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Abstract. In this paper, we construct and investigate the space of weighted regular tribonacci matrix in Nakano sequence
space of fuzzy functions. The idealization of the mappings has been achieved through the use of extended s—fuzzy
functions and this sequence space of fuzzy functions. The topological and geometric properties of this new space, the
multiplication maps stand-in on it, as well as the mappings” ideal that correspond to them, are discussed. We construct
the existence of a fixed point of Kannan contraction mapping acting on this space and its associated pre-quasi ideal. It
is interesting that several numerical experiments are presented to illustrate our results. Additionally, some successful

applications to the existence of solutions of nonlinear difference equations of fuzzy functions are introduced.

1. INTRODUCTION

The mappings’ ideal theory is well regarded in functional analysis. The closed mappings’ideals
are certain to play an important function in the principle of Banach lattices. Fixed point theory,
Banach space geometry, normal series theory, approximation theory, ideal transformations, etc.
all use mappings’ ideal. Using s-numbers is an essential technique. Pietsch [1-4] developed and
studied the theory of s-numbers of linear bounded mappings between Banach spaces. He offered
and explained some topological and geometric structures of the quasi ideals of £, type mappings.
Then, Constantin [5], generalized the class of £, type mappings to the class of ces, type mappings.
Makarov and Faried [6], showed some inclusion relations of £, type mappings. As a generalization
of ¢, type mappings, Stolz mappings and mappings’ ideal were examined by Tita [7,8]. In [9], Maji

and Srivastava studied the class Ar(,s) of s-type ces, mappings using s-number sequence and Cesaro
(s)
PA
with 1 < p < co. In [10], the class of s-type Z(u,v;{,) mappings was defined and some of their

sequence spaces and they introduced a new classA,; of s-type ces(p, ) mappings by weighted ces),

properties were explained. Pre-quasi mappings’ ideals are more extensive than quasi mappings’
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ideals, according to Faried and Bakery [11]. Bakery and Abou Elmatty [12], investigated the
necessary conditions on any s—type sequence space to form an operators ideal. They showed
that the s—type Nakano generalized difference sequence space X fails to generate an operators
ideal. They investigated the sufficient conditions on X to be premodular Banach special space
of sequences and the constructed prequasi-operator ideal becomes a small, simple, and closed
Banach space and has eigenvalues identical with its s—-numbers. Finally, they introduced necessary
and sufficient conditions on X explaining some topological and geometrical structures of the
multiplication operator defined on X. Komal et al. [13], investigated the multiplication operators
acting on Cesaro sequence spaces under the Luxemburg norm. The multiplication operators acting
on Cesaro second order function spaces examined by Ilkhan et al. [14]. The non-absolute type
sequence spaces are a generalization of the equivalent absolute type. For that there exists a great
interest to examine these sequence spaces. Newly, many authors in the literature have discussed
a few non-absolute type sequence spaces and presented new interesting articles, for example, see
Mursaleen and Noman [15], and Mursaleen and Basar [16]. The learning about of the variable
exponent Lebesgue spaces L) obtained in addition impetus from the mathematical description
of the hydrodynamics of non-Newtonian fluids (see [17,18]). Applications of non-Newtonian
fluids, known as electrorheological, vary from their use in army science to civil engineering and
orthopedics. Guo and Zhu [19], investigated a class of stochastic Volterra-Levin equations with
Poisson jumps. Mao et al. [20], concerned with neutral stochastic functional differential equations
driven by pure jumps (NSFDEwP]Js). They proved the existence and uniqueness of the solution
to NSFDEwPJs whose coefficients satisfy the local Lipschitz condition and established the p-th
exponential estimations and almost surely asymptotic estimations of the solution for NSFDEw]s.
Yang and Zhu [21], concerned with a class of stochastic neutral functional differential equations
of Sobolev-type with Poisson jumps. Since the booklet of the Banach fixed point theorem [22],
many mathematicians have worked on many developments. Kannan [23] gave an example of
a class of mappings with the same fixed point actions as contractions, though that fails to be
continuous. The only attempt to describe Kannan operators in modular vector spaces was once
made in Reference [24]. Bakery and Mohamed [25] explored the concept of the pre-quasi norm
on Nakano sequence space such that its variable exponent in (0,1]. They explained the sufficient
conditions on it equipped with the definite pre-quasi norm to generate pre-quasi Banach and
closed space, and examined the Fatou property of different pre-quasi norms on it. Moreover, they
showed the existence of a fixed point of Kannan pre-quasi norm contraction maps on it and on the
pre-quasi Banach operator ideal constructed by s- numbers which belong to this sequence space.

