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Abstract. In this paper, we establish fixed point results in the setting of cone bipolar metric space. Some of the well-
known results in the literature are extended and generalized by the demonstrated results. We give some examples
based on our outcomes to strengthen our results. An application is presented based on integral equations and fractional

differential equations that confirm our findings.

1. INTRODUCTION

Applications of fixed point theory are essential to many areas of mathematics. In fixed point
theory, the goal of research activities has shifted to finding fixed points for generalized contraction
mappings [1-3]. In recent times, numerous researchers have disseminated diverse articles on fixed
point theory and its applications in diverse formats. The presence of fixed points of contraction
mappings in bipolar metric spaces, which are essentially generalizations of the Banach contraction

principle, has been a hot topic in fixed point theory in recent years.
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In 2016, Mutlu and Giirdal [4] introduced the concept of bipolar metric space and investigated
some basic fixed point and coupled fixed point theorems for co-variant and contra-variant maps
under contractive conditions; see [4,6]. Furthermore, bipolar metric spaces have seen a great deal
of significant study see [7-13]. Aydi et al. [14] established some fixed point theorems in a bipolar
metric space in 2021. Mani et al. [15] proved a fixed point theorem in a probabilistic bipolar metric
space. Mani et al. [16] have proved a fixed point theorem in a bipolar controlled metric space.
Pasha et al [17] have presented a fixed point theorem in a bipolar parametric metric space. Mani et
al. [18] have proved some fixed point theorems in a C*-algebra valued bipolar metric space. Mani
et al. [19] have proved some fixed point theorems in a bipolar metric space.

Cone metric spaces were first proposed by Huang and Zhang [20] in 2007, and they demonstrated
certain fixed point theorems related to contractive mappings. Mani et al. [21] have proved a fixed
point result in a cone b-metric space. Dey and Saha [22] have proved some fixed point theorems in
a partial cone metric space. Shateri [23] has proved a common fixed point theorem in a partial cone
metric space. Arif et al. [24] introduced an ordered implicit relation and proved some fixed point
theorems in a cone metric space. Arif et al. [25] introduced an ordered implicit relation and proved
some fixed point theorems in a cone A-metric space. In this paper, we introduce the concept of

cone bipolar metric space and we prove some fixed point theorems in such spaces.

2. PRELIMINARIES

We outline some fundamental definitions in this section.

Let B be a real Banach space and ‘W C 8. W is called a cone iff
e W is closed, nonempty, and W # {0};
e Ifa,ceRanda,c >0, thenao +cne W forall ®,neW;
ceopeWand-oeW — o =0.

@ < niff n— @ € W denotes a partial ordering < with respect to W, where ‘W is a cone W C 8.
While ® < 7 stands for 1 — @ € int'W, where int'W indicates the interior of ‘W. Also, we write
@ < 1 to show that ® < nand @ # 1.

The cone ‘W is called normal if there is a number N > 0 such that for all ®,1 € 8B,

0 < @ < 7 implies ||@|l < Ninll-

The least positive number satisfying above is called the normal constant of ‘W.
The cone ‘W is called regular if every increasing sequence which is bounded from above is

convergent. That is, if {®,} is a sequence such that
DLy S0y < <N

for some 1) € B, then there is ® € B such that ||, — @|| = 0(v — ).
Comparatively, if every decreasing sequence that is bounded from below be convergent, then
the cone W is regular. A regular cone is a normal cone. In the following, we assume that 8 is a

Banach space, < is a partial ordering with respect to ‘W and that W is a cone in B with intW # 0.
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Definition 2.1. Let = and I be nonempty sets and ¢ : Z X I' — B be a mapping satisfying,
o ifp(®,n) =0, then ® =1 forall (o,n) € EXI;
o if®=n,then p(o,n) =0 forall (o,n) € EXI;
e p(@,n) =@(n ) foral (o,n) € ENT;
e p(@,n) <p(o,w)+e(a,w)+e(a,n) forall©,a € Eand w,n eI
The the triplet (Z,I, @) is called a cone bipolar metric space(CBMS).

Cone bipolar metric spaces are obviously a generalization of bipolar metric spaces.

Example 2.1. Let B=R?>, W = {(@,n) € B|o,n >0 cR?, E=[0,1], = [1,2)and ¢ : ExT - B
such that (@,1) = (lo —nl, al® —n|), where a > 0 is a constant. Then (Z,T,¢) is a CBMS.

