on the computation

and analysis of D-stable matrices, see [2, 3]. The vast amount of literature had been developed

on the analysis of D-stable matrices, and some of the classical literature is [12, 15, 19, 24, 26, 32].

A positive diagonal matrix D must exist for a given n-dimensional real-valued matrix A to be

D-stable, implying that the real part of each of the matrix-product eigenvalues of DA or AD is

strictly positive (or strictly negative in literature). While D-stability of a matrix guarantees its

stability, the converse does not necessarily hold.

In control theory, the structured singular value (commonly denoted as µ-values) serves as a

powerful and versatile tool. It plays a crucial role in analyzing stability, performance, robustness,

and synthesis problems for linear time-invariant systems subjected to structured perturbations

or uncertainties with block-diagonal structure, as discussed in [4]. Block-diagonal acceptable

perturbations or uncertainties fall into one of two classes: the number of whole blocks or the

number of repeating scalar blocks. The repeating scalar blocks may consist of complex blocks, real

blocks, or a combination of complex and real blocks. On the other hand, the number of full blocks

are either dense complex matrices or dense real-valued matrices.

The accurate evaluation of the structured singular values is an NP-hard problem for the different

classes of admissible real or complex perturbations, see [27]. Various mathematical approaches

have been developed to estimate both lower and upper bounds for structured singular values,

as demonstrated in [5, 9, 20, 25]. The estimation of structured singular values against the real or

complex or a mixture of both real and complex uncertainties were studied in [4, 5, 9, 23], while for

the pure complex uncertainties it was first studied and analyzed by Doyle [17].

The study in [29] investigated the gaps in characterizing structured singular values under

different constraints and their connection to D-stability. The proposed framework highlights the

deep connections between structured H-stability, D(α)-structured stability, and the evaluation of

structured singular values. For matrices with specific structures, this methodology allows for a

unified treatment of stability analysis, encompassing D-stability, H-stability, D(α)-stability, and

structured singular values within a single analytical approach.

Since diagonal D-stability imposes stricter requirements than additive D-stability, a matrix A
is considered additively D-stable if A −D retains its Hurwitz property for any positive diagonal

matrix D (refer to [13]). This concept plays a crucial role in the study of reaction-diffusion systems,

where the matrix A corresponds to the linearized reaction terms evaluated at equilibrium. Ac-

cording to Casten and Holland [28], the stability analysis of reaction-diffusion partial differential

equations (PDEs) reduces to verifying the stability of the family of matrices A− λiD, with D being
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a positive diagonal matrix and {λi} denoting the non-zero eigenvalues of the Laplace operator sub-

ject to Neumann boundary conditions. Additionally, the authors of [22] explored the relationship

between additive D-stability and reaction-diffusion systems, deriving conditions to assess stability

or instability in the presence of diffusion effects.

This paper presents novel theoretical results for linear dynamical systems with n degrees of

freedom, where the coefficient matrices A, B, and C represent stiffness, mass, and damping prop-

erties respectively. Our investigation of such systems involves the construction and analysis of

specialized matrix products that capture the essential dynamics. Specifically, we develop−A−1B −A−1C
I 0


D 0

0 I

 ;

−A−1B −A−1C + D
I 0

+
D 0

0 0

 ;

−A−1B −A−1C + 2D
I 0

 .

We aim to construct and prove theoretical results concerning the D-stability, additive D-stability

in relation to coordinates and additive D-stability in relation to speed, respectively. Our ana-

lytical methodology integrates spectral decomposition (eigenvalue calculation), singular value

assessment, and the evaluation of structured singular values (µ-analysis), while investigating their

intrinsic relationships with D-stability theory.

Overview of article: In section 2, we give basic concepts, definitions, and observations on

structured singular values, D-stability, additive D-stability in relation to speed, and additive D-

stability in relation to coordinates. We recall 13 sufficient conditions for D-stability as well. The

problem statement is formulated and presented in section 3. We provide new results on D-stable,

additive D-stability in relation to speed, and additive D-stability in relation to coordinates in section

4. The core approach for deriving and validating new results relies on analyzing eigenvalues,

singular values, and structured singular values, along with their interplay with D-stability and

strong D-stability. Numerical testing for structured matrices, for instance, Toeplitz matrices and

transportation matrices, is presented in section 5, and in section 6, we finally bring our effort to a

close in the form of conclusion.

2. Preliminaries

In this section, we present a foundational overview of additive D-stable and D-stable matrices,

along with computational aspects of µ-values, by revisiting key definitions. Additionally, we

survey existing results concerning the connections between D-stable and structured singular value

matrices.

