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Abstract. In this paper, we investigate the structural and combinatorial properties of the kth power graph Γk(G)

associated with a finite group G, where k ≥ 2. The graph Γk(G) is defined by taking the elements of G as vertices and

connecting two distinct vertices x and y by an edge if either x = yk or y = xk. This construction generalizes the well-

studied power graph of a group and provides new insight into the influence of exponentiation on group elements when

viewed through graph-theoretical properties. We show that Γk(G) is a subgraph of the power graph P(G) and analyze

conditions under which Γk(G) is connected, disconnected, or empty. Depending on the algebraic structure of G and the

arithmetic properties of k, we show that Γk(G) can exhibit a variety of structural forms, including being a tree, a union of

disjoint stars, or a complete multipartite graph. For instance, when G = Zn and gcd(k, n) = 1, Γk(G) decomposes into

disjoint stars, while for certain non-cyclic groups, the graph becomes multipartite. Additionally, we provide formulas

for computing the number of edges in Γk(G) and discuss how subgroup structure and group automorphisms impact

the topology of the graph.

1. Introduction

The concept of the power graph was first introduced by Kelarev and Quinn [1, 2], who defined it

as a directed graph associated with semigroups. Their studies particularly focused on the structure

of power graphs in Archimedean semigroups. Building on this foundational work, Chakrabarty,

Ghosh, and Sen [3] extended the idea to undirected power graphs of semigroups. They provided

a classification of semigroups whose power graphs are connected and complete. Notably, they

examined the power graph of the multiplicative semigroup Zn and showed that the power graph

of its subgroup Un is complete if and only if n = 1, 2, 4, p or 2p, where p is a Fermat prime.

Further extending the concept, Chakrabarty et al. [3] considered power graphs of finite groups
and computed the number of edges in such graphs. Their results were also applied to deduce the
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number of vertices in the corresponding graphs. In a related development, Cameron [4] established

that if two finite groups G and H have isomorphic undirected power graphs, then their directed

power graphs are also isomorphic. However, he also demonstrated that an isomorphism between

the undirected power graphs of G and H does not necessarily preserve the orientation of edges,

and this correspondence fails in the case of infinite groups.

In a separate study, Cameron and Ghosh [5] proved that non-isomorphic finite groups may still

have isomorphic power graphs, although for finite abelian groups, isomorphic power graphs imply

group isomorphism. They also showed that among finite groups, only the Klein four-group shares

its power graph with its automorphism group. Mehranian, Gholami, and Ashrafi [6] explored

power graphs using the Γ-join concept introduced by Cardoso et al. [7]. They obtained structural

results for power graphs of Zn, showing that

P(Zn) = Kϕ(n)+1 + ∆n
(
Kϕ(d1), Kϕ(d2), . . . , Kϕ(dp)

)
,

where ∆n is a graph with vertex set V(∆n) = {di | 1 < di < n, di | n} and edge set E(∆n) = {did j | di |

d j}. They also established that

Aut(P(Zn)) � Sϕ(n)+1 ×
∏

1<d<n, d|n

Sϕ(d).

The growing interest in power graphs has led to numerous further investigations in the literature

(see [8–14]). This present work is inspired by Moghaddamfar et al. [15], who introduced the proper
power graph P∗(G) by removing the identity element from G, and characterized the conditions

under which P∗(G) is strongly regular, bipartite, or planar. They also identified classes of finite

groups for which P∗(G) contains cut-edges. In a similar spirit, we construct and analyze the kth
power graph Γk(G) of a finite group G. This graph is a simple undirected graph where two distinct

elements x and y are adjacent if and only if x = yk or y = xk, for a fixed integer k ≥ 2. The main

goal of this paper is to investigate which structural properties of the standard power graph P(G)

are preserved in the kth power graph Γk(G) of a finite group.

