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Abstract. The main goal of this paper is to utilize the notion of generalized neutrosophic structures (GNSs) to five
types of algebraic substructures in UP-algebras. We present the concepts of generalized neutrosophic UP-subalgebras
(GNUP-Ss), generalized neutrosophic near UP-filters (GNNUP-Fs), generalized neutrosophic UP-filters (GNUP-Fs),
generalized neutrosophic UP-ideals (GNUP-Is) and generalized neutrosophic strong UP-ideals (GNUP-SIs) in UP-
algebras and investigate some related properties. Furthermore, the relationship between these five types of algebraic
substructures in UP-algebras is discussed. After that, the conditions under which GNUP-S can be GNNUP-F, and the
condition under which GNUP-F can be GNUP-I in UP-algebra are discovered. At last, a number of characterizations

theorems of our concepts are presented and proved.

1. INTRODUCTION

In pure mathematics, there are many kinds of algebraic structures, such as BCK/BCI/KU-
algebras, see [1,2]. A UP-algebra is one of algebraic structures presented by lampan [3]. Based on
this structure, he presented the idea of UP-subalgebra and UP-ideals. In [4], lampan proved that
the concept of UP-subalgebras is an extension of near UP-filters, near UP-filters is an extension
of UP-filters, UP-filters is an extension of UP-ideals, and UP-ideals is an extension of strong UP-

ideals. The research of UP-algebras offers a rich and fascinating area of inquiry for mathematicians
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and scientists alike, providing a powerful framework for understanding the underlying structures
and behaviour of a wide range of mathematical systems.

In the field of uncertainty mathematics, Zadeh [5] implemented the notion of fuzziness structures
as a generalization of classical (crisp) sets. This concept was merged with a crisp UP-algebra by
Songsaeng et al. [6] to deal with uncertainty and fuzziness more accurately. In other words, the
theory of fuzziness sets can be used within the framework of UP-algebras to explore fuzziness
and imprecision in algebraic structures in UP-algebras. The conceptions of fuzzy UP-ideals, fuzzy
UP-subalgebras and fuzzy UP-filters of UP-algebras were considered by Somjanta et al. [6]. Fuzzy
translations of a fuzzy set in UP-algebras were studied by Guntasow et al. [7]. Also, Kaijae et al. [8]
studied and investigated anti-fuzzy UP-subalgebras and anti-fuzzy UP-ideals in UP-algebras.

Atanassov [9] presented intuitionistic fuzzy sets which include the uncertainty degree called
uncertainty margin. The uncertainty margin is defined as one minus the sum of membership and
non-membership. Therefore, the intuitionistic fuzzy set is characterized by a membership function
and non-membership function with a range [0,1] and it is an extension of both classical (crisp)
and fuzzy sets. The concept intuitionistic fuzzy sets applied to UP-algebras in several works,
see [10,11].

Smarandache [12] presented neutrosophic set theory that studies the origin, nature, and scope
of neutralities and engagements with distinct ideational spectra. A neutrosophic set involves
truth, indeterminacy and falsity based on three valued logics. Neutrosophic set is a powerful
mathematical framework which extensions the perception of classical sets and (intuitionistic) fuzzy
sets. As a modification of neutrosophic sets, Wang et al. [13] defined single valued neutrosophic set
as an instance of neutrosophic set which can be used in real scientific and engineering applications.
In the context of neutrosophic UP-algebras, Songsaeng and Iampan [14] presented the concepts of
neutrosophic UP-subalgebras, neutrosophic near UP-filters, neutrosophic UP-filters, neutrosophic
UP ideals, and neutrosophic strongly UP-ideals of UP-algebras, and investigated many properties.
For more works on the connection between neutrosophic sets and UP-algebras, see [15,16]. Song
et al. [17] modified the notion of a neutrosophic set by divide the role of the indeterministic
membership function to two membership functions and they presented the concept of GNS. After
that, this concept applied to ideals in BCK-algebras [18].