After Zadeh [26] established the concept of fuzzy sets and fuzzy set operations, many researchers
adopted the concept of fuzziness in cybernetics and artificial intelligence as well as in expert
systems and fuzzy control. Javed et al. [27] investigated the Banach contraction in R-fuzzy b-
metric spaces and discussed some related fixed point results to ensure a fixed point’s existence and

uniqueness. A nontrivial example is given to illustrate the feasibility of the proposed methods.
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They offered an application to solve the first kind of Fredholm-type integral equation. In [28],
Rehman and Aydi proved some common fixed point theorems for mappings involving generalized
rational-type fuzzy cone-contraction conditions in fuzzy cone metric spaces. They gave a common
solution of two definite Fredholm integral equations. The concept of orthogonal partial b-metric
spaces was pioneered by Javed et al. [29]. They presented a unique fixed point for some orthogonal
contractive mappings with some examples and an application. Humaira et al. [30], discussed the
existence theorem for a unique solution to a coupled system of impulsive fractional differential
equations in complex-valued fuzzy metric spaces and the fuzzy version of some fixed point results
by using the definition and presented some properties of a complex-valued fuzzy metric space
with some applications. In this study, Rome et al. [31] looked into the concept of extended fuzzy
rectangular b-metric space. They explained that some fixed point results in the literature could
be generalized by a-admittance in this space. They used this to show solutions for a group of
integral equations. Many researchers in sequence spaces and summability theory studied fuzzy
sequence spaces and their properties. Different classes of sequences of fuzzy real numbers have
been discussed by Nanda [32], Nuray and Savas [33], Matloka [34], Altinok et al. [35], Colak et
al. [36], Hazarika and Savas [37] and many others. In [33], the Nakano sequences of fuzzy integers
were defined and analyzed. Tripathy and Baruah [38], introduced and examined some properties
of a new type of difference sequence spaces of fuzzy real numbers.

We indicate the space of all bounded, finite rank linear mappings from an infinite dimensional
Banach space # into an infinite dimensional Banach space Q by B(?,Q), and F(#, Q) and when
P = Q, we inscribe B(P) and F(P).

Definition 1.1. [39] An s-number function is a mapping s : B(P,Q) — R+ that gives all V € B(P, Q)
a (sa(V))3., holds the following conditions:

@: |[VIl=s0(V) 251(V) 282(V) > ... 20, for every V € B(P,Q),

(b): s114-1(V1 4+ V2) < 51(V1) +54(V2), for every V1, Vo, e B(P,Q) and 1, d € N,

©: s;(VYW) < IVIIsz(Y) W], for every W € B(Ao, A), Y € B(P,Q) and V € B(Q, Qp), where
Po and Qq are arbitrary Banach spaces,

(d): assume V € B(P,Q) and y € R, then s;(yV) = |ylsa(V),

(e): if rank(V) < d, thens;(V) =0, forall V € B(P,Q),

6): s154(L) = 0 or s1,(1,) = 1, where 1, indicates the unit mapping on the a-dimensional Hilbert

a
space {7,

We give here some examples of s-numbers:

(1): The g-th Kolmogorov number, denoted by d,(X), is marked by

dg(X) = infgim j<4SUP Ifll<1 infee; [1Xf - glI.
(2): The g-th approximation number, indicated by a;(X), is marked by
ay(X) = inf{ X -Y||: Y € B(P,Q) and rank(Y) < g}.

The linear space of sequences of fuzzy functions is denoted by &".
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Notations 1.1. [40]

By i— {@ap (P,Q)}, where Bgr (P, Q) = {v eB(P,Q): ((5(V)%, € aF},

By = {@SF (P,Q)}, where Bigr (P, Q) = {v eB(P,Q): (0 (V)2 aF},
By = {ESF(P, Q)}, where Blgr (P,Q) = {v eB(P,Q) : (,(V)2, < aF},

where

1, x=si(V)

TW= 5i(V).

The goal of this paper is organized as develops: In Section 3, we give the definition and
some inclusion relations of the space of weighted regular tribonacci matrix in Nakano sequence
space of fuzzy functions, (’cf (g, t))v, equipped with the function v. In Section 4, we explain the
sufficient conditions on (Tf (g, t))v with known function v to construct private sequence space of
fuzzy functions, or in short (pssf). This explains that (Tf (q,t))v is a pre-quasi Banach pssf and
we examine some properties of s— type (Tf (q,t))v spaces. In Section 5, we act a multiplication
operator on (Tf (g, t))v, and investigate the necessity and enough setups on this sequence space
so that the multiplication operator is bounded, approximable, invertible, Fredholm and closed
range. In Section 6. First, we discuss the enough conditions (not necessary) on (Tf (g9, t))v, so that

the closure of F = ﬁ(rp @h). This gives a negative answer of Rhoades [41] open problem about

the linearity of s— type (Tf (g, t))v spaces. Second, we introduce the setups on (Tf (9, t))v such that

the elements of B%, ; are complete. ird, we offer the enough conditions on (7;(g,t)] so
he el f]B(T_(qt)) pl Third ffer th gh d fq )

that IB_“(T; @) is strictly contained for distinct weights and powers. We establish the setups for