Definition 2.2. (1) Let (E,I',¢) be a CBMS. Then the points of the sets =, I and E N T are named
as left, right and central points, respectively, and any sequence, which is consisted of only left (or
right, or central) points is called a left (or right, or central) sequence in (Z,T, ).

(2) Let (E1,I1,¢1) and (E2,T2,¢@2) be two CBMSs and Q0 : U1 — E,UT, be a func-
tion. If O(E1) € Z and Q(I'1) C Iy, then Q is called a covariant map, or a map
from (E1,T1,91) to (E2,T2,¢@2) and this is written as Q : (51,11, 01) 3 (E2,T2,¢2). If
Q : (E,T1,91) 3 (2, 22, 92) is a covariant map, then C) is called a contravariant map from
(E1,T1,91) to (E2,T2, @2) and this is denoted as Q) : (21,11, 1) 2 (Z2, 12, ¢2).

Definition 2.3. Let (£,, @) be a CBMS. A left sequence {@,} converges to a right point n if and only if
for every b € Bwith 0 < b we can find an vy € IN such that (@,,1) < b forall v > vq. Similarly, a right
sequence {n,} converges to a left point @ if and only if for every b € B with 0 < b we can find an vog € N
such that whenever v > vy, (@, 1,) < .

Definition 2.4. Let (21,1, 1) and (23,2, ¢2) be two CBMSs.

(1) Amap Q : (E1,T1,91) 2 (B2, 2, @2) is said to be continuous at a point @y € 1, if for every
b € Bwith 0 < b, there exists a 0 < 6 such that whenever 1 € I'y and ¢1(@0,1) < 6, P2(Q(@0),
Q(n)) < b. It is continuous at a point ng € I'1 if for every h € B with 0 < b, there exists a 0 < O
such that whenever ® € E1 and ¢1(@,1m0) < 6, p2(Q(@), Qo)) < . If Q is continuous at all
points @ € Z1 and 1 € I'1, then it is called continuous.

(2) A contravariant map Q) : (21,11, 1) S (E2,I2, 2) is continuous if and only if it is continuous
as a covariant map Q) : (51,11, ¢1) 3 (I'2, Z2, 02).

Definition 2.5. Let (Z1,I1,¢1) and (Z2,I2,¢2) be two CBMSs. If for a covariant map Q :
(1,11, 91)3(E2, T2, @2), there exists A € (0,1) such that

P2(Q(@),Q(n)) < Ap1(@,n) forall @ € E1,n €T,
or if for a contravariant map Q) : (21,1, 1) S (Z2, 2, 2), there exists A € (0,1) such that,
2(Q(n), V@) < Ap1(@,7) forall @ € E1,n eIy,

then they are called a contraction.
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Definition 2.6. Let (Z,I,¢) be a CBMS.

(1) A sequence ({@,}, {n,}) in the set = X T is said to be a bisequence in (Z,T, p).

(2) The bisequence ({@n}, {na}) is said to be convergent if {@,} and {n,} converge. This bisequence is
said to be biconvergent if {®,} and {n,} both converge to a point u € ENT.

(3) Abisequence ({@,},{nn}) in (£,T, @) is a Cauchy bisequence if for any 0 < €, we can find a number
vo € IN, such that for all positive integers m,n > vy, @(@m, ) < €.

Definition 2.7. If all of the Cauchy bisequences in a CBMS converge, the system is deemed complete.
We prove some fixed point theorems in a CBMS in this study.
3. Main Resurts
Now, we demonstrate our first result.

Theorem 3.1. A complete CBMS (E, I, @) is given, along with a contraction Q) : (Z,T,¢) =3 (E,I,@).
Let ‘W be a normal cone with normal constant N. Then, there is a unique fixed point, or UFP, for the
function Y : EUI - EUT.

Proof. Let @y € Z and 1o € I'. For each v € N, define Q(@,) = @,+1 and Q(n,) = ny41. Then ({o,},
{nv}) is a bisequence in (£, T, ¢). Let M := ¢(@0,m0) + ¢ (@0, 7). Then, forallv,p € N,

p(@v, M) = P(Q@v-1), AU1v-1))
< Ap(@y-1,7v-1)

< Ap(@o,1m0),

and also,
P (@v, v+1) = (Q@v-1), QA1)
< Ap(@y-1,1v)
< Av(p((Do, T]l).
Moreover

(v, Mvs1) + (@, 1)