In this paper, we introduce the notions of GNUP-Ss, GNNUP-Fs, GNUP-Fs, GNUP-Is and
GNUP-SIs in UP-algebras and prove their generalizations. Furthermore, the relationship between
GNUP-Ss (resp., GNNUP-Fs, GNUP-Fs, GNUP-Is and GNUP-SIs) in UP-algebras is discussed.
After that, the conditions under which GNUP-S can be GNNUP-F, and the condition under which
GNUP-F can be GNUP-I in UP-algebra are established. At last, some characterizations results of

our notions are discussed and proved.
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2. PRELIMINARIES

In this section, a brief summary of some basic definitions related to this article, such as UP-
algebras, subalgebras, ideals and filters in UP-algebras are presented. Thereafter, the main notions
related to (intuitionistic) fuzzy sets and (generalized) neutrosophic sets with some results and
properties that will be of value for our later pursuits are mentioned.

Throughout this article, & (universe set) denotes a UP-algebra, unless otherwise specified.

2.1. UP-Algebras and Some UP-Algebraic Substructures.

Definition 2.1 ( [ ). Analgebra & = (8, ,0) of type (2,0) is said to be a UP-algebra, where “E" is a
nonempty set, “ ¢ ” is a binary operation on &, and “0” is a fixed element of = if it satisfies the following
postulates (Vh, j,k €&):

(1) (jok)o((hoj)o(hok)) =

(2) 0oh=h,

B) ho0 =0,

(4) hoj=joh=0=>h=].

The following two Propositions are mentioned by [3,19].

Proposition 2.1. Let & be a UP-algebra. Then, the following assertions are valid (Vh, j, k,c € E) :
(1) hoh =0,
(2) ho(joh) =0,
B) he(joj)=0,
@) (ho(jok))o(ho((coj)o(cok))) =0,

5) (((coh)o(coj))ok)o((hojf)ok)=0,
6) ((hoj)ok)o(jok)=0,

(7) ((hoj)ok)o(ho(jok)) =0,

(8) ((hoj)ok)o(jo(cok))=0.

Proposition 2.2. Let E be a UP-algebra.Then, we have the following:
(1) Ifhoj=0and jok=0,thenhok = 0.
(2) Ifhoj=0, then (koh) o (koj)=0,
(3) Ifhoj=0,then (jok)o (hok) =0,
(4) (joh)oh=0ifandonlyifh = joh,
(5) Ifhoj=0,thenho (ko j)=0.
forallh,j, k€ E.

Example 2.1. [3] Let E = {0,v, b, n} be a set with a binary operation "o” defined by the following Cayley
table:
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TasLe 1. A UP-algebra & = {0, v, b, n} of Example 2.1

S o Q< O
S O O oo
ST O O o
S I O = | =

d d O < |

Then, (8, ,0) is a UP-algebra.
In a UP-algebra &, five types of special subalgebraic structures are defined as follows.

Definition 2.2 ( [3,6]). A nonempty subset S of a UP-algebra E (Vh, j, k € E) is called:
(1) a UP-subalgebra of Eifhoje SVh,j€S.
(2) a near UPfilter of & if

(i) 0 €S,

(i) jeS=>hojeS.
(3) a UP-filter of o if

(i) 0€s,

(ii) hojeS,heS=jeS.
(4) a UP-ideal of & if

(i) 0 €S,

(i) ho(jok)eS,jeS=>hokeS.
(5) a strong UP-ideal of E if

(i) 0es,

(i) (koj)o(koh)eS,jeS=heS.

2.2. Some Uncertainty Structures.

Definition 2.3 ( [5]). A fuzzy structure Q in E # ¢ (universe set) is a structure of the form:
Q= {(hug(h)):heg},

where g : & — [0, 1] is the degree of membership function of the element h € E.

Definition 2.4 ( [9]). An intuitionistic fuzzy structure B in & # ¢ (universe set) is a structure of the form:

B ={(h, us(h),&p(h)) | h € E},

where the functions ug : & — [0,1] and &g : E — [0, 1] are the degree of membership and the degree of
non-membership of the element h € B, respectively, and 0 < ug(h) + &p(h) <1Vh e E.

Definition 2.5 ( [12]). A neutrosophic structure A in E # ¢ (universe set) is a structure of the form:
A = {(h,Ar(h), Ar(h), Ap(h)) | h € B},
where At : B — [0,1] is a truth, A; : E — [0,1] is an indeterminate and Ap(h) : E — [0,1] is a false

membership functions, and (Vh € E) :
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0< /\T(h) + A](h) + /\F(h) <3.