Definition 2.1. Let B1 be the collection of block-diagonal matrices having complex and real uncertainty or
perturbations, such that

B1 := {diag
(
δ1Ir1 , δ2Ir2 , · · · , δSIrS ; ∆1, ∆2, · · · , ∆F

)
: δi ∈ K, ∆ j ∈ Km j,m j , i = 1 : S, j = 1 : F},

where K = R or C.
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Definition 2.2. [4] For a specific M ∈ Cn,n, the structured singular value is denoted with µB1(M), and is
defined by

µB1(M) :=


0, i f det(I −M∆) , 0, ∀∆ ∈ B1(
min{||∆||2 : det(I −M∆) = 0, ∀∆ ∈ B1}

)
,−1 else

where min is taken over all ∆ ∈ B1.

Remark 2.1. [4] The B1 also represent a multi-index of integers. This further implies that the approximation
to µ-values are depended on a given matrix and set of block diagonal structure.

Remark 2.2. [4] The number of the full blocks (real or complex) in B1, are equivalent to rank-1 matrices,
or dyads.

Remark 2.3. [4] From the definition of µ-value it is evident that to each α ∈ C, one can have that
µB1(αM) = αµB1(M).

The Lemma 2.1 gives an alternate way for the approximation of µB1(M).

Lemma 2.1. [4] Let M ∈ Cn,n, and for all ∆ ∈ B1, we have µB1(M) = max ρ(∆M), where ρ(·) denotes
the spectral radius, and max is over all ∆ ∈ B1.

Definition 2.3. [6] A matrix M is defined as D-stable if it satisfies two conditions: (i) all its eigenvalues
lie strictly in the left half-plane of the complex domain, and (ii) both products DM and MD maintain this
eigenvalue property for every positive diagonal matrix D. This ensures stability under arbitrary positive
diagonal scaling of the matrix.

The following four observations are taken from [6] and they holds true for the D-stable matrices.

Observation 1. The requirements that must be met for D-stability remains the preserved under positive
diagonal multiplication.

Observation 2. Let M ∈ Cn,n such that none of its eigenvalues are 0, and matrix-product DM is stable for
a positive diagonal matrix D. The M-1 matrix is invertible, and further D̂TMD̂, D̂MD, MT are all D-stable
matrices, with D̂ with a positive diagonal structure.

Observation 3. If M ∈ Cn,n such that the matrix-product DM., then the r × r principal sub-matrix of
given matrix M is from the euclidean closure of r× r D-stable matrices.

Observation 4. If and only if det(M ± iD) is not precisely equal to zero, the supplied matrix M for a
positive diagonal matrix D is a D-stable matrix.

[21] is the source of the definitions 4− 7 that follow.

Definition 2.4. Consider a linear dynamical system with n-degrees of freedom described by

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, t ∈ R, t > 0,
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where µ(τ) ∈ Rn represents the displacement vector, dµ(τ)
dτ denotes the generalized velocity vector, and

A, B, C ∈ Mn×n are the stiffness, mass, and damping matrices, respectively.
The system is referred to as D-stable if, for any positive diagonal matrix D, the modified system

A
d2µ(τ)

dτ2 + D
(
B

dµ(τ)
dτ

+ Cµ(τ)
)
= 0,

exhibits asymptotic (Lyapunov) stability.

Definition 2.5. Consider a linear system with n-degrees of freedom described by the second-order differential
equation

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, t ∈ R, t > 0,

where A, B, C ∈ Mn×n denote the stiffness, mass, and damping matrices, respectively. Here, µ(τ) ∈ Rn

represents the displacement vector, and dµ(τ)
dτ corresponds to the generalized velocity vector.

This system is said to be additive D-stable with respect to its coordinates if, for every non-negative
diagonal matrix D, the modified system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ (C + D)µ(τ) = 0,

remains asymptotically stable in the sense of Lyapunov.

Definition 2.6. Consider a linear dynamical system with n degrees of freedom, governed by the second-order
differential equation

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, t ∈ R, t > 0,

where A, B, C ∈ Mn×n denote the stiffness, mass, and damping matrices, respectively, µ(τ) ∈ Rn represents
the displacement vector, and dµ(τ)

dτ corresponds to the generalized velocity vector.
The system is defined as additively D-stable with respect to velocity if, for any non-negative diagonal

matrix D, the modified system

A
d2µ(τ)

dτ2 + (B + D)
dµ(τ)

dτ
+ Cµ(τ) = 0,

remains (Lyapunov) asymptotically stable.

Definition 2.7. Consider a linear dynamical system with n-degrees of freedom described by the second-order
differential equation

A
d2u(t)

dτ2 + B
du(t)

dτ
+ Cu(t) = 0, t ∈ R, t > 0,

where A, B, C ∈ Mn×n denote the stiffness, mass, and damping matrices, respectively. The vector u(t) ∈ Rn

represents the generalized coordinates, while its time derivative, du(t)
dτ , corresponds to the generalized velocity.