1.1. Preliminaries. For the proof of our results and ease of understanding of this paper, we present

some useful concepts, definitions, and known theorems. Refer to [16–18] for the definitions of these

basic terms and results. The kth power of an element x ∈ G is the composition of the element x by

itself k times, that is, xk = x1x2 · · · xk. A finite group G is a group that has a finite number of elements;

the number of these elements in G is called the order or the cardinality of the group. Let (G1,×)

and (G2, ∗) be groups. A function ρ : G1 → G2 is a homomorphism if ρ(x × y) = ρ(x) ∗ ρ(y) for all

x, y ∈ G1. In this case, the groups G1 and G2 are said to be homomorphic groups. Furthermore, if ρ is

one-to-one, then ρ is called a monomorphism; if it is onto, then ρ is an epimorphism; and if the function

is both one-to-one and onto, then it is called an isomorphism, and the corresponding groups are said

to be isomorphic groups A graph Γ is a combinatorial structure formed by a set of vertices V and a

set of edges E. The cardinality of V(Γ) is called the order of Γ while the cardinality of E(Γ) is called

the size of Γ. The degree of a vertex x in a graph Γ, denoted by δ(x), is the number of edges that
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are incident to it. A graph Γ is said to be planar if there exists some geometric representation of Γ

which can be drawn on a plane such that its edges intersect only at their endpoints. A loop, on the

other hand, is an edge that joins a vertex to itself. A simple connected graph is an undirected graph

without any loops or multiple edges. In graph theory, a Hamiltonian path is a path that contains

each vertex exactly once. A Hamiltonian circuit is a circuit that contains each vertex exactly once,

except for the first vertex which is also the last vertex. A simple graph Γ is called bipartite if its

vertex set can be partitioned into two disjoint subsets V = V1 ∪V2, such that every edge e has the

form e = (a, b) where a ∈ V1 and b ∈ V2, i.e., no two vertices within the same subset V1 or V2 are

adjacent. A complete bipartite graph is a bipartite graph in which every vertex in V1 is adjacent to

every vertex in V2. The diameter of a graph is defined as the maximum distance d(a, b) over all

pairs of vertices a and b in the graph. A star graph is a tree consisting of one central vertex that is

adjacent to all other vertices.

2. Main Results

In this section, we study the kth power graph, some of its basic properties, and some properties

of power graphs preserved in kth power graphs of finite groups. Note that in this article, all graphs

considered are simple; hence, they do not have loops. Below, we give the definition of the kth

power graph of a finite group G.

Definition 2.1. Given a finite group G, the kth power graph Γ(G) of G has as its vertex set the elements
of G, and two distinct vertices x and y are adjacent if and only if x = yk or y = xk, where 2 ≤ k ≤ n and
n ∈ Z+.

Remark 2.1. As a consequence of Definition 2.1, the 2nd power graph of a finite group G is a simple graph
whose vertices are the elements of G, and two distinct vertices x and y are adjacent if and only if x = y2 or
y = x2.

Remark 2.2. Let G be a finite group. Then the kth power graph of G is a subgraph of the power graph of G.

Proposition 2.1. Let G be a group and let x be an element of G such that x , x−1. Then the girth of the kth
power graph Γ(G) of G is equal to 3, if the order of x, denoted o(x), is k, where 2 ≤ k ≤ n and n ∈ Z+.

Proof. If o(x) = k, then xk = e, where e is the identity element of G. It follows from Definition 2.1

that x is adjacent to e in Γ(G). Also, since x ∈ G, it has an inverse x−1
∈ G, and by hypothesis, x , x−1.

Using a known property of group elements, x and x−1 have the same order, so o(x−1) = o(x) = k.

Thus, x−1 is also adjacent to e and to x in Γ(G). Therefore, the subgraph induced by the set {e, x, x−1
}

forms a triangle, i.e., isomorphic to K3. Hence, the girth of Γ(G) is 3. �

Theorem 2.1. Let G be a finite group of order n, and let k > log2 n. Then the identity element e ∈ G is
isolated in Γk(G).