Definition 2.6 ([17]). A GNS P in E (universe set) is a structure of the form:
P = {<h, Pr(h), Pir(h), Pip(h), Pr(h)) | h € B},
where, Pr : & — [0,1], Pir : & — [0,1], Pr : E — [0,1] and Pr : E — [0,1] such that 0 <
Prr(h) + Pip(h) <1Vh e E.
In this article, we use the symbol P = (Pr, Prt, Pir, Pr) for the GNS
P = {(h, Pr(h), Pir(h), Pip(h), Pe(h)) | h € B}

Example 2.2. Let E = {0,v,b,n} be a UP-algebra with a binary operation “ o " defined by the following

Cayley table:
TaBLE 2. A UP-algebra & = {0, v, b, n} of Example 2.2
0|0 v b n
00 v b n
v|0 0 0 O
b|0 v 0 n
n|0 v b 0
Then,
Z 0 v b n
Pr 02 0.7 04 0.2
P=]|Pr 03 01 02 03
Pr 05 02 01 04
Pr 02 03 06 05
isa GNS of &.

2.3. Neutrosophic Algebraic Substructures in UP-Algebras.
In this part, all next definitions related to the connection between neutrosophic structure and

some UP-algebraic substructures are mentioned by [14].

Definition 2.7. Let A be a neutrosophic structure of 2. Then, A is called a neutrosophic UP-subalgebra of
& if the following postulates are satisfied (Vh, j € E):

(1) Ar(hoj) = min{Ar(h), Ar(j)},

(2) Ar(ho j) < max{Ar(h), Ar(j)},

(3) Ap(hoj) =min{Ar(h), Ae(j)}.

Definition 2.8. Let A be a neutrosophic set of &. Then, A is called a neutrosophic near UP-filter of = if the

condition (K), where

/\T(O) > )\T(h),
(K) (Vl’l € E) )\1(0) < /\[(h), ,
Ap(0) = Ap(h)
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and following postulates are valid (Vh, j € E):

(1) Ar(heoj) = Ar(j),
(2) Ar(hoj) < Ar(j),
(3) Ap(hoj) = Ap(j).

Definition 2.9. Let A be a neutrosophic structure in E. Then, A is called a neutrosophic UP-ideal of E if
the condition (K) of Definition 2.8 and the following postulates are valid (Vh, j, k € B):

(1) Ar(hok) =min{Ar(ho (jok)),Ar(j)},

(2) Ar(hok) <max{Ar(ho (jok)), Ar(j)},

(3) Ap(hok) = min{Ar(ho (jok)),Ar(j)}-

Definition 2.10. Let A be a neutrosophic structure in &. Then, A\ is called a neutrosophic strong UP-ideal
of & if the condition (K) of Definition 2.8 and the following postulates are valid (Vh, j,k € E):

(1) Ar(h) = min{Ar((ko j) o (ko h)), Ar(j)},
(2) Ar(h) < max{A;((ko j) o (koh)), Ai(j)},
(3) Ap(h) = min{Ap((k o j) o (koh)), Ar(j)}.

3. Five Tyres oF GENERALIZED NEUTROSOPHIC UP-ALGEBRAIC SUBSTRUCTURES

In this section, we introduce the notions of generalized neutrosophic algebraic substructures
(UP-subalgebras, near UP-filters, UP-filters, UP-ideals, and strong UP-ideals) in UP-algebras.
Based on these notions, certain necessary examples and properties with their generalizations are

provided and discussed.

Definition 3.1. A GNS P = (Pr, P11, Pir, Pr) is called a GNUP-S of E if the following postulates are valid
(Vh,je&):

(1) Pr(he j) = min{Pr(h), Pr(j)},

(2) Prr(hoj) = min{Pir(h), Pir(j)},

(3) Pip(ho j) < max{Prr(h), Prr(j)},

(4) Pp(hoj) < max{Pr(h), Pr(j)}.