The system is classified as additively D-stable if this property holds for both velocities and coordinates.
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2.1. Sufficient conditions for D-stability: Next, we examine the 13 sufficient conditions for the

D-stability of an n-dimensional real matrix M, as established by C.R. Johnson [6]. These conditions

are outlined below:

C1 : For all eigenvalues λi of
(
DM + MtD

)
, λi > 0, where D = diag{dii} with dii > 0 for all

i = 1, 2, . . . , n.

C2 : The matrix M ∈ Rn×n is an M-matrix, meaning its principal minors are positive and its

off-diagonal entries are non-positive.

C3 : There exists a diagonal matrix D = diag{dii}, where dii > 0 for all i, such that MD = B = (bi j)

satisfies:

Re(bii) >
n∑

j=1
j,i

|bi j|, i = 1, . . . , n.

C4 : The matrix M ∈ Rn×n is triangular, and the real parts of its diagonal entries mii are strictly

positive.

C5 : The matrix M ∈ Rn×n is sign stable.

C6 : Every principal minor of M ∈ Rn×n is positive, and M has a tri-diagonal structure.

C7 : The matrix M ∈ Rn×n is oscillatory.

C8 : For every non-zero vector x ∈ Rn×1, there exists a diagonal matrix D = diag{dii}with dii > 0

such that Re(xtDMx) > 0.

C9 : For any positive definite matrix P, the Hadamard product of P and M ∈ Rn×n results in a

stable matrix.

C10 : The matrix M ∈ Rn×n is strictly sign symmetric, and all its principal minors are positive.

C11 : The matrix M ∈ Rn×n belongs to the class R2×2
∩ P+

0 .

C12 : The matrix M ∈ Rn×n is in R3×3
∩ P+

0 and has the form:

M =


x a b
α y c
β α z

 .

C13 : The matrix M ∈ Rn×n satisfies the P+
0 condition and meets the GKK criterion for n ≤ 4.

3. Problem Formulation

We consider the linear system with n-degrees of freedom with following mathematical formu-

lation

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ Mn×n, are the stiffness, mass, and damping matrices, µ(τ) ∈ Rn, dµ(τ)
dτ , the vector of

generalized speed. We consider the following three problems:
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Problem-I: To construct some new results on D-stability of the linear system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ Mn×n, are the stiffness, mass, and damping matrices, µ(τ) ∈ Rn,
dµ(τ)

dτ , the vector of generalized speed.

Problem-II: To construct some new results on additive D-stability in relation to coordinates
of the linear system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ Mn×n, are the stiffness, mass, and damping matrices, µ(τ) ∈ Rn,
dµ(τ)

dτ , the vector of generalized speed.

Problem-III: To construct some new results on additive D-stability in relation to speeds of

the linear system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ Mn×n, are the stiffness, mass, and damping matrices, µ(τ) ∈ Rn,
dµ(τ)

dτ , the vector of generalized speed.

4. New Results

This section includes new findings on D-stability, coordinate-dependent additive D-stability,

and additive D-stability in relation to speeds for the linear system with n-degrees of freedom of

the form

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ Mn×n, are the stiffness, mass, and damping matrices, µ(τ) ∈ Rn, dµ(τ)
dτ , the vector of

generalized speed. The following Theorem 4.1 shows that the linear system is D-stable if, for a

positive diagonal matrix D, the real component of each eigenvalue of

−A−1B −A−1C
I 0


D 0

0 I

 is

smaller than 0.

Theorem 4.1. The linear system with n-degrees of freedom

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ Mn×n, are the stiffness, mass, and damping matrices, µ(τ) ∈ Rn, dµ(τ)
dτ , the vector of

generalized speed, is D-stable if real part of all the eigenvalues of matrix product−A−1B −A−1C
I 0


D 0

0 I


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is less than 0 for a positive diagonal matrix D.

Proof. The linear system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, t ∈ R, t ≥ 0

equivalent form can be written as

dx(t)
dτ

=

−A−1B −A−1C
I 0

 x(t), x(t) =

 dµ(τ)
dτ

µ(τ)

 .

It is enough to show that for −A−1B −A−1C
I 0


the coefficient matrix in dx(t)

dτ is such that the real part of all the eigenvalues of−A−1B −A−1C
I 0


D 0

0 I


is strictly less than 0.

Let α ∈ N, the set of natural numbers, and let x(t) ∈ Rn,1, t ∈ R, t ≥ 0 such that x[α] , 0. Now,

consider that dµ(τ)
dτ

µ(τ)


t −A−1B −A−1C

I 0


D 0

0 I


dµ(τ)

dτ

µ(τ)

 [α] < 0.

 dµ(τ)
dτ

µ(τ)


t −A−1B −A−1C

I 0


D 0

0 I


dµ(τ)

dτ

µ(τ)

 < 0.