F
(g,

which the pre-quasi ideal @( (1) is minimum. Fourth, we introduce the conditions for which

the Banach pre-quasi ideal ﬁ( @) is simple. Fifth, we give the enough conditions on (Tf (9, t))v

(g
so that the class B which sequence of eigenvalues in (Tf (g, t))v equals ﬁ(rf(q,t))u‘ In Section 7,
the existence of a fixed point of Kannan pre-quasi norm contraction operator on this sequence
space and on its pre-quasi operator ideal constructed by (Tf (q, t))v and s— numbers are confirmed.
Finally, in Section 8, we light our results by a few examples and applications to the existence of

solutions of non-linear difference equations. We introduce our conclusion in Section 9.

2. DEFINITIONS AND PRELIMINARIES

Remember that Matloka [34], introduced bounded and convergent fuzzy numbers, investi-
gated some of their properties, and demonstrated that any convergent fuzzy number sequence is
bounded. Nanda [32], researched fuzzy number sequences and demonstrated that the set of all
convergent fuzzy number sequences forms a complete metric space. Kumar et al. [42], presented

the concept limit points and cluster points of sequences of fuzzy numbers. If () is the set of all
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closed and bounded intervals on the real line R. Assume f = [fi, f2] and § = [g1, 2] in O, let
f <gifandonlyif f; < g; and f» < g».

Define a metric p on () by

p(f.g) = max{|fi — g1l,1f2 - &l}.
Matloka [34] proved that p is a metric on () and (€}, p) is a complete metric space. The relation <

is a partial order on Q).

Definition 2.1. A fuzzy number f is a fuzzy subset of R i.e., a mapping f : R — [0,1] that verifies the
four conditions:
@): fis fuzzy convex, i.e., for x,y € Rand a € [0,1], f(ax+ (1 —a)y) = min{f(x), f(y)};
(b): f is normal, i.e., there is yo € R such that f(yo) = 1;
(c): f is an upper-semi continuous, i.e., for all « > 0, f~1([0,x + &)) for all x € [0,1] is open in the
usual topology of ‘R;
(d): the closure of fO:={y € R: f(y) > 0} is compact.

The B-level set of a fuzzy real number f, 0 < g < 1, denoted by £, is defined as

fP=1{yeR: f(y) =B

The set of all upper semi-continuous, normal, convex fuzzy number, and ff is compact, is marked
by R([0,1]). The set R can be embedded in R([0, 1]), if we define r € R([0, 1]) by

1, t=r
0, t+#r.

The additive identity and multiplicative identity in ER[O 1] are denoted by 0 and 1, respectively.
Assume f,¢ € R[0,1] and the -level sets are [f]f = [fl,fz] 1P = gﬁ,gﬁ ], B €10,1]. A partial
ordering for any f, g € R[0,1] as follows: f < g if and only if fﬁ < ¢, forall g€ [0,1].
Assume p : R[0,1] x R[0,1] — R+ U {0} is defined by p(f,g) = sup p(f?,g).
Recall that: e

(1) (R[0,1],p) is a complete metric space.

(2) p(f+k g+k)=p(f, g) forall f,g,keR[0,1].

@) p(f +kg+1)<p(f g +pkD).

(4) p(&f, &) = Elp(f, g), forall & € .

By co, e and ¢,, we denote the space of null, bounded and r-absolutely summable sequences of
real numbers. The space of approximable and compact bounded linear mappings from ? into Q
will be denoted by A(P,Q) and K(P,Q), and if P = Q, we mark A(P) and K (P), respectively.
The ideal of bounded, approximable and compact mappings between any arbitrary Banach spaces
will be denoted by B, A and K, respectively.
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Definition 2.2. [43] Let B be the class of all bounded linear operators within any two arbitrary Banach
spaces. A sub class U of B is said to be a mappings’ ideal, if every U(P, Q) = U N B(P, Q) satisfies the
following setups:

(D): Ir € U, where I indicates Banach space of one dimension.

(ii): The space U(P, Q) is linear over R.

(ii): If W e B(Po,P), X € U(P,Q) and Y € B(Q, Qp), then YXW € U (Ao, Qo).

Definition 2.3. [11] A function H € [0, 00)¥ is said to be a pre-quasi norm on the ideal U if the following
conditions hold:
(1): Assume Ve U(P,Q), H(V) = 0and H(V) = 0, ifand only if, V =0,
(2): one has Q > 1 with H(aV) < D|a|H(V), forall V € U(P,Q) and a € R,
(3): there are P > 1 such that H(Vy + V3) < PIH(V1) + H(V2)], forall V1, V, € U(P,Q),
(4): there are 0 > 1 so that if V. € B(Ao,A), X € U(P,Q) and Y € B(Q, Q) then H(YXV) <
o [YIIH(X) [IVII.