Example 3.1. Let & = {0, v, b, n, 1} be a UP-algebra with a binary operation “ o ” defined by the following
Cayley table:

TasLE 3. A UP-algebra & = {0,v,b,n,1} of Example 3.1

—~ 3 T T O

!
!
l
!
!
0

o O O O OoO|o
S O O © Q|
o O O 3 T
S O I 2 = | =
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Define a GNS P = (Pr, Prt, Prr, Pr) in E as follows:

E 0 9 b n l
Pr 0.7 04 05 02 0.6
P=|Pr 1 05 07 03 07
Pr 0 04 01 08 02
Pr 03 05 04 09 04

Then, P is a GNUP-S of &.

Proposition 3.1. If P = (Pr, Pir, Pir, Pr) is a GNUP-S of &, then the condition (P) is valid, where

Pr(0) = Pr(h),

Prr(0) = Prr(h),

Pir(0) < Pip(h),
Pp(0) < Pr(h)

Proof. Let P = (Pr, Pit, Prr, Pr) be a GNUP-S of E. Using (1) of Proposition 2.1, we have

Pr(0) = Pr(hoh) 2 min{Pr(h), Pr(h)} = Pr(h),
P[T< PIT(hOh) > min P]T(h) P1T<h) P]T(l’l)
PH:( ) (”lO]/l) < maX{Pﬂ:(h) P[p(h) = Pir (h)

Pr(0) = Pe(h o h) = min{Pr(h), Pr(h)} = Pr(h)

forallh € &. O

(P) (Vh e :)

Definition 3.2. A GNS P = (Pr, Pir, P, Pr) is called a GNNUP-F of & if the condition (P) of Proposition
3.1 and the following postulates are valid (Vh, j,€ E) :
Pr(hoj)
Pir(hoj) >
Pir(hoj)
Pr(hoj)

Pr(j),
Prr(j),
Pir(j),
Pr(j)

Example 3.2. Let & = {0, 9, b,n, 1} be a UP-algebra with a binary operation ” o ” defined by the following

>

<
<

Cayley table:
TaBLE 4. A UP-algebra & = {0,v,b,n,1} of Example 3.2

o0 v b n I
00 v b n I
v|0 0 v b I
b0 0 0 v I
n{0 00 0 I
M0 v b n O
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Define a GNS P = (Pr, Prt, Prr, Pr) in E as follows:

E 0 9 b n l
Pr 1 06 05 04 0.1
P=|Pr 1 08 07 06 03
Pr 0 01 03 05 08
Pr 01 03 04 06 09

Then, P is a GNNUP-F of E.

Definition 3.3. A GNS P = (Pr, Pit, Pir, Pr) is called a GNUP-F of E if the condition (P) of Proposition
3.1 and the following postulates are valid (Vh,j € E) :

Pr(j) =
PIT( ) me P[T
)

Pre(j
PF(]) < max{ F

—~

hoj),Pr(h)}
heo ), Prr(h)

hoj),Pre(h)},
hoj),Pr(h)}

Example 3.3. Let & = {0,0,b,n, 1} be a UP-algebra with a binary operation ” o " defined by the following

> min {Pr

~—~

< max {Pjr

—_

Cayley table:

TaBLE 5. A UP-algebra & = {0,v,b,n,1} of Example 3.3

o0 v b n I
00 v b n I
v(0 0 b n I
b|0 0 0 n n
n|0 v b 0 n
110 v b 0O

Define a GNS P = (Pr, Prt, Pir, Pr) in E as follows:

Z 0 9o b n 1
Pr 08 06 05 02 02
P=|Pr 09 07 06 04 04
Pr 0 02 04 07 07
Pr 01 03 05 09 09

Then, P is a GNUP-F of E.

Definition 3.4. A GNS is called a GNUP-I of E if the condition (P) of Proposition 3.1 and the following
postulates are valid (Yh, j,k € E) :

Pr(hok

Prr(hok

Pip(hok

> min

~—

\%
E
=]

IA
=
Q
S
-
™
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Example 3.4. Let & = {0,0,b,n,1} be a UP-algebra with a binary operation “ o " defined by the following
Cayley table:

TaBLE 6. A UP-algebra & = {0,v,b,n,1} of Example 3.4

—~ 3 T < O

l
l
l
l
!
0

o O O O OoO|Oo
S O ©O O Q|
o T o ¢SS
S O © 2 I | =

Define a GNS P = (Pr, Pr1, Pir, Pr) as follows:

Z 0 9o b n 1
Pr 08 05 04 05 04
P=| Pr 09 09 06 08 05
Pr 01 03 04 03 05
Pr 03 05 07 0.6 09

Then, P is a GNUP-I of E.