Also, dµ(τ)
dτ

µ(τ)


t

Re

λi


−A−1B −A−1C

I 0


D 0

0 I




 dµ(τ)

dτ

µ(τ)

 < 0, ∀i.

This further can be rewritten as

Re

λi


−A−1B −A−1C

I 0


D 0

0 I




 dµ(τ)

dτ

µ(τ)


t dµ(τ)

dτ

µ(τ)

 < 0, ∀i.

Since,

 dµ(τ)
dτ

µ(τ)


t dµ(τ)

dτ

µ(τ)

 = 1. Thus, Re

λi


−A−1B −A−1C

I 0


D 0

0 I



 < 0, ∀i. �

The following Theorem 4.2 shows that the linear system is additive D-stable in relation to

coordinates if the real part of all the eigenvalues of

−A−1B −A−1C + D
I 0


D 0

0 0

 is less than 0 for

a positive diagonal matrix D.



Int. J. Anal. Appl. (2026), 24:11 9

Theorem 4.2. The linear system as described in Theorem 1 is additive D-stable in relation to coordinates, if

Re

λi


−A−1B −A−1C + D

I 0

+
D 0

0 0



 < 0, ∀i.

Proof. Let α ∈N, the set of natural numbers, and let

x(t) =

 dµ(τ)
dτ

µ(τ)

 ∈ Rn,1, t ∈ R, t ≥ 0 such that

 dµ(τ)
dτ

µ(τ)

 [α] , 0.

Consider that dµ(τ)
dτ

µ(τ)


t

[α]


−A−1B −A−1C + D

I 0

+
D 0

0 0


 [α]

 dµ(τ)
dτ

µ(τ)

 [α]
= dµ(τ)

dτ

µ(τ)


t 

−A−1B −A−1C + D
I 0

+
D 0

0 0



 dµ(τ)

dτ

µ(τ)

 < 0.

Furthermore, we have thatdµ(τ)
dτ

µ(τ)


t

Re

λi

−A−1B −A−1C + D
I 0

+ λi

D 0

0 0


 dµ(τ)

dτ

µ(τ)


 < 0, ∀i.

Also,

Re

λi


−A−1B −A−1C + D

I 0

+ λi

D 0

0 0



 dµ(τ)

dτ

µ(τ)


t dµ(τ)

dτ

µ(τ)


 < 0, ∀i.

Since,

 dµ(τ)
dτ

µ(τ)


t  dµ(τ)

dτ

µ(τ)

 = 1. Thus, Re

λi


−A−1B −A−1C + D

I 0

+ λi

D 0

0 0



 < 0, ∀i. This implies

that

Re

λi


−A−1B −A−1C + D

I 0

+
D 0

0 0



 < 0, ∀i.

�

The following Theorem 4.3 shows that the linear system is additive D-stable in relation to speeds

if the real part of all the eigenvalues of

−A−1B + D −A−1C
I 0


D 0

0 0

 is less than 0 for a positive

diagonal matrix D.

Theorem 4.3. The linear system as described in theorem 1 is additive D-stable in relation to speeds, if the
real part of all the eigenvalues of matrix sum−A−1B + D −A−1C

I 0

+
D 0

0 0


is strictly less than 0 for a positive diagonal matrix D.
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Proof. Let α ∈ N, the set of natural numbers, and let x(t) =

 dµ(τ)
dτ

µ(τ)

 ∈ Rn,1, τ ∈ R, τ > 0 such that dµ(τ)
dτ

µ(τ)

 [α] , 0.

Further, we consider thatdµ(τ)
dτ

µ(τ)


t

[α]


−A−1B + D −A−1C

I 0

+
D 0

0 0


 [α]

 dµ(τ)
dτ

µ(τ)

 [α]
= dµ(τ)

dτ

µ(τ)


t 

−A−1B + D −A−1C
I 0

+
D 0

0 0



 dµ(τ)

dτ

µ(τ)

 < 0.

Also, we have thatdµ(τ)
dτ

µ(τ)


t

Re

λi

−A−1B + D −A−1C
I 0

+ λi

D 0

0 0



 dµ(τ)

dτ

µ(τ)

 < 0, ∀i.

The last inequality can be rewritten as

Re

λi

−A−1B + D −A−1C
I 0

+ λi

D 0

0 0




 dµ(τ)

dτ

µ(τ)


t  dµ(τ)

dτ

µ(τ)


 < 0, ∀i.

Since,

 dµ(τ)
dτ

µ(τ)


t  dµ(τ)

dτ

µ(τ)

 = 1. In turn, Re

λi

−A−1B + D −A−1C
I 0

+ λi

D 0

0 0


 < 0, ∀i. This can further

take the form Re

λi

−A−1B + D −A−1C
I 0

+
D 0

0 0


 < 0, ∀i. �

The following Theorem 4.4 shows that the linear system is D-stable if the structured singular

value of the reciprocal of

−A−1B −A−1C
I 0


D 0

0 I

 with respect to set of block-diagonal structure

B1 is greater than or equal to 0 and less than 1 for a positive diagonal matrix D.