Theorem 2.1. [11] H is a pre-quasi norm on the ideal U, whenever H is a quasi norm on the ideal U.

Lemma 2.2. [44]Ift, > 0and A4, Ba € R, where R is the set of real numbers, foralla e N :=1{0,1,2,...},

and i = max{1, sup, t,}, hence

g+ Bal™ <2571 (Aal' + Bal"). 2.1)

3. THE SEQUENCE SPACE (Tf (g, t))v

In this section, we introduce the definition and some inclusion relations of the sequence space
(Tf (g, t))v equipped with the function v.
The number sequence (1;)° , := (1,1,2,4,7,13,24,...) defined by the recurrence relation r, =
Ty—1 + Yp—2 +1p-3, 0 > 3, with rp = 11 = 1 and 1, = 2, is called tribonacci sequence. Recall that,
we name the sequence space (Tf (g, t))v as the domain of weighted regular tribonacci matrix in
Nakano fuzzy sequence space since it is constructed by the domain of weighted regular tribonacci

F

matrix defined in ¢ () where the weighted regular tribonacci matrix, 7, = (A.(q)), is defined as:

124z
Ap(q) = { wetutl 0<z<l,
0, z>1,

where g, € (0, ), for all z € N. Note that Zizo 2r; = 1735 + 17— 1. In [45], Yaying and Hazarika,

studied some sequence spaces defined by the domain of a regular Tribonacci matrix.

Definition 3.1. If (t;) € RN, where RN is the space of all sequences of positive reals. The sequence
space (Tf (9, t))v with the function v is defined by:

[oe]

= 7 . p(Llor:£0))
(TYF(q' t))v = {f = (fk) € w(F) : v(6f) < oo, for some & > 0}, where v(f) = Z[p( e )J '

T -1
— 12t
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Theorem 3.1. If (1) € RN N €, then
(Tf(q,t))v = {7 = (f) € w(F) : v(6f) < oo, forall § > 0}.

Proof. Assume (1) € R+Y N €., we have

(Fg.1), = {J‘f — (f) € @(F) : v(5F) < oo, for some & > o}
— (] — =\
_ — s P(Zzzo rzﬂlzéfz, 0)
=if= F): , £ 0 O}
{f (fx) € (F) IZ(;[ PP < oo, for some & >
— (I — =\
_ — = P(ZZ:() 1242, O)
_ _ i b
= {f— (fx) € w(F) .1rllf6 ;[ ) < oo, for some 6 > 0}
— — > |p P orzq,zfz/ )
={f= € w(F): < oo}
(F= 0 cwr) IZ{ e ]
= {? = (fy) € w(F) : v(6f) < oo, for any 6 > O}.
O
Theorem 3.2. If (t;) € [1,00)N N €, then (Tf(q, t))v is a non-absolute type.
Proof. By choosing f (_ 1,0,0,0 ..), then |f] (T 1,0,0,0 ) We have
ta
= (oo (o —ql\" (g0 -
v(f>_(2)+( 1 )+ s |
goyo (lqo+aqil\"  (lao+ail " L (F
o () (el
Then, the sequence space (Tf (g, t))v is non-absolute type. m]

Definition 3.2. Assume () € R+™ and t; > 1, for every 1 € N.

(751@.0), = {7 = () € @(F) : p(8f) < o0, for some 5 >0},

_ — =\\l
> z orzCIzlle 0)
where ¢(f Z [ P .

=0

Theorem 3.3. Suppose (t;) € (1,00)N N Lo with (1[ lj’_}[ ) ¢ {(1,), hence (|TrF|(q, t))(p ¢ (Tf(q, t))v.

(
Proof. Let f € (|’L’P l(g,t )(p since

< (o 7= ()rzq,zfz/ ) > ﬁ(zézorqubTZl/ﬁ) "
Z[ U+ 1 - ] SZ[ g2+ 1 -1 =

1=0

Fe(-F o ¢ 5 e (+F 3 F
Hence, f € (’cr (g, t))v . If we choose § = ( - )zeN' one gets g € (’L’r (q,t))v and g ¢ (|Tr (g, t))@. m]
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4. PRE-MODULAR PRIVATE SEQUENCE SPACE

We explain in this section the enough setup on £ (g,t) with definite function v to construct
pre-modular pssf. Which investigates that 7% (g, ) is a pre-quasi normed pssf.