P(@vrp, 1) < P(@vtp, 1) +
+A'M
+
+

IA

IA

(P((Dv-l—l/ 77v+2) + §0((Dv+1, 77v+1) + AVM
(/\V+1 + AV)M

IA

)
@y, My+1)
)
)

o
ol
P(@yyp, 2
o

Oytp, Ny+42
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< (P(CDV-HJ/ 7]v+p> + (/\V+p_1 4 4 AV+1 + AV)M
< (Av+p+...+Av+l+/\v>M

- A M _ AV (@(@0,1m0) + @(@0,1m1))
S1-2 1-1 ’

and similarly (@, y+p) < AV((P(@O’T];))_ JAF(P(@O’T“)) . Now,

P(@v, M) < @(@v, Mvtp) + P(@vtp, Mvtp) + P(D@ytp, M)

AY(p(@0,10) + @(@0,1m1))

<
<2 -1

+ A (@ (@0, 1m0)),

which implies that

AV (llp (@0, m0)Il + llg (@0, n1)II)
1-A

Therefore, ¢ (@, Mm) — 0(v, m — o). Hence ({@,}, {y}) is a Cauchy bisequence. Since (Z,T, @) is

”(P(wwnm)” <2N +N/\V+p(”(P(CDO/nO)”)-

complete, ({@,}, {n,}) is converges, and thus it is biconverges to a point N € ENT and
Q) =41} = NeENT.

Since () is continuous (any contraction is continuous), Q(1,) = Q(N), so Q(X) = N. Hence Nisa
fixed point of (). Let ¢ be another fixed point of (), then O)(¢) = (i

have,

mplies that £ € ENT and we

PN, €) = p(QN), QL)) < Ap(R, 0),
where 0 < A < 1, which implies p(N,¢) = 0and so N = ¢. m]
Remark 3.1. If E =T, then, the above result is reduced to Theorem 1 in [20].

Example 3.1. Let B =Rand W = {® € Blo > 0}.

Let & = {U,(R) : U, (R) is an v X v upper triangular matrix over R}, I = {L,(R) : L,(R) is an v x
v lower triangular matrix over R} and the map ¢ : EXT — [0, o) be defined by

P(P,Q) = Z lcii — al,
=

forall P = (cij)vxv € Eand Q = (ij)vxv € I. Then (E,T, @) is a complete CBMS. Define T : (E,T,¢) 3
(E,1,¢) by
_ (&
re-(3)
forall P = (cij)vxv € Uy (R) U L, (R). Now,

PTP)LT@) = 7 Y lei o
ii=1



6 Int. . Anal. Appl. (2025), 23:294

v
Z ci; — ail
=1

Ap(P,Q),

forall P = (gii)m eEand Q = (qii)vxv € I. All the axioms of Theorem 3.1 are verified with A = % and
T has a UFP 0y, € U,(R) N L,(R) where Oy, is the null matrix.

<

N —

Example3.2. Let B = Rand W = {® € Blo > 0}. Let £ = [0,1] and I = {0} UN — {1} be equipped with
p(@,n) =lo—nlforall® € Eandn e I. Then, (E,T, @) is a complete CBMS. Define ) : EUI 3 EUT
by
Qo) 2, ifoe(0,1],
0, if@e{0jUN-{1},
VoeEUI. Let @€ Eandn €T, then

@
p(Qa,On) = |g - 0]

<Lio—n
<3 nl.
Consequently, () has a UFP @ = 0 as all of the axioms of Theorem 3.1 are satisfied.
We demonstrate our second result.

Theorem 3.2. Let (Z,T, @) be a complete CBMS, ‘W be a normal cone with normal constant N and given
a contravariant contraction Q : (Z,I,¢) S (E,T,¢). Then the function Q) : EUI — ZUT has a UFP.

Proof. Let @y € Z and ng € I'. For each v € N, define Q(®,) = 1y4+1 and Q(1y) = @y41. Then
({@y}, {nv}) is a bisequence in (EZ,T, ).
Then forallv,pe Z™,
p(@v, ) = @(Q1y-1), A@r-1))
< /\(P ((Dv—lz T]v—l)
= Ap(Q(1-2), Q(@v-2))
< A2p(@y-2, v-2)

< Ao (@0,10)-
Also, we have
P(@y11,17) = (A1), Q@y-1))
< Ap(@v-1,1w) = Ap(Q(1py-2), U@y-1))
< AZ(P((Dv—lf Mv-2)]
< Ap(@1,m0)-
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Therefore