Definition 3.5. A GNS P = (Pr, Prt, Pir, Pr) is called a GNUP-SI of E if the condition (P) of Proposition
3.1 and the following postulates are valid (Vh, j,k € E) :
Pr(h) > min{Pr((k<j) <

Prr(h) = min{Pr((k< j) ¢

Pir(h) < max{Pir((koj) o

Pr(h) < max{Pr((koj) o

—

koh)), Pr(j)
koh)),Prr(j
koh)),Prr(j
koh)),Pe(j)}

Example 3.5. Let & = {0, v, b, n, 1} be a UP-algebra with a binary operation “ o ” defined by the following

—

b
)}
)}

7

—

Cayley table:

TaBLE 7. A UP-algebra & = {0,v,b,n,1} of Example 3.5

—~ 3 T < O
I d I O Q|

!
l
l
l
!
0

oS O O O OoO|o
o O o ¢ oS
S ©O 3 I =2 | =

Define a GNS P = (Pr, Prt, Pir, Pr) in E as follows:
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Pr 04 04 04 04 04

Pr 03 03 03 03 03
Pr 09 09 09 09 09

Then, P is a GNUP-SI of E.

Definition 3.6. Let P = (P, Pi, Pir, Pr) be a GNS of E. Then, P is said to be a constant GNS in E if
PT<]’I) = PT(O), P[T<]’l) = P]T(O), P]p(h) = PIF(O) and Pp(]’l) = PF(()) Vh e E.

Theorem 3.1. A GNS P = (Pr, Pir, Pir, Pr) in E is constant if and only if it is a GNUP-SI of E.

Proof. Assume that Pis a constant GNSin E. Then, Pr(h) = Pr(0), Pir(h)
and Pr(h) = Pp(0) for all i € E. This implies that, P1(0) > Pr(h), Pir(0)
and Pr(0) < Pr(h). Also, for all h, j, k € E, we get

P]T(O),PH?(h) = PH?(O)
P[T(h), PH:(O) < P[F(h)

\%

min{Pr((k ¢ j) o (ko h)),Pr(j)} = min{Pr(0), Pr(0)} = Pr(0) = Pr(h),
min {Prr((k o j) o (ko h)), Pir(j)} = min {Pr(0), Prr(0)} = Pir(0) = Prr(h),
max {Prr((ko j) o (koh)),Pir(j)} = max{Pir(0), Pir(0)} = Pir(0) = Pie(h),
max {Pp((ko j) o (koh)),Pr(j)} = max{Pr(0), Pr(0)} = Pr(0) = Pr(h)

Hence, P is a GNUP-SI of =.
Conversely, assume that P is a GNUP-SI of E. Then, for all 1, j, k € £, we have

Pr(h) = min{Pr((ho0) < (hoh)),Pr(0)}
= min{Pr(hoh), Pr(0)}
= min {Pr(0), Pr(0)}
= Pr(0)
> Pr(h),

Prr(h) > min{P;r((ho0) o (hoh)),Pr(0)}
= min {P;r(0¢ (hoh)),Prr(0)}
= min {Pyr(h o h), P7(0)}
= min {P;7(0), P;r(0)}
= Pi7(0)
> Prr(h),
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P]p(h) < max {P]p((l’l 00) o (h Oh)),PH:(O)}
o (hoh)),Pr(0)}

) r(0)}

)
Thus, PT(O) = PT(h),P[T(O) = P[T(h),PH:<O) = P[]:(h) and P]:(O) = Pp(h) (Vl’l S E) Hence, Pisa

constant. O

4. SoME RELATIONS OF GENERALIZED NEUTROSOPHIC UP-ALGEBRAIC SUBSTRUCTURES

This section discusses the relations between GNUP-Ss (resp., GNNUP-Fs, GNUP-Fs, GNUP-Is
and GNUP-SIs) in UP-algebras P.