Definition 4.1. The linear space of sequences E' is named a private sequence space of fuzzy functions

(pssf), if it satisfies the following conditions:
(1): & € &, with x € N, wheree; = (0,0, ...,1,0,0,--- ), while 1 displays at the x" place,

(): EF issolid i.e., for h = (hy) € w(F), [jl = (jxl) € EF and |hy| < ||, with x € N, then 1| € EF,

3): (_§ )jzo e &, 1f<|]_x|)zozo € &, where [a] denotes the integral part of real number a

Theorem 4.1. Assume the linear sequence space E is a pssf, then BSgr is an operator ideal.

Proof. (i) Assume V € F(P,Q) and rank(V) = n withn € N, as ¢ € & foralli € N and &F is a
linear space, one has

s:(V)2, = (50(V),51(V), .0, 55-1(V),0,0,0,...) = X7 5(V)e € EF; for that V € Bsgr (P, Q) then
F(P,Q) C Bsgr (P, Q).

(i) Suppose V1, V, € @813 (P,Q) and B1,p> € R then by Definition 4.1 condition (3) one has
(s 54 }(Vl)) € & and (s S }(Vl)) € &, asi > 2[£], by the definition of s-numbers and s;(P) is a
decreasing sequence, we have

Si(ﬁlvl +,32V2) < 52[%](ﬁ1V1 +ﬁ2Vz) < S[%‘](ﬁlvl) +S[é‘](ﬁ2V2) |ﬁ1|s (Vl) + |ﬁ2|s ( ) for
each i € N. In view of Definition 4.1 condition (2) and &F is a lmear space, one obtains
(5i(B1V1+ P2V2))2, € E, hence B1V1 + B2 V2 € Big (P, Q).

(iii) Suppose P € B(Po,P), T € Bsgr (P, Q) and R € B(Q, Qp), one has

(SZ(T)) e &M and ass; (RTP) < |IRlIsi(T) [IP]l, by Definition 4.1 conditions (1) and (2) one gets

(s (RTP)) € &F, then RTP € Bégr (Po, Qo). O

Definition 4.2. A subspace of the pssf is named a pre-modular pssf, if there is a function v : & - [0, )
satisfies the following conditions:

()): Forevery je &, j =6 < v(ljl) = 0, and v(j) = 0, with 6 = (0,0,0,...),

(ii): if j € EF and 6 € R, then there are Eg > 1 with v(5]) < |6|Eov(}),

(iii): v(h+ j) < Go(v(h) +v(})) includes for some Gy > 1, with f, g € EF,

(iv): assume x € N, |hy| < [jxl, we have v((|he])) < v(([j2])),

): the inequality, v(([j])) < v((l@l)) < Dov(([jxl)) verifies, for Do > 1,

(vi): if F is the space of finite sequences of fuzzy numbers, then the closure of ¥ = &I,

(vii): we have 1 > 0 such that v(?,ﬁ,ﬁ, 0, ) = nlvlv(T, 0,0,0, ...), Where

1, y=v

v(y) =
0, y+v.

Definition 4.3. The pssf & is named a pre-quasi normed pssf, if v confirms the setup (i)-(iii) of Definition
4.2. If E' is complete equipped with v, then EL is named a pre-quasi Banach pssf.
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Theorem 4.2. Each pre-modular pssf Eisa pre-quasi normed pssf.

By J » and 3+, we denote the space of all monotonic increasing and decreasing sequences of

positive reals, respectively.

Theorem 4.3. 7 (g, t) is a pssf, if the next setups are confirmed:

(f1): (tl) € 5/' N oo with tg > 1.
(£2): (1292)50 g € I, 07, (1292)7e g € I » N Lo and there exists C > 1 such that vp;11q2:4+1 < Crzgs.

Proof. (1-i) Assume f,g € 75 (g,t). One obtains

=[P 0129z fZ+g2) )tl _ > P(Z OIZEszz/ ad
Z‘[ Zfz+2+rz 1 ) <2 Z‘ fl+zz+rz +IZ:

1=0 1=0

-1

_ t
P z 012028z )] ]<oo

hence, f + 3 € tf(q,t).
(1-ii) Suppose 6 € R, f € t£(g,t) and as () € T » N Le, We get

o (F(v! = )\ o (=(v! - A\
Z[p(zz_orzqzéfz'o)) ssup|6|”Z[p(zz_orzquz'o)] <o,
1

T -1 T -1
— 4211 — 211

So, 6f € £ (g, t). In view of setup (1-i) and (1-ii), we have f (g, t) is a linear space.
As (t)) € 3 »N{w and tg > 1, one obtains

oo (A I (o] (o] t
P (Zz 0 rz‘]z eb ZI rbﬂb b 0 1 !
Z ——— Z(r e < sup (H)%)t’Z P < oo.
1=0 2T H2 0= I=b = \U+2 Tl