P(@vrp, M) < Q(@vtp, Mvs1) + Q(@vi1, Tvr1) + P(@yy1, 1)
< @(@vsp, Mr1) + A (@0, 1m0) + A (@1, 10)

)
)
< Q(@vip, Mv42) + @(@v42, Mv42) + (@vi2, v+1)
+ A" (@0, 10) + A" p(@1,1m0)

)+

< (@4, Mvt2) + (A2 + 1 (@0, m0) + (A" + A7) @(@1,10)

IA

P(@vip Msp1) + (AT 4+ A (@0, m0)
( v+p—2 + ...+ /\V)(p(ch,T]o)

(AT L4+ A D (@0, m0)

+ (

+ (AP 1 + AVTPT -2 + e + AV )(p(@l,no)
- /\v+1 AV
—_- 1 _/\@((DO/WO) + 1 _Ago(‘DLTYO)-

N+

Similarly, we obtain that

P(@v, Mvrp) < P(@y, 1) + @(Dyr1, 1) + P(Dyr1, Tv4p)
< No(@0,1m0) + A'p(@1,1m0) + @(@v+1, 1v+0)
< Ap(@0,m0) + A'p(@1,1m0) + P(@v+1, Mv+1) + @(@v42, Tv+1)
+ @(@v+2, Mytp)
< A"+ A" (@0, m0) + A7+ A" p(@1,m0) + @(@vr2, utp)

< [AV—I—/\VJFI+---+Av+p_l](p(®0,n0)—|—[/\V+/\V+1+---+)\V+p_1](p(®1,no)

+ @(@v4p, Mv+p)
< (A AT AL A [0(@0, m0) + @(@1,10)]

%

< 7 [P(@0,m0) + p(@1,m0)] +

Now,

©(@v, M) < @(@v, Mvtp) + P(@vrp, Totp) + P(@ytp, M)

Z/V[(P(@o, 1M0) + ¢(@1,10)]
1-A

+ A (@0, m0),

which implies that

A lllp(@0,m0) + (P(CDMIO)]H.

llp(@v, )l < 3N -
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Therefore, ¢(@y, Nm) — 0(v,m — o). Hence, ({@,}, {n,}) is a Cauchy bisequence. Since (Z,T, ¢)
is complete, ({@,},{n,}) converges, and so {®@,} — N and {n,} — N, where N € ENT. Since Q) is

continuous, {®,} — N implies that
{m} =1Q(@v-1)} = QN),

and combining this with {n,} — N gives Q(N) = N.
Let ¢ be another fixed point of Q, then Q)(¢) = ¢ implies £ € ENT. Then,

PR, €) = p(QN), Q0))
<Ap(€,N) = Ap(N, ),
which gives (N, €) = 0. Hence, N = ¢. o

Example 33. Let 8 = Rand W = {@ € Blo > 0}. Let £ = {0,1,2,7} and T = {0, 1, 3,3} be

equipped with ¢(@,1) = |© — 1| for all ® € E and n € I. Then, (£,T,¢) is a complete CBMS. Define
Q:ZUr 2 EUlby
ifoef2,7),

1

Q@) =1
; 11

O/ l_f(D € {0/ 47 2/1/3}/

forall® € EUT. Let ® € E and n € I, then we can easily get
1
¢(Qa, On) < S¢(@,1n).
Theorem 3.2’s axioms are thus satisfied, and () has a UFP @ = 0.

At last, we formulate a theorem that extends Kannan's fixed point result [26].

Theorem 3.3. Let Q) : (E,T,¢) S (E,T,¢), where (E,T, @) is a complete CBMS, ‘W is a normal cone
with normal constant N and let a € (0, %) such that Na < 1 and the inequality

¢ (O, Qo) < a(p(@, Qo) + ¢(On, 1)),
holds for all ® € Z and n € I'. Then the function () : EUI' — E U T has a unique fixed point.
Proof. Let @p € E. For each v > 0, we define 1, = Q®, and @,+1 = Q1. Then we have,

p(@v, nv) = @(Qny-1, Q)
< a(p(@v, Qay) + @ (Qny-1,1Mv-1))
= a(p(@v,m) + @@y, 1v-1))

for all integers v > 1. Then,

o
P(@y, 1) < 1T(P(CDW Mv-1)-

04
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Also,
(P(CDW nv—l) = @(Qﬂv—lf Q(Dv—l)
< a(@(@v-1, Qdy-1) + @(Q1y-1,My-1))
= a(@(@y-1,Mv-1) + @(@v, M-1)),
so that