Theorem 4.1. Every GNNUP-F of E is a GNUP-S.

Proof. Assume that P = (Pr, Pir, Pir, Pr) is a GNNUP-F of E. Then, Pr(0) > Pr(h), Pir(0) > Pir(h),
Pir(0) < Pip(h) and Pr(0) < Pr(h). Yh € E. Now, let i, j € E. Then,

Hence, P is a GNUP-S of E. O

The following example shows that the converse of Theorem 4.1 is not true.

Example 4.1. From Example 3.1, P is a GNUP-S of E. Since
PH:(Z)O b) =04 f_ P[p(b) = 0.1,
then P is not a GNNUP-F of E.

Theorem 4.2. Every GNUP-F of 5 is a GNNUP-F.
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Proof. Assume that P = (Pr, Pit, Pir, Pr) is a GNUP-F of E. Then, Pr(0) > Pr(h), Pir(0) > Pir(h),
Pip(0) < Pip(h) and Pr(0) < Pp(h) Vh € E. Now, let h, j € E. Then,

Pr(hoj)

Hence, P is a GNNUP-F of E.

PT(]O(hOJ)) T(j)}

The following example shows that the converse of Theorem 4.2 is not true.

Example 4.2. From Example 3.2, P is a GNNUP-F of E. Since
PT(Z?) =05 ;\{_‘ 0.6 = min {PT(UO b),PT(0>},

we have P is not a GNUP-F of E.

Theorem 4.3. Every GNUP-I of & is a GNUP-F.

Proof. Assume that P = (Pr, Pi1, Pip, Pr) is a GNUP-I of E. Then, Pr(0) > Pr(h), Pir(0) > Pir(h),
Pir(0) < Pip(h) and Pr(0) < Pr(h). Yh € E. Now, let i, j € E. Then,

Prr(j)

Pr(0 j)

min {P7(0 <>(h<>])) r(h)}
min (Pr(h o j), Pr(h)},
Pir(0¢ j)

min {P;r(0¢ (hoj)),Prr(h)}
min {Pr(h o j), Pir(h)},
Pip(0 j)

max {Prr(00 (hoj)), Pr(h)}

{

max {Prr(h o j),Pir(h)},
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Pp(j) = Pr(00j)
< max{Pr(00 (hoj)),Pr(h)}
= max{Pr(hoj) Pe(h)}.

Hence, P is a GNUP-F of &. m]

The following example shows that the converse of Theorem 4.3 is not true.

Example 4.3. From Example 3.3, we have P is a GNUP-F of E. Since
Pr(nol) =0.2#0.5=min{Pr(no (bol)),Pr(b)},
we have P is not a GNUP-I of E.

Theorem 4.4. Every GNUP-SI of E is a GNUP-I.

Proof. Assume that P = (P, P11, P, Pr) is a GNUP-SI of E. Then, Pr(0) > Pr(h), Pir(0) = Pir(h),
Pir(0) < Pip(h) and Pr(0) < Pp(h) Yh € E. Now, leth, j, k € E. Then,

Pr(hok) = Pr(j) 2 min{Pr(ho (jok)),Pr(j)},
Pir(hok) = Prr(j) 2 min{Pir(h o (jok)), Prr(j)},
Pip(hok) = Pir(j) < max{P(ho (jok)),Pir(f)},
Pp(hok) = Pr(j) < max{Pp(ho (jok)), Pe(j)}-
Hence, P is a GNUP-I of =. m]

The following example shows that the converse of Theorem 4.4 is not true.

Example 4.4. From Example 3.4, P is a GNUP-I of E. Since
Pr(n) =0.5<0.8 =min{Pr((bo0) o (bon)),Pr(0)},
then P is not a GNUP-SI of E.

Remark 4.1. Using Theorems 4.1, 4.2, 4.3 and 4.4; and Examples 4.1, 4.2, 4.3 and 4.4 show the following:

e A GNUP-S is an extension of a GNNUP-F.

e A GNNUP-F is an extension of a GNUP-F.

e A GNUP-F is an extension of a GNUP-I.

e A GNUP-I is an extension of GNUP-SIs.

o Theorem 3.1 obtains that a GNUP-SI and a constant GNS are coincided.