I=b

Therefore, &, € £ (g,t), for every b € N.
(2) Let Ifbl < |gpl, with b € N and [g] € 7£(g,t). One has

—_ _ __ —\\[
 (p(Xi 0rzqz|fz| 0)) & (p(Xliora:z210))'
e Z <

rl+2 +1- T+ 11

I=0

hence |f| € £ (g, t).
(3) Assume (|f]) € T£(g,t), with () € I » N lw and (124:)5, € T~ we get

_ .\t .
i Yo %:4:fi3),0) Z_i (X2 valfis) 1| 0) i Y25 walfig),0))
1= T142 +1 - 1 - 19142 “+ 1o — ~ 43 4 Toii1 — 1

=0
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= 5(22120 rzqzlﬂLa) ! > 5( 0 I‘zq:/:lf ]l 0)
SIZ(; r1+2+rl—21 +Z rz,+2+r, 1

1=0

- (lefhllfll + Xl (12202 + 2z 4102:41) £, 0)
DNE

+i(5 2=0 (v22G2: + t2211G2241) I fol, 0)]

b rypt+r—1 = -1
w (5(y! 1 o) N o«
< oli-1 Z Y (ZZ:() rzﬂzlle: 0) n Z ZP (Zz 0 rzqzlfz ’ 0) n Z 2P z 0 rzclzller )
B et tn-l e Ty 17— = T+ 10—

T -1
— 14211

hence (IEI) e th(g,t). m]

In view of Theorem 4.1 and Theorem 4.3, we have the next Theorem.

(P42 i [ﬁ(zz 0 et:lfol, 0)] .

Theorem 4.4. Suppose the setups of theorem 4.3 are settled, then @Tf (q,t) 1S an operator ideal.
Theorem 4.5. (t£(q,t)), is a pre-modular pssf, if the setups of theorem 4.3 are settled.

Proof. (i) Definitely, v(f) = 0and v(|f|) =0 & f = 6.

(ii) There are Ey = max {1,supl Iplt’_l} > 1 with v(6f) < Eqlo|v(f), for each f € 7F(g,t) and 6 € R.
(iii) The inequality v(f +3) < 2" (v(f) + v(g)) satisfies, with f, 3 € £ (g, ).

(iv) Clearly, from the proof part (2) of Theorem 4.3.

(v) Obviously, the proof part (3) of Theorem 4.3, that Dy > (2211 4 2=1 4 21) > 1.

(vi) Clearly, the closure of F = (g, t).

(vii) One has 0 < @ < sup;, [v|fi~1 with v(?,ﬁ,ﬁ,ﬁ,...) > cDIvIv(I,ﬁ,ﬁ,ﬁ,...), forallv# 0and @ > 0, if
v =0. O

Theorem 4.6. If the setups of theorem 4.3 are established, then (£ (q,t)), is a pre-quasi Banach pssf.

Proof. According to Theorem 4.5, the space (£ (g,t)), is a pre-modular pssf. According to Theorem
4.2, the space (£ (q,t)), is a pre-quasi normed pssf. To explain that (£ (g, t)), is a pre-quasi Banach
pssf, assume f7 = (f”)zzo is a Cauchy sequence in (£ (q,t)),, then for all ¢ € (0,1), thereis ag € N

so that for all a,b > ap, one gets

o (p(2l o (7 - 7).0))

) <o
— -1

Hence, for a,b > ap and z € N, we obtain p(ZZ 01202 (f“ _),6) < ¢&. Since (R[0,1],p) is a

complete metric space. So ( fZ) is a Cauchy sequence in R[0,1], for fixed z € N. This explains
limy_,e f2 = f9, for fixed z € N. Hence v(f* — fo) < ¢", for all a > ay. Finally to investigate that
10 e (tf(q, ))v, one has v(f9) < 2" (v(f7 = £9) 4+ v(f?)) < oo, then f0 € (1£(g,t)),. This explains
that (tf(g,t)), is a pre-quasi Banach pssf. m]
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Theorem 4.7. Suppose s— type &L := {E = (s¢(H)) e RN : He B(P,Q) and v(h) < oo}. If Bég, is an
operators ideal, then the following conditions are verified:
1. F Cs—type EF.
2. Suppose (sx(Hl)):;O € s— type &L and (Sx(Hz)):;o € s— type &L, then (M)
type EF.
3. Assume A € R and (m):):o € s— type &L, then |A| (m):):o € s— type EL.
4. The sequence space EF is solid. i.e., if (m):;o € s— type EF and m < m, forall x € N and
H,] € B(P,Q), then (sx(—H));o:O € s— type EL.