24
P(@y, My-1) < 1-a (@y-1,Mv-1)-

If we say A := 1%, then we have A € (0,1) since a € (0, 3). Now

@@y, mv) < A (@0, M0),
(P(@w 771/—1) < /\ZV_l(P((DO/ T]o)-

For each m > v,

q)((Dv, sz) S qo(va, rlv) —'l_ (P((Dv—‘rll T]V) + q)((DV-‘rll nln)
< (AZV + /\ZV+1)(P(CDO/ T]O) + (P(@v+1/ TTm)

< (A2 A 4 A2 420 6 (g, o)

= (A% + - 4+ A2 (@0, n0)
2v

S 1 _ AQD(CDOI T]O)

Asv,m — oo, we get,
¢(@v, ) = 0.

Similarly, for each m < v,

(v, ) < @(@v, Mmr1) + @(@mr1, Mni1) + @(@mr1, M)
< @(@v, Nms1) + (/\2m+1 + /\2m+2)§0(®0,770)

< (/\Zm-&-l A2 g )\2"—2)@(@0, 1‘[0) + (P((Dw 771/—1)

< (A2 222y A2 (@, o)

A2m+1
1 _ A (P(CD()’ 770)

IA

Asv,m — oo, we get,

(P(CDV/ T]m) — 0.
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Therefore, ({@,}, {nm}) is a Cauchy bisequence. Since (Z, I, ¢) is complete, {@,} — Nand {n.} — N,
where 8 € EUT. We know that

{Qav} = i} = N.

On the other hand,

P(ON, Qo)

< a(@(@y, Qdy) + (N, R)) = a(@(@y, 1) + (OR,N))

< a(A*p(@0,m) + @(OR,N))
which implies that

lp(ON, @y )| < Na (A llg(@v, 1)l + llp (N, NI
Taking v — co we deduce that ||p(QN, N)|| = 0. Hence, ON = N. Let ¢ be another fixed point of Q).
Then ()¢ = ¢ implies that £ € ENT. Then,
PR, €) = p(OR,Qf) < a(p(t, Q) + p(ON,N))
=a(p(N,N)+¢(£,0) =0.

Consequently, N = ¢. m]

We now demonstrate our first common fixed point (CFP) finding.

Theorem 3.4. Let (Z,T,¢) be a complete CBMS, ‘W be a normal cone with normal constant N and let

O,S8:(E,T,¢) 2 (E,T,p) be contravariant continuous mappings satisfying

(@, Q@)p(Sn,1)
¢(Sn Qa) <a=—"r0" = +yp(@n) +ilp(@ Qo) + ¢(Sn.n)), (3.1)
for all (o,n) € ExXI, with @ # nand 0 < a+y+21 < 1. Also, assume that Ny < 1. Then

0,8:EUl - EUT have a unique CFP.

Proof. Let @g € E. Then for each v € N U {0}, we define,
Qo, = Ny, ST}V = Dy+1-
Now by (3.1), we get,

(@v41, Mv+1) =9(Sy, Qdy41)
< P(@v1, Qv 1) (St 1v)
B P(@y+1, 1)
+ 1[p(@v11, Qdy11) + @(Stv, )]
:a(P(‘DvHr Mv+1)P(@v11, 1)
P(@y+1,10)
+ 1[p(@v41,1v+1) + (@41, 1v)]

=a@(@y 11, Mv+1) + yP(@v11, ) +190(@v11, v11)

+ye(@vi1, )

+ye(@vi1, 1)
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+19(@y41, 1),

which implies that

+1

P(@y41,My+1) < P(@vi1, ). 3.2)

T l-a-1

Also, we have

p(@v11,1Mv) =@ (S, Qay)
Sa@(wwﬂwv)qo(snwnv)
P(@v,1mv)
+1[p(@v, Qay) + @(Snv, 1mv)]
e(@v, ) p(@vi1, 1)
= + @y, My
(@0 ) YQ(@y, 1)

+ tlp(@v, ) + @(@y+1,1v)]
ZOCQD(CDV_H, T]V) + W’(CDV, T]v) + ZQD((DV, T]v)

+ye(@y, 1)

+ I(P((DV+1/ 771/)/
which implies that
+1
P(@vi1,10) < T Z(P((Dw Mv)- (3.3)
Since a +y + 21 € [0,1), so, 1{;; = p € [0,1). Hence, from (3.2) and (3.3), we can get that for
any v € N,
P(@v11,Mv+1) < 9720 (@0,1m0),  P(@vi1, M) < 9 (@0, 10).