Theorem 4.4. The linear system as described in theorem is D-stable if

0 ≤ µB1



−A−1B −A−1C

I 0


D 0

0 I



−1

 < 1.

Proof. For the D-stability of

−A−1B −A−1C
I 0


D 0

0 I

 , we have to show that the real part of all the

eigenvalues must be strictly less than 1. This further ensures that for a positive diagonal matrix
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 , we have that

∏
i

Re

λi



−A−1B −A−1C

I 0


D 0

0 I




2

+

D11 0

0 D22


2

 , 0, ∀i.

To prove last inequality, we have

∏
i

Re

λi



−A−1B −A−1C

I 0


D 0

0 I




2

−

D11 0

0 D22


2 

−A−1B −A−1C
I 0


D 0

0 I



−1 


D11 0

0 D22


−A−1B −A−1C

I 0


D 0

0 I


 , 0, ∀i.

This further reduces to

∏
i

Re

λi


I 0

0 I

−

−A−1B −A−1C

I 0


D 0

0 I



−1 D̃11 0

0 D̃22



 , 0, ∀i,

where

D̃11 0

0 D̃22

 has a block-diagonal structure. Thus, we have that

∏
i

Re

λi


I 0

0 I

−

−A−1B −A−1C

I 0


D 0

0 I



−2 D̃11 0

0 D̃22



 , 0, ∀i.

Finally,

0 ≤ µB1


−A−1B −A−1C

I 0


D 0

0 I



−1

< 1.

�

The subsequent Theorem 4.5 demonstrates that the linear system is additive D-stable in relation

to coordinates if the structured singular value of the reciprocal of

−A−1B −A−1C + D
I 0

+
D 0

0 0


in relation to set of block-diagonal structure B1 is greater than or equal to 0 and less than 1 for a

positive diagonal matrix D.

Theorem 4.5. The linear system as described in theorem-1 is additive D-stable in relation to coordinates if

0 ≤ µB1


−A−1B −A−1C + D

I 0

+
D 0

0 0



−1

< 1.
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Proof. To prove, we consider a positive block-diagonal structured matrix

D11 0

0 D22

 this means

that ∏
i

Re

λi



−A−1B −A−1C + D

I 0

+
D 0

0 0




2

+

D11 0

0 D22


2

 , 0, ∀i.

To prove above inequality, we have

∏
i

Re

λi



−A−1B −A−1C + D

I 0

+
D 0

0 0




2

−

D11 0

0 D22


2



−A−1B −A−1C + D

I 0

+
D 0

0 0



−1 D11 0

0 D22



−A−1B −A−1C + D

I 0


+

D 0

0 0




 , 0, ∀i.

This further reduces to

∏
i

Re

λi


I 0

0 I

−

−A−1B −A−1C + D

I 0

+
D 0

0 0



−1 D̃11 0

0 D̃22



 , 0, ∀i.

Hence,

D̃11 0

0 D̃22

 has a block-diagonal structure and is equal to

D11 0

0 D22

 . Thus, we have that

∏
i

Re

λi

I 0

0 I

−


−A−1B −A−1C + D

I 0

+
D 0

0 0



−2 D̃11 0

0 D̃22



 , 0, ∀i.

Finally,

0 ≤ µB1


−A−1B + D −A−1C

I 0

+
D 0

0 0



−1

< 1.

�

The following Theorem 4.6 shows that the linear system is additive D-stable with respect to

coordinates if the structured singular value of the reciprocal of−A−1B + D −A−1C
I 0

+
D 0

0 0


with respect to set of block-diagonal structure B1 is greater than or equal to 0 and less than 1 for a

positive diagonal matrix D.
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Theorem 4.6. The linear system as described in theorem 1, and is additive D-stable in relation to speeds, if

0 ≤ µB1


−A−1B + D −A−1C

I 0

+
D 0

0 0



−1

< 1.

Proof. Suppose that

D11 0

0 D22

 has a block-diagonal structure so that

∏
i

Re

λi



−A−1B + D −A−1C

I 0

+
D 0

0 0




2

+

D11 0

0 D22


2

 , 0, ∀i.

In order to prove last inequality, we have

∏
i

Re




−A−1B + D −A−1C

I 0

+
D 0

0 0


2

−

D11 0

0 D22


2 


−A−1B + D −A−1C

I 0


+

D 0

0 0



−1 

−A−1B + D −A−1C
I 0

+
D 0

0 0




 , 0, ∀i.

Furthermore,

∏
i

Re

λi


I 0

0 I

−

−A−1B + D −A−1C

I 0

+
D 0

0 0



−1 D̃11 0

0 D̃22



 , 0, ∀i.