(]
€ s—
x=0

Proof. 1f Bsg, is a mappings’ ideal.
(i): We have F(P,Q) c ﬁsﬁ (P, Q). Hence for all X € F(P,Q), we have (sr(X)):o:O € ¥. This
gives (sr(X)):O € s —type &, Hence ¥ C s— type &L
(ii): The space @85(7’, Q) is linear over R. Hence for each A € R and X1, X; € @85 (P,Q), we
have X1 + X, € @85 (P,Q) and AX; € @85(50, Q). This implies

(sr(Xl)):O € s —type & and (Sr(XZ)):O €s—type & = (sr(Xl + XZ))Z € s —type &

0

and

AeRand (5(X1)) €s—type & = |AI(5:(X1))

[oe]
T

_o €5~ type &l

(iii): If A € B(Po,P), B € B (P,Q) and D € B(Q,Qp), then DBA € Begr (P, Q)), where
P and Q are arbitrary Banach spaces. Therefore, since (sr (B)):O:O € s — type &L, then

(sr(DBA)):iO € s—type &L. Since s,(DBA) < |[ID|ls,(B) ||Al. By using condition 3, if
( [1a]] ||A||sr(B))r:0 € &, we have (sr(DBA)):O € s —type EE. This means s — type &F is
solid.

O

In view of Theorem 4.7 and Theorem 4.4, we construct the next properties of the s— type

(T2 (4,1))o-

Theorem 4.8. Let s— type (t£(q,t)), := {f = (50(X)) e RV : X e B(P,Q) and v(f) < oo}. The next
conditions are established:

1. One has s— type (t£(gq,t)), D F.
2. Suppose (sn(Xl))::O € s— type (t£(q,t)), and (Sn(—XZ)):;O € s— type (t£(q,t))y, then
(sn(Xl + XZ))Z;O € s— type (t£(q,1))0-
3. Assume A € R and (W):;O € s— type (t£(q,t))y, hence |A| (W):;O € s— type (t£(gq,1))0.

4. The s— type (tf(q,t)), is solid.
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5. MurtirLicaTION OPERATORS ON (£ (q,1)),

We discuss here the necessity and enough setups on (£ (g,t)), in order to the multiplication
operator defined on it is bounded, invertible, approximable, Fredholm and closed range.

Definition 5.1. Suppose A = (Ay) € RN and EL is a pre-quasi normed pssf. The operator Hy : EF — &EF
is named a multiplication operator on EE, if H) f = )\bﬁ) € &, with f € EE. The multiplication operator
is named created by A, if Hy € B(EL).

Theorem 5.1. Suppose A € RN, the setups of theorem 4.3 are entrenched, hence
A€ lo & Hy e B((th(g,1))y).

Proof. Let A € £o. Hence, there is v > 0 so that [1,| < v, for every b € N. Assume f € (t£(q,t)).,
one has

o (= - A\ o
(H/\f . /\f :Z[P z= OAerQZleo)] Ssupvtlz

sup viu(f).
= tp -1 i =0 P

1

Tp + 17—

p (lezo t20:for 6) ]tl

Therefore, Hy € B((t£(q,t))y)-
On the other hand, assume Hy € B((t£(g,t)),) and A ¢ (. Hence for all b € N, there are x, € N
so that Ay, > b. We get

= (p(X: (e5,)-0))'
v<H@>:v<Aa>=Z[p(ZZMZ%( - O)]
L

v+ -1
) 1
= Z ( i qxb) > Z (—br(xb)qxb ) > by (exb).
T+ S\t - 1
Hence, H; ¢ B((tf(g,t))y). So A € {w. o

Theorem 5.2. Suppose A € RN and (f(q,t)), is a pre-quasi normed pssf. Hence |Ay| = 1, for every
b € N, if and only if, H) is an isometry.

Proof. Let |Ay| = 1, for every b € N. One obtains

— p— had _ZIZ zHzs/ vz Jzs ad z= zMz)zrs —_
U(HAf):v(/\f):Z[p( Orq f ] Z[p Orqfl )] :U(f)/
!

= U2+ 10— T2+

for every f € (t£(g,t)),. Therefore, H is an isometry.
Suppose the necessity setup is entrenched and |1;| < 1, for some b = by. We get

— (wl — 7\
— — = | P (Zz:O 02024, (eb())Z’ 0) - Ao ¥ 1 ;
v(H)ep,) = v(Aey,) —;[ Yo +1—1 N Z(rl+2+rl—1)

— o b f
< _Jt% — en ).
Y () = viaw

I=by

I=by
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Next if |Ap,| > 1, obviously v(Haep,) > v(ep,). This explains a contradiction for the two cases.
Therefore, |A;| = 1, forall b € N. |