For all m,v € N, we have two cases:
Casel. If m>v,

P(@y, ) <@(@v, 1) + @(@v41,1) + @(@y+1, )
<p*@(@0,10) + 9> (@0, 10) + P(@v+1, )
<(9* + 9 (@0, m0) + P(@v11,Mv11)

+ @(@v+2, Mv11) + @(D@v+2, 1m)
<(9* + 0¥ )p(@o,m0) + 9 (@0, 10)
+ @2v+3(P(CDO/ 1M0) + @(@v+2,Mm)

<p? (149 + 9>+ 9> +..) (@0, M)

21/(

1
=¢ q)@(‘DO/UO)
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Since ¢ < 1, limy, w00 @(@y, tm) = 0.
Case 2. If m < v, we have,
P (@, M) <P(@my1, M) + @(@ms1, Mus1) + (@, ns1)
<p?" (@0, m0) + ¢*" (@0, M0) + P(@v, 1)
(9™ + 92" 2) (@0, 10) + (@2, st
+ @(@m+2, Mns2) + @(@v, Mms2)

(PP 4 P2 4 9P 4 92 L o (@0,10)

2m+l(q)go(@0,r]o).

Again, since ¢ < 1, limy, m—c0 @(@y, 1m) = 0.

=9

Therefore, ({@,}, {nm}) is a Cauchy bisequence. Since (Z,I,¢) is complete, {®,} — @ and
{im} = @', where @ € EUT. Also, {S(ny)} = {@v41} = @ € ENT. Since S is continuous,
S(ny) — S@*. Therefore, So* = @*.

Similarly, {Q(@,)} = {n,} = @ € ENT. Now, the continuity of () implies that {Q(@,)} — Q"
Therefore, Qo* = @*.

Let n* € ENT such that Sn* = Q" = n* € ENT. Then, we get,

o, @) =p(ST, Q")
2 9@, Qa")o(Sn', )

+yp(@",n") +i[p(@*, Q@) + ¢(Sn', "))

- p(@, 1)
QD(CD*, (D*)QD(TI*’ 17*) * * * * * *
=a * * + ((D’ )+Z[ (CD’(D)+ ( 4 )]'
o(@ 1) V4% n Y e,
Therefore, |lp(n*, @*)|l < Nyllp(o*, n*)|l. Hence, @* = n*. =

Now, we present our second CFP result.

Theorem 3.5. Let (Z,T,¢) be a complete CBMS, ‘W be a normal cone with normal constant N and

O,S:(E,T,¢) 2 (ET,p) be contravariant continuous mappings satisfying

(@, Q@)p(@,Sn) + ¢(Sn.n)e(n, Qo)
¢(@,Sn) +¢(1, Q)

forall (o,n) € EXT such that ® + Snorn+ Qo and 0 < a < 1. Then O, S : EUT — EUT have a

unique CFP.

P(Sn, Qo) <a , (3.4)

Proof. Let @p € E. Then for each v € N U {0}, we define,

Qo, = Ny, ST]V = @Dy41-
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Now by (3.4), we get,
P(@vi1,Mvi1) =@ (S, Qdy11)
<y P (@41, Q0v 1) Q(@r41, S1v) + @(Sthy, 1) (110, ADy41)
B (P(wv+118nv) + (P(T]v/ Qwv+1)
:aq)(@m, Mv+1)P(@v+1, Dv+1) + @(@vi1, )P (v, 1)
P(@v+1, @v11) + (M, Tv41)
=a@(@y41,M),
which implies that
P(@y+1,Mv4+1) < aQ(Dyi1,1w). (3.5)
Also, we have
p(@vi1,1v) =p(Sn, Q)
< P (@, Q@) (@, Sthy) + (ST, 1) P (v, Q0v)
N p(@v, Sv) + ¢ (1, Q)
_ 2@, 1) (D, @y41) + P(Dys1, 1) P (v, )
P(@v, @v+1) + @ (1, 1)
=ap(@y, 1),
which implies that
(@1, mv) < ap(@y,1y). (3.6)

Hence, from the previous two inequalities (3.5) and (3.6), we can get that for any v € N,

P(@v11,1v11) < 0¥ 2p(@0,m0),  @(@v+1,10) < & (@0, o)
For all m,v € IN, we have two cases:
Casel. Ifm>v,