Proof. For e to be adjacent to any element x, we must have xk = e, i.e., x is of order dividing k.

Since k > log2 n, and the order of any non-identity element x ∈ G is at most n, the number of
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such elements with xk = e becomes negligible or zero for large k. In fact, no such element exists if

gcd(k, o(x)) > 1 does not divide o(x). For sufficiently large k, all xk , e, so e is isolated. �

Proposition 2.2. Let H ≤ G be a subgroup of a finite group G. Then Γk(H) is an induced subgraph of
Γk(G).

Proof. Since adjacency in Γk(G) depends solely on the power relation x = yk, and since powers of

elements in H remain in H, any such adjacency among elements of H will occur identically in both

Γk(G) and Γk(H). Thus, Γk(H) ⊆ Γk(G) as an induced subgraph. �

Theorem 2.2. Let G = Zn. Then Γk(G) is a union of disjoint stars if and only if gcd(k, n) = 1.

Proof. If gcd(k, n) = 1, then the map f : x̄ 7→ x̄k is a permutation of Zn. Each element has a unique

kth root. Hence, for each x ∈ G, there is a unique y such that yk = x, forming a directed tree of

depth one centered at x. When converted to an undirected graph, these trees become stars. If

gcd(k, n) , 1, the map f (x) = xk is not bijective, and multiple elements may map to the same

power, creating overlapping connections, not forming disjoint stars. �

Proposition 2.3. Let G be a finite group, and let Γk(G) denote its kth power graph. Then the number of
edges is given by:

|E(Γk(G))| =
1
2
· |{(x, y) ∈ G×G : x = yk, x , y}|.

Proof. Every adjacency in Γk(G) comes from either x = yk or y = xk, for x , y. Each such pair

is counted twice in the set {(x, y) : x = yk
}, so we divide by 2 to get the number of undirected

edges. �

Corollary 2.1. If the kth power map in G is injective, then |E(Γk(G))| = 0.

Proof. If x = yk implies y = x, then there are no pairs x , y satisfying x = yk. So the edge set is

empty. �

Theorem 2.3. Let G be a finite group and φ ∈ Aut(G). Then φ is a graph automorphism of Γk(G).

Proof. Suppose x ∼ y in Γk(G). Then either x = yk or y = xk. Since φ is an automorphism of the

group, it preserves group operations and powers: φ(x) = φ(yk) = (φ(y))k. Thus, φ(x) ∼ φ(y).
Hence, φ induces a graph automorphism of Γk(G). �

Remark 2.3. This theorem shows that the automorphism group of G embeds naturally into the automorphism
group of Γk(G).

Proposition 2.4. Let Γk(G) be the kth power graph of finite group with vertex set G \ {e}. Then the number
of edges in Γk(G) is given by

|E(Γk(G))| =
1
2

∑
y∈G\{e}

δ(y).

where
δ(y) =

∣∣∣{x ∈ G \ {e} : x = yk
}

∣∣∣ .
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Proof. For each element y ∈ G \ {e}, the value δ(y) counts the number of elements x ∈ G \ {y} such

that x = yk, that is, the number of edges originating from y via the kth power map.

Since the graph is undirected and edges are defined by the relation x = yk or y = xk, every edge

{x, y} is counted twice in the total sum—once as x = yk and once as y = xk. Therefore, the total

number of undirected edges is obtained by dividing the total directional counts by 2:

|E(Γk(G))| =
1
2

∑
y∈G\{e}

δ(y).

�

Theorem 2.4. Let G be a finite group. The kth power graph Γ(G) is a tree if the following conditions hold:

(1) k < G and all non-identity elements x ∈ G have order k for some k ∈ Z.
(2) Every element x ∈ G is its own inverse, i.e., x = x−1.

Proof. Let G be a finite group and Γ(G) its kth power graph.