Here

D̃11 0

0 D̃22

 =
D11 0

0 D22

 . Thus,

∏
i

Re

λi



I 0

0 I

−

−A−1B + D −A−1C

I 0

+
D 0

0 0



−2 D̃11 0

0 D̃22




 , 0, ∀i.

Finally,

0 ≤ µB1


−A−1B + D −A−1C

I 0

+
D 0

0 0



−1

< 1.

�

The following Theorem 4.7 ensures the D-stability of

−A−1B −A−1C
I 0


D 0

0 I

 if the structured

singular values of the matrix


 I O
O I

−
−A−1B −A−1C

I O


D O
O I




2

in relation to set of block-

diagonal matrices B1 is greater than or equal to zero and strictly less than one.
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Theorem 4.7. The linear system as described in theorem-1 is D-stable if matrix product−A−1B −A−1C
I 0


D 0

0 I


is stable, and

0 ≤ µB1


1

I 0

0 I

−
−A−1B −A−1C

I 0


D 0

0 I




2


< 1.

Proof. The matrix

I 0

0 I

−
−A−1B −A−1C

I 0


D 0

0 I

 is a D-stable matrix iff it is a stable matrix, and

satisfying the condition that the product of all the eigenvalues of following matrix

 I 0

0 I

−
 −A−1B −A−1C

I 0


 D 0

0 I

 −

 P11 0

0 P22

 P11 0

0 P22


 I 0

0 I

−
 −A−1B −A−1C

I 0


 D 0

0 I




is not equal to zero, here the diagonal matrix

P11 0

0 P22

 is a positive. This further can be written

as that the product of all the eigenvalues of the matix

I 0

0 I

−
−A−1B −A−1C

I 0


D 0

0 I




2

−

P11 0

0 P22

 X

P11 0

0 P22



I 0

0 I

−Y


 , 0.

where X =


1


I 0

0 I

−

−A−1B −A−1C

I 0



D 0

0 I





, Y =

−A−1B −A−1C
I 0


D 0

0 I

 .

As,

n∏
i=1

λi



I 0

0 I

− 1
I 0

0 I

−
−A−1B −A−1C

I 0


D 0

0 I




2

 ˜P11 0

0 ˜P22




, 0.
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This finally yields required result of structural singular value, that is,

0 ≤ µB1


1

I 0

0 I

−
−A−1B −A−1C + D

I 0


D 0

0 I




2


< 1.

�

The following Theorem 4.8 ensures the additive D-stability ofI 0

0 I

−

−A−1B −A−1C + D

I 0

+
D 0

0 I




if its structured singular values with respect to set of block-diagonal matrices B1 is greater than or

equal to zero and strictly less than one.

Theorem 4.8. The linear system as described in theorem-1 is additive D-stable if the real part of all the
eigenvalues of the matrix I 0

0 I

−

−A−1B −A−1C + D

I 0

+
D 0

0 I


 < 0,

the structured singular values of the square of the required above matrix is greater than or equal to zero and
strictly less than one. The additive D-stability is in relation to coordinates.

Proof. To show that the structured singular values of the square of the reciprocal ofI 0

0 I

−

−A−1B −A−1C + D

I 0

+
D 0

0 I




is greater than or equal to zero and strictly less than one. For this purpose, it is enough to show

that the product of all the eigenvalues of

 I 0

0 I

−
 −A−1B −A−1C

I 0


 D 0

0 I

 −

 P11 0

0 P22

 P11 0

0 P22


 I 0

0 I

−
 −A−1B −A−1C

I 0


 D 0

0 0




is not equal to zero for positive diagonal matrix

P11 0

0 P22

 . This further implies that the product

of all the eigenvalues of
I 0

0 I

−

−A−1B −A−1C + D

I 0

+
D 0

0 0




2
−

P11 0

0 P22

 X̃

P11 0

0 P22


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I 0

0 I

−
−A−1B −A−1C

I 0

+
D 0

0 0




is not exactly equal to zero, where X̃ is given as

X̃ :=
1

I 0

0 I

−

−A−1B −A−1C

I 0

+
D 0

0 I




.

Furthermore, we have that

n∏
i

λi



I 0

0 I

− 1
I 0

0 I

−

−A−1B −A−1C

I 0

+
D 0

0 0





2

P̃11 0

0 P̃22




,

being not exactly equal to zero. Thus, finally, we have that the structured singular values of square

of reciprocal of I 0

0 I

−

−A−1B −A−1C + D

I 0

+
D 0

0 0




are greater than or equal to zero and strictly less than one. �

5. Numerical Experimentation

In this phase, we demonstrate the approximation and visualization of eigenvalues, singular

values, structured singular values, and pseudo-spectra for second order linear systems with

coefficient matrices A, B, and C as the mass, damping and stiffness matrices. We show the level

sets which corresponds to the resolvent norm for the pseudo-spectrum in the complex plane and

mathematically the resolvent norm is computed by ||(M− zI)−1
||.