Theorem 4.5. If P = (P, Pi1, Pir, Pr) is a GNUP-S of E satisfying the following condition (Vh,j € E) :

Pr(h) = Pr(j),
Pir(h) = Prr(j),
Pir(h) < Pre(j),

Pr(h) < Pr(j)

(hoj#0)=

7

then P is a GNNUP-F of E.
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Proof. Assume that P = (Pr, Pi1, Pir, Pr) is a GNUP-S of & satisfying the assumption. This implies
that P satisfies the conditions in Proposition 3.1. Now, let 1, j € E. Then, we have the following
two cases:

Case (1). If (ho j = 0), then

Pr(ho j) = Pr(0) = Pr(j),
Prr(h o j) = Pir(0) > Prr(j),
Pip(ho j) = Pir(0) < Pir(j),

PF(hOj) = PF(O) < Pp(j).

Case (2). If (ho j#0), then

Pr(hoj) = min {Pr(
Prr(hoj) = min{Prr(h
Pir(ho j) < max{Pir

Pr(hoj) < max{Pr

Thus, P is a GNNUP-F of E. O

Theorem 4.6. If P = (Pr, Pit, P, Pr) is a GNUP-F of E satisfying the following condition (Vh, j,k € E) :

Pr(jo (hok)) =Pr(ho(jok))
Prr(jo (hok)) = Prr(ho (jok))
Pip(jo (hok)) = Pr(ho(jok)) |
Pp(jo(hok)) =Pp(ho(jok))

then P is a GNUP-I of E.

Proof. Assume that P = (Pr, Pir, Pir, Pr) is a GNUP-F of E satisfying the assumption. Then, P
satisfies the conditions in Proposition 3.1. Now, let i, j, k € E. Then,

Pr(hok) 2 min{Pr(jo (hok)),Pr(j)}
= min {Pr(ho (jok)),Pr(j)},
P]T(hok) > l’l’lil'l{PIT(]'<> (hok))/PIT(j }

:min{PlT ho(]Ok) /PIT(j }/

}
)
( ) )
Pir(hok) < max{Pi(jo (hok)),Pir(j)}

), Pir(j)}

Pr(j)}
= max{Pr(ho (jok)),Pr(j)}.

= max{Pir(ho (jok)
Pr(hok) <max{Pr(jo (hok))

Therefore, P is a GNUP-I of E. O
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5. UP-ALGEBRAIC SUBSTRUCTURES AND GENERALIZED NEUTROSOPHIC STRUCTURES

This section investigates some results on certain types of UP-algebraic substructures in view of
GNSs.

Theorem 5.1. If P = (Pr, Pi1, P, Pr) is a GNS of E satisfying the condition (S1), where
PT(k) > min {PT(h),PT(j }
P]T(k) > min {P[T(h),PIT
Pir(k) < max{Pie(h), Pir
Pr(k) < max{Pr(h), Pr(j

(S1) (Vh,jkeZE)(k<hoj) =

then P is a GNUP-S of E.

Proof. Assume that P = (Pr, Pit, P, Pr) is a GNS of E satisfying the condition (S1). Leth, j € E.
Then, by (1) of Proposition 2.1, (ho j) o (ho j) = 0, thatish o j > h ¢ j. It follows from (S1) that

Pr(h), Pr(j )
(1), Pr
(1), Pre(j
Pr(h), Pe(j)}-

Hence, P is a GNUP-S of E. O

——

~

><><£$_’3
=3
5 3

|A\I;\/\I\—//|v
3 S B B

——

Theorem 5.2. If P = (Pr, Pi1, P, Pr) is a GNS of E satisfying the condition (S2), where

Pr(j) 2 min {Pr(k), Pr(h)}
Prr(j) = min{Pir(k), Prr(h
Pir(j) < max{P(k), Pie(h
Pr(j) < max{Pr(k), Pr(h)}

(S2) (Vh,j,keE)(k<hoj)=

)}
)}
then P is a GNUP-F of E.