P(@v, M) <Q(@v,1v) + P(@vs1, 1) + P(@41, )
<a® (@0, 10) + (@0, m0) + (@v1, 1)
<(a® + a® (@0, m0) + P(@v11,Mv11)

+ @(@v42, v+1) + @(@v42, 1)

S(a2v + 012V+1)§0((DO, no) + a2v+2(P(cDOI T]O)

+a® 3o (@0, m0) + @(@vr2, M)

g(aZV + 0(2V+1 —+ 0(2V+2 + az"+3 +--- )(P((DUI 770)

— 21/(

1
m)(P(CDO/TIO)-
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Since a < 1, limy -0 @(@y, ) = 0.
Case. Ifm<v,

(P(CDV, nm) S(P(wm—H/ T}m) + (P(@m—H/ nm—i-l) + (P((DV/ ’?m+1)
2m+1(p(cD0, T]()) + o (P(CD(), T]O) + (P(CDV; T]m+1>
S(Oézm—H + 0(2m+2)§0(@0, 770) + QO(CDm—i-Z; 77n1+1)

+ (P(CDerZI 77m+2) + QO(CDV/ 77m+2)

<a 2m-2

S(a2m+1 + a2m+2 + a2m+3 + (X2m+4 + ---)(P((DO/ UO)

1
2m—+1
(=5 8o)fp(®0ﬂ70)-

=p
Again, since a < 1, limy, jn— 00 @(@y, m) = 0.

Therefore, ({@,}, {nx}) is a Cauchy bisequence. Since (Z, I, ¢) is complete, {®,} — @* and {nu} —

@', where @ € EUT. Also, {S(ny)} = {@y41} = @ € ENT. Since S is continuous, S(1,) — Sao*.

Therefore, So* = @*.

Similarly, {Q(@,)} = {n,} = @ € ENT. Now, the continuity of () implies that {Q)(@,)} — Qa".

Therefore, Q@* = @*.

Let n* € ZNT such that Sn* = Qn* = n* € ENT. Then, we get,

(", @) =p(Sn", Q")
<, 2L Q0Y)p(@", S7) + @(S, )1, Q")
N p(@*, Sn) + (17, Q%)
_ Pl@ @)@, ) + o', n)e(r, @)
p(@*, 1) + (17, @)

=0.

Therefore, ®* = n". ]

4. APPLICATIONS

4.1. Application to integral equations. As an application of Theorem 3.1, we examine the exis-

tence and uniqueness of a solution to an integral equation in this section.

Theorem 4.1. Let us consider the integral equation

o(9) = b(9) +fAUA G(9, ¥, a(P))dy, 8 € Ay U Ay,

where Ay, \y is a partition of [0.1]. Suppose
(1) G: ([A1UA2]%) x [0,00) = [0,00) and b € C(A; UA),
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(2) there is a continuous function 0 : [A; U Ap]> — [0,00) and A € (0,1) such that

G(5, ¥, () =G(S, ¥, n() < A6(3, ) (lo(¢) = n(¥)l,

forall 8,9 € AU Ay,
(3) SuPSEA]UAz »LX]UAZ 6(‘9’ Ill})dl)[} < 1

Then the aforementioned integral equation has a unique solution in C(A1) U C(Ay).

Proof. Let B=Rand W = {® € Blo > 0}. Let £ = C(Ay) and I' = C(A2).
Consider ¢ : £XI' — Bby (@, 1) = supgcy,p, I@(9) — ()| forall (@,n) € EXTI. Then (&,1,¢)
is a complete CBMS. Define Q) : C(A1) UC(A2) =2 C(A1) UC(Az) by

O(() =b()+ | G(3,9,a()dy, S MU

Now,

¢(Qo,Qn) = sup [Q@(9) - OQn(9)]

SeNUAy
= sup [b(9)+ G, ¢, 0(y))dy
JeNUA, AqUA,
( (5, vn(w)ay)
AU/,
p [ 1654000 -6,y nw)idy
SeAlLJAZ MNUA,
< sup f 003, ¢)(lo(y) —n(y))dy
Se/llUAz AqUAp
<A sup lo(8)-n(S)) sup 0(3, )y
SeNUAy deN1UAy JAUA,

< Ap(@,1).

Because of this, Theorem 3.1’s axioms are all confirmed, and as a result, there is only one solution

to the aforementioned integral equation. m]

Example 4.1. Consider the following non-linear integral equation.