Example 1. We consider second order linear system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ M3×3, are the stiffness, mass, and damping matrices (Toeplitz), µ(τ) ∈ Rn, dµ(τ)
dτ , the

vector of generalized speed.

A =


1 4 5

2 1 4

3 2 1

 ; B =


4 4 5

5 4 4

6 5 4

 ; C =


3 4 5

1 3 4

2 1 3

 .
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The matrix M1 is

M1 =

−A−1B −A−1C
I3 03

 =



−1.7895 −1.3421 −0.8684 −0.1842 −0.0263 −0.5789

−0.1579 −0.3684 −0.4737 −0.7368 −0.1053 −0.3158

−0.3158 −0.2368 −0.4474 0.0263 −0.7105 −0.6316

1.0000 0 0 0 0 0

0 1.0000 0 0 0 0

0 0 1.0000 0 0 0


.

Figure 1 displays the spectral features of matrix M1, including the computation of spectrum, singu-

lar values, structured singular values, and pseudo-spectrum. In Figure 2, we plot the eigenmode

corresponding to the eigenvalues. The top plot in the figure shows an envelope which is produced

by plotting the absolute value of an eigenmode minus the absolute value. The real part is shown

with a cyan line. The plot at the bottom level show absolute value of eigenmode being ploted at

a log scale. Further it shows that how quickly an eigenmode is decaying with the time. The con-

dition number computed for an eigenvalue is shown in the top plot. The large condition number

means that eigenvalue is sensitive to perturbations.

Figure 2 shows the plotted value of inverse of the resolvent norm. We show real part of

pseudomode in magenta. The pseudomode displays the right singular vector that corresponds to

the least singular value in the matrix (zI6 −M1).

Figure 1. Spectral properties of matrix M1 in Example-1.
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Figure 2. Eigenmode (left) and inverse of resolvent norm (right) of matrix M1 in

Example-1

Example 2. We consider second order linear system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ M3×3, are the stiffness, mass, and damping matrices taken from [30], µ(τ) ∈ Rn,
dµ(τ)

dτ , the vector of generalized speed.

A =



0.4000 0 0 0 0

0 0.8000 0 0 0

0 0 1.2000 0 0

0 0 0 1.6000 0

0 0 0 0 2.0000


; B =



12 −12 0 0 0

−12 24 12 0 0

0 −12 24 −12 0

0 0 −12 24 12

0 0 0 −12 24


;

C =



36000 −36000 0 0 0

−36000 72000 −36000 0 0

0 −36000 72000 −36000 0

0 0 −36000 72000 −36000

0 0 0 −36000 72000


.

The matrix M2 =

−A−1B −A−1C + 2D
I5 05

 is multiple of 1.0e + 04 and is given as bellow:



−0.0030 0.0030 0 0 0 −8.9998 9.0000 0 0 0

0.0015 −0.0030 −0.0015 0 0 4.5000 −8.9992 4.5000 0 0

0 0.0010 −0.0020 0.0010 0 0 3.0000 −5.9998 3.0000 0

0 0 0.0008 −0.0015 −0.0008 0 0 2.2500 −4.4996 2.2500

0 0 0 0.0006 −0.0012 0 0 0 1.8000 −3.5982

0.0001 0 0 0 0 0 0 0 0 0

0 0.0001 0 0 0 0 0 0 0 0

0 0 0.0001 0 0 0 0 0 0 0

0 0 0 0.0001 0 0 0 0 0 0

0 0 0 0 0.0001 0 0 0 0 0



.



Int. J. Anal. Appl. (2026), 24:11 19

Figure 3 displays the spectral features of matrix M1, including the computation of spectrum,

singular values, structured singular values, and pseudo-spectrum. In Figure 4, we plot the eigen-

mode corresponding to the eigenvalues. The top plot in the figure shows an envelope which is

produced by plotting the absolute value of an eigenmode minus the absolute value. The real part

is shown with a cyan line. The plot at the bottom level show absolute value of eigenmode being

ploted at a log scale. Further it shows that how quickly an eigenmode is decaying with the time.

The condition number computed for an eigenvalue is shown in the top plot. The large condition

number means that eigenvalue is sensitive to perturbations.

In Figure 4, we plot the value of inverse of the resolvent norm. We show real part of pseudomode

in magenta. The pseudomode displays the right singular vector that corresponds to the least

singular value in the matrix (zI10 −M2).

Figure 3. Spectral properties of matrix M2 in Example-2.

Figure 4. Eigenmode (left) and inverse of resolvent norm (right) of matrix M2 in

Example-2
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Example 3. We consider second order linear system

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ M3×3, are the stiffness, mass, and damping matrices taken from [16], µ(τ) ∈ Rn,
dµ(τ)

dτ , the vector of generalized speed.