Proof. Assume that P = (P, Pir, Pir, Pr) is a GNS of E satisfying the condition (S2). Let h € E.
Then, by (3) of Definition 2.1, h ¢ (h ¢ 0) = 0, thatis (h < h ¢ 0). It follows that from (S2) that

Next, let 11, j € E. Then, by (1) of Proposition 2.1, we have (hoj) o (hoj) =0, thatishoj>hoj.
This implies that

3 o]

~ ~
—~
~.
~—

~J
—~
!
N
~.

B
IN NIV Y

ay|
~
(-
=
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Thus, P is a GNUP-F of =. O

Theorem 5.3. If P = (Pr, Pit, P, Pr) is a GNS of B satisfying the condition (S3), where (Ya, h, j,k € E)
Pr(hok) = min{Pr(a), Pr(j)},

Prr(hok) = min{Prr(a), Prr(j)},
Pip(hok) < max{Pir(a), Pir(j)}, |
Pr(hok) < max{Pr(a), Pr(j)

(S3) (a<ho(jok)) =
J
}
then P is a GNUP-I of E.

Proof. Assume that P = (Pr, Pir, Pir, Pr) is a GNS of E satisfying the condition (S3). Let h € E.
Then, by (3) of Definition 2.1, ho (0 ¢ (h¢0)) = 0, thatis h <0 ¢ (h¢0). It follows that

Pr(h),

PT(O) = PT(OOO )
,Prr(h)} = Prr(h),

~—

> min {Pr(h), Pr(h

b=
P]T(O) = P[T(O OO) > min {P[T(h) )
P[F(O) = P[F(OOO) < max{Plp(h) P]F(h)} P[p( )
PE(0) = Pr(000) < max {Pr(h), Pr(h)} = Pr(h).

)
Next, let I, j,k € E. Then, by (1) of Definition 2.1, we have (ho (jok)) o (ho (jok)) = 0, that is
ho(jok)=ho(jok). It follows that

(j
Pir(hok) > min{Pir(ho (jo (j
PH:(hOk) Smax{Plp(ho(] ,PH:(

Pr(hok) < max{Pr(ho (jok)),Pe(j)}.

Hence, P is a GNUP-I of =E. O

k)), Prr(j
k))
k)

Theorem 5.4. A GNS P = (Pr, Prt, Pir, Pr) satisfies the condition (S4), where
Pr(k) = Pr(j),
Pir(k) = Prr(j),
Pir(k) < Pre(j),
Pr(k) < Pr(j)

(S4) (Vh,jkeZB)(k<hoj) =

if and only if P is a GNUP-SI of &.

Proof. Assume that P = (P, Pir, Pir, Pr) is a GNS of E satisfying the condition (S4). Let h, j € E.
Then, By (3) of Definition 2.1 and (1) of Definition 2.1, (h 0 = 0), thatis (h < 0 = j o j). It follows
from (S4) that

Pr(h) = Pr(j), Prr(h) = Pir(j), Pir(h) < Pir(j) and Pe(h) < Pe(j).
Similarly,

Pr(j) = Pr(h), Prir(j) = Pir(h), Pie(j) < Pie() and Pe(j) < Pr(h).
Then,

Pr(h) = Pr(j), Prr(h) = Prr(j), Pie(h) = Pir(j) and Pp(h) = Pe(j).
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Thus, P is constant. Hence, by Theorem 3.1, P is a GNUP-SI of =. O

6. CONCLUSIONS

In this paper, we introduced the notions of GNUP-Ss, GNNUP-Fs, GNUP-Fs, GNUP-Is and
GNUP-SIs in UP-algebras and proved their generalizations. Furthermore, we discussed the
relationship between GNUP-Ss (resp., GNNUP-Fs, GNUP-Fs, GNUP-Is and GNUP-SIs) in UP-
algebras. After that, the conditions under which GNUP-S can be GNNUP-F, and the condition
under which GNUP-F can be GNUP-I in UP-algebra were discovered. At last, we presented and
proved some characterizations theorems of GNSs in connection with UP-subalgebraic structures.
In the future work, we will use the idea and results in this paper to study other algebraic structures,
for example, KU-algebras, hoop algebras, MV-algebra and equality algebra.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.
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