1
@(9) = |sind] + %j; Yo (P)dy

Then, it has a solution in 5 UT.

Proof. Let 3: EUT — E UI be defined by

1
0(0(e) = Isindl+ 35 [ volyay
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and set G(8, ¢, @(¢)) = f59@ () and G(9, ¢, n(¥)) = 159n(¥). Then

6(8,,0($)) = G(8,,1($))] = 15 90(9) - xyn(¥)]

= Do) 1) < L) —n(y)l.

Furthermore, see that fol Ydy = % - % = % < 1. Then, it is easy to see that all other conditions

of the above application are easy to examine and the above problem has a solutionin ZUTI. O

4.2. Application to fractional differential equations. We review a number of significant defini-
tions from the theory of fractional calculus. Here, is the Reiman-Liouville fractional derivative of
order 6 > 0 for a function ¢ € C|[0, 1]:

5o 1 d  p(o)do
D ll)((f) - F(V—5) dgvj(; (E_Q)é—wrl’

provided that the right hand side is pointwise defined on [0,1], with v = [6] + 1, where T

represents the Euler gamma function and [6] represents the integer part of the number 9.

Take a look at the following fractional differential equation:

“DP(E) =T(EY(), 0<E<T, 0<6<1;
5(0) =0, (4.1)

where €9 denotes the Caputo fractional derivative of order 6, i.e.,

Cand _ 1 ¢ lp(v)@)d@
DU = 57 Jy T

and f is a continuous function from [0, T] X R to R.

Let B=Rand W = {® € Blo > 0}.

The set of all continuous functions defined on [0, T] with values in the interval [0, o) is denoted
by £ = (C([0,T]),[0,)), and the set of all continuous functions defined on [0, T] with values in
the interval (—oo, 0] is denoted by I' = (C([0, T]), (—o0, 0]).

Consider ¢ : £ X I' — B to be defined by,

(p, ) = sup [P(&) -y (&)

&el0,T)

forall (y,1') € ExTI. Then (E,T,¢) is a complete CBMS.

Theorem 4.2. Assume that we have the nonlinear fractional differential equation (4.1). Suppose that the

following conditions are satisfies:

(1) there exists A € (0,1) so that for all & € [0,1] and for all (¥, ¢") € E x T we have

[F(&, (&) —F(E ' (E) < A (&) — v (E)1;



Int. ]. Anal. Appl. (2025), 23:294 17

)

ATO
- <1
rG+1)

Then the fractional differential equation (4.1) has a unique solution in Z U T.

Proof. The given fractional differential equation (4.1) is equivalent to the succeeding integral equa-

tion (Lemma 1, page 47 of [5])

(&) = ¥(0) + —— f (£ = 00, (o)
Y&) =y o) Js 0 o, ¥(0))do.

Define QO: EUT' = ZUTI by

QP(E) = (0) + % fo (&~ 0" (0, (o) o

Now
, 1 ¢ ~
1QY(E) = QY (&)l = [P(0) =" (0)] + m' fo (&-0)"(0,¥(0))do-
S N ’
[ -oite <@>>d@‘
1 (¢ ,
< 1(0) = ¢’ (0)] + o) fo (-0l v(0) -Tloy (@))‘dy
g
< (0) - YO+ 55 [ =0 vte) —¢'<@>|d@
0
< r(g—il)@(% ).
Taking the supremum on the left side, we get

Py, Q) < VoY, ¢).
Hence, all the axioms of Theorem 3.1 are satisfied and consequently, the fractional differential

equation (4.1) has a unique solution. m|

5. CoNCLUSION

Cone bipolar metric space, a generalization of several well-known metric structures like metric
spaces, cone metric spaces, and bipolar metric spaces, was used in this study. Additionally,
we proved several fixed point theorems for the covariant and contravariant contractions in this
structure. The shown results extend and generalise some of the well-known results in the literature.
Our results are validated by applications we provide in analyzing the existence and uniqueness of
solutions to a fractional differential equation and an integral equation. Ishtiaq et al. [27] introduced
neutrosophic cone metric spaces and proved some fixed point theorems. It is an interesting open
problem to introduce neutrosophic cone bipolar metric spaces. Younis et al. [28] proved some fixed

point results in graphical extended b-metric spaces. It is an interesting open problem to introduce
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graphical cone b-bipolar metric spaces and establish the fixed point results generalising proven

results of the past.
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