A =


5 0 0 0

0 10 0 0

0 0 10 0

0 0 0 5


; B =


0.02 −0.01 0 0

−0.01 0.02 −0.01 0

0 −0.01 0.02 −0.01

0 0 −0.01 0.01


; C =


2 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1


; D =


2 0 0 0

0 1 0 0

0 0 10 0

0 0 0 50


.

The matrix M3 =

−A−1B + 2D −A−1C
I4 04

 is multiple of 1.0e + 04 and is given as bellow:



3.9960 0.0020 0 0 −0.4000 0.2000 0 0

0.0010 1.9980 0.0010 0 0.1000 −0.2000 0.1000 0

0 0.0010 19.9980 0.0010 0 0.1000 −0.2000 0.1000

0 0 0.0020 99.9980 0 0 0.2000 −0.2000

1.0000 0 0 0 0 0 0 0

0 1.0000 0 0 0 0 0 0

0 0 1.0000 0 0 0 0 0

0 0 0 1.0000 0 0 0 0



.

Figure 5 displays the spectral features of matrix M1, including the computation of spectrum,

singular values, structured singular values, and pseudo-spectrum. In Figure 6, we plot the eigen-

mode corresponding to the eigenvalues. The top plot in the figure shows an envelope which is

produced by plotting the absolute value of an eigenmode minus the absolute value. The real part

is shown with a cyan line. The plot at the bottom level show absolute value of eigenmode being

ploted at a log scale. Further it shows that how quickly an eigenmode is decaying with the time.

The condition number computed for an eigenvalue is shown in the top plot. The large condition

number means that eigenvalue is sensitive to perturbations.

In Figure 6, we plot the value of inverse of the resolvent norm. We show real part of pseudomode

in magenta. The pseudomode displays the right singular vector that corresponds to the least

singular value in the matrix (zI8 −M3).
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Figure 5. Spectral properties of matrix M3 in Example-3.

Figure 6. Eigenmode (left) and inverse of resolvent norm (right) of matrix M3 in

Example-3

Example 4. We consider 1000, 200 and 300 dimensional stiffness, mass, and damping matrices

which are generated by MATLAB command rand. The spectral properties like the computation of

spectrum, singular values, structured singular values, and pseudo-spectrum of 100, 200 and 300

dimensional Haar matrices are presented in Figure 7.

In Figures 8-10, we plot the eigenmode corresponding to the eigenvalues. The top plot in each

figure shows an envelope which is produced by plotting the absolute value of an eigenmode and

minus the absolute value. The real part is shown with a cyan line. The plot at the bottom level in

each figure show absolute value of eigenmode being ploted at a log scale. Further it shows that
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how quickly an eigenmode is decaying with the time. The condition number computed for an

eigenvalue is shown in the top plot. The large condition number means that eigenvalue is sensitive

to perturbations. Further, we present the plot of the value of inverse of the resolvent norm. We

show real part of pseudomode in magenta. The right singular vector corresponding to the smallest

singular value corresponding to matrix zI −M, is shown in pseudomde.

Figure 7. Spectral properties of 100, 200 and 300 dimensional stiffness, mass, and

damping matrices in Example-4.
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Figure 8. Eigenmode (left) and inverse of resolvent norm (right) of 100 dimensional

stiffness, mass, and damping matrices in Example-4

Figure 9. Eigenmode (left) and inverse of resolvent norm (right) of 200 dimensional

stiffness, mass, and damping matrices in Example-4

Figure 10. Eigenmode (left) and inverse of resolvent norm (right) of 300 dimen-

sional stiffness, mass, and damping matrices in Example-4
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6. Conclusion

This work establishes novel theoretical contributions concerning D-stability, speed-dependent

additive D-stability, and coordinate-dependent additive D-stability. Our analysis primarily focuses

on linear dynamical systems characterized by n degrees of freedom, represented in the form

A
d2µ(τ)

dτ2 + B
dµ(τ)

dτ
+ Cµ(τ) = 0, τ ∈ R, τ > 0,

with A, B, C ∈ Mn×n, are the stiffness, mass, and damping matrices, µ(τ) ∈ Rn, dµ(τ)
dτ , the vector of

generalized speed. The analytical findings concerning D-stability, speed-dependent additive D-

stability, and coordinate-dependent additive D-stability emerge through a synthesis of principles

from D-stability theory and µ-analysis. The gathering of several techniques from matrix analysis,

system theory, and numerical linear algebra forms the basis of our suggested methodology. To

evaluate the efficacy of the suggested methodology, numerical tests are provided on spectrum

computation and behavior, structured singular values and pseudo-spectrum in three dimensional

space for A, B and C ∈ Mn×n to be regarded as Toeplitz, and transportation matrices.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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