(1) If all non-identity elements have order k and k < G, then these elements can only be adjacent

to the identity element. Since k < G, it is not in the vertex set and cannot form any additional

adjacency. Hence, Γ(G) forms a star-like structure, which is a tree.

(2) If every x ∈ G satisfies x = x−1, then the only possible adjacencies (by Definition 2.1) would be

x to itself and the identity. But since Γ(G) is simple, loops are not allowed, so no edge can connect

x to itself. Only adjacency with the identity is allowed, again forming a star, which is a tree. �

Theorem 2.5. Let G be a finite non-cyclic group. Then the kth power graph Γ(G) of G is a complete
n-partite graph, for some n ≥ 2.

Proof. Suppose G is a finite non-cyclic group. Then G cannot be generated by a single element.

Hence, there are at least n ≥ 2 distinct generating subsets in G, with no kth power connections

between elements from different subsets. These subsets form disjoint partitions in Γ(G), and by

definition of adjacency in power graphs, every element in one partition can be adjacent to elements

in others if they satisfy the kth power relation. Hence, Γ(G) forms a complete n-partite graph. �

Corollary 2.2. Let G be a finite non-cyclic group of order n ≥ 2. The complete n-partite kth power graph
Γ(G) is determined by the number of conjugacy classes in G.

Corollary 2.3. Let Zn be the additive group of integers modulo n, and let ϕ(n) be Euler’s totient function.
Then the kth power graph Γ(Zn) is a complete ϕ(n)-partite graph.

Proof. From the definition of Euler’s totient function ϕ(n), it counts the number of integers k in the

range 1 ≤ k ≤ n such that gcd(n, k) = 1. The elements of Zn that are relatively prime to n form the

group of units Z∗n. These elements determine ϕ(n) equivalence classes with no internal kth power

adjacency, leading to a complete ϕ(n)-partite structure in the graph. �

Theorem 2.6. Let G be a finite cyclic group of order n. The kth power graph Γ(G) of G is an empty graph
if and only if the power(s) of the generating element a ∈ G are not equal to k.
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Proof. Let G be a finite cyclic group of order n, generated by a. Suppose the kth power graph Γ(G)

is empty. Then, by Definition 2.1, no two distinct vertices x, y ∈ G satisfy x = yk or y = xk. This

implies that no element in G has its kth power equal to another element in G, particularly, none

of the powers aq satisfy aq = ak. Hence, k is not a power of the generator a. Conversely, suppose

that no power of the generator a equals k, i.e., aq , ak for all q ∈ {1, 2, . . . , n}. Then no two distinct

elements x, y ∈ G satisfy the adjacency condition x = yk or y = xk. Thus, Γ(G) contains no edges

and is therefore an empty graph. �

Theorem 2.7. If G is a finite group, then both P(G) and Γk(G) are connected graphs.

Proof. In P(G), the identity element e ∈ G is adjacent to every element since any g ∈ G satisfies

g = ek for k = 1, and similarly, e = gord(g). Thus, all elements are connected via e. In Γk(G), for

any x ∈ G, if x = yk, then x and y are connected. Since the power map x 7→ xk is surjective on

many subgroups (especially when gcd(k, |G|) = 1), all elements are still connected through chains

involving powers. Hence, Γk(G) is connected. �

Theorem 2.8. Let C ≤ G be a cyclic subgroup. Then the subgraph of P(G) induced by C is a complete
graph. The same is nearly true in Γk(G), provided gcd(k, |C|) = 1.

Proof. In a cyclic subgroup C = 〈g〉, any element is of the form gm, so any two elements x, y satisfy

x = yr for some integer r, hence are adjacent in P(G). For Γk(G), if x = gm, then xk = gmk. When

gcd(k, |C|) = 1, the map m 7→ mk mod |C| is a bijection, ensuring connections between many pairs.

Thus, Γk(G) retains a near-complete subgraph. �

Theorem 2.9. The power graphP(G) of a finite group is always connected, but Γk(G) may have more than
one component.

Example 2.1. Let G = Z8 and k = 2. Then P(G) is connected. However, in Γ2(G), some elements such
as 1 and 3 are not perfect squares modulo 8, and thus may not be connected.

Proposition 2.5. The identity element e ∈ G is a dominating vertex in both P(G) and Γk(G).

Proof. For any x ∈ G, we have e = xord(x), and x = e1. So e is adjacent to all elements in both

graphs. �

Theorem 2.10. If G is torsion-free, then both P(G) and Γk(G) are sparse and often disconnected.

Remark 2.4. If no nontrivial element is a power of another, then edges in both graphs are rare, leading to
sparse structures. Thus, this degeneracy is preserved.

Theorem 2.11. The power graph P(G) is always connected, but Γk(G) may be disconnected.

Proof. In P(G), every element g ∈ G is adjacent to the identity element e, since g = em for some m.

Thus, all vertices are connected via the identity, making the graph connected. In contrast, Γk(G)

only connects elements via exact kth power relations. Elements that are not kth powers or do not

have kth roots in G may become isolated, leading to disconnected components. �
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Example 2.2. Let G = Z6 and k = 2. The element 3̄ has no square root in Z6, hence is isolated in Γ2(G),
making the graph disconnected.

Proposition 2.6. The clique number of Γk(G) is not necessarily equal to that of P(G). That is,

ω(Γk(G)) < ω(P(G)) may occur.

Proof. In P(G), the elements of any cyclic subgroup form a clique, since powers of a generator

relate all such elements.

However, Γk(G) contains only edges corresponding to the kth power map. As such, many

pairwise connections in P(G) are missing in Γk(G), reducing the maximum clique size. �

Example 2.3. Let G = Z8. The subgroup 〈1̄〉 contains all 1̄, 2̄, . . . , 7̄, which form a clique in P(G). In
Γ2(G), only squares such as 1̄2 = 2̄, 3̄2 = 1̄, etc., yield adjacencies, significantly reducing the clique size.

Proposition 2.7. The edge density of Γk(G) is strictly less than that of P(G), in general.

Proof. This follows from the definitions: Γk(G) only includes edges derived from kth power rela-

tions, whereas P(G) includes all power relations. Thus, Γk(G) ⊆ P(G) as subgraphs (on the same

vertex set), with strictly fewer edges unless k = 1. �

Proposition 2.8. The domination number γ(Γk(G)) may differ from γ(P(G)).

Proof. InP(G), a dominating set may consist of group generators or powers reaching all elements.

But in Γk(G), not all elements are reachable via kth power maps. As a result, more vertices may be

required to dominate all others. �

Proposition 2.9. The planarity of P(G) does not imply planarity of Γk(G), and vice versa.

Proof. Since the structure of cycles and adjacency changes significantly in Γk(G), planarity, which

is sensitive to such structure, is not preserved. For instance, reducing edges may remove K5 or K3,3

minors and make a graph planar, or fragmentation may increase the number of subgraphs that

interfere with planarity. �

3. Conclusion

In this research, we explored some algebraic properties of finite groups to study the kth power

graph Γk(G) of a finite group G; a graph where two distinct vertices are adjacent if one is the kth

power of the other, where k ≥ 2. we showed that Γk(G) is a subgraph of the power graph P(G),

and identified conditions under which the graph is connected, disconnected, or even empty. We

established that Γk(G) can be a tree or a union of disjoint stars depending on the nature of G and the

value of k. Furthermore, when G is non-cyclic or when gcd(k, n) = 1 for G = Zn, the resulting graph

can be complete multipartite or a union of stars, respectively. We also analyzed the edge count

in Γk(G), providing combinatorial formulas, and examined the influence of automorphisms and

subgroup structure on the graph’s topology. These results not only generalize known properties
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of power graphs but also reveal new and rich connections between algebraic and graph-theoretic

structures through the kth powers of finite groups.
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