Theorem 5.3. Suppose A € RV, the setups of theorem 4.3 are entrenched. Hence

Hy € A((1r(9,1))0) &= (M) € co.
Proof. Let Hy € A((tf(q,t)),), then Hy € K((tf(g,t))y). Assume lim,_,, Ay # 0. Therefore, we
have ¢ > 0 such that the set K, = {b € N : |1y > g} £ J, where J is the space of all sets with

finite number of elements. Assume {ap}pep C K,. Hence, {e,, @ ap € K} € L is an infinite set in

(t£(g,t))v, where £ is the space of bounded sequences of fuzzy functions. Since

°° [5(22_0 t2:As (m—m),a)]“

v HAZ—H/\E_ =V AZ—/\E_ =
( «, ab> ( (07 ab) ;)‘ fz+2+fl—1

= E(ZIZZO rzqu((cﬁx—a)z—(%—b)z),ﬁ) " ) o
) ;‘ [ g +y—1 z H-zlf 0"v(ea, — 2a,),

forevery a,, ay € K,,. Then, {e,, : ap € K,} € ¢F., which cannothavea convergent subsequence under
H,. Hence Hy ¢ K((t£(q,t)),). This explains Hy ¢ A((tf(g,t)),), which indicates a contradiction.

Hence, lim_,o, Ay = 0. On the other hand, assume lim;_,., A; = 0. Therefore, for all ¢ > 0, one has

K, ={be N : || > g} C 3. Hence, for every o > 0, we have dim (((’cf(q, t))v)K ) = dim (‘RK@) < oo.

0

Therefore, Hy € F (((Tf(q, t))v) ) Assume A, € RN, for alla € N, where

Ko

Ab/ be KL/
(/\a ) h= a+1
0, otherwise.

B 1
a+1

1

B J , since dim [((Tf(q, t))v)

to (t)) € 3 » N e with tg > 1, we have

Obviously, Hy, € IF[((’clrT (g, t))v) ] < oo, for alla € N. According

oty =3 )7) = of( (- ), )

(Z,lz:() 1202(Az — (Aﬂ)Z)sz, 6) )tz

I
Nk
—_—
I

= o +1—1
B i 5(22:0 1202 (Az = (Au)Z)JTma) " n i [5(212_0 1242 (Az = (Aa)z)JTz/ 6) )tl
1=0,JeK ; U2t -1 =012k ;. 2+ -1
o =
B i p (lezo rzqz)\ZJTZr 6) ]tl < 1 i (5( i:o quZ]TZ, 6) Jtl
- 1=0,JgK 1 U2+l T (a1 il G 1
a+1 a+1

e +1-—1 a+1

©, (P(Lho £ 0)) .
: Z[p( — )J -
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Hence, |[Hy — Hj || < ) . Which investigates that H, is a limit of finite rank maps. Therefore,
Hy € A((71(9,1))v)- o

Theorem 5.4. Assume A € RN, the setups of theorem 4.3 are entrenched. Hence

Hy € K((e(9,4))0) &= (M), € co.
Proof. Evidently, since A((tf(q,t))y) & K((tE(q,t))»)- O
Corollary 5.5. Suppose the setups of theorem 4.3 are proved, hence K ((t£(q,t))») & B((tf(g,£))y).

Proof. As A = (1,1,...) creates the multiplication map I on (tf(q,t)),. Which explains I ¢
K((t2(q,1))v) and I € B((tr(q,1))0)- =

Theorem 5.6. If (t£(q,t)), is a pre-quasi Banach pssf and Hy € B((tf(q,t)),). Hence there are a > 0
and > 0 such that a < |Ap| < n, with b € (ker(A))S, if and only if, Range(H, ) is closed.

Proof. Assume the enough conditions are proved. Hence, there is ¢ > 0 so that |A,| > g, for all
b € (ker(4))“. To explain that Range(H,) is closed. Assume g is a limit point of Range(H,). We
obtain H, f, € (t£(q,t)).,, for every b € N so that limy_,., H, f, = 3. Evidently, the sequence H, f; is
a Cauchy sequence. As (t) € 3 »N € with t) > 1, one gets

_ i{_ z= orzqz Az(fﬂ) Wﬂﬁ)]tl
1

H.,f,—H
v(Hafa — Hafy) Fp—

+

i [ﬁ(zz 0120z (A Z@_

vy +r-—1

Az<fb>z>,6)J”

t

to -1

3 ﬁ(zi_orzqzmz@—Az<fb>z>,6)]
Z:( ))“(

o+ -1

§ i [5(z;0quZ(AZ@AZW,6)]”

1=0,le(ker (1))

- ﬁ(zizo 1202 (A2 (Ua)z = /\Z(”b)Z)ra) "
- Z‘ [ o+ —1 )

= (50Xl taq-((4a): — (#)2),0) )’
>Z[p(@zz_orq<< )z — (up):) )] Zh}fd,v(u_a_u_b),

o+ -1

where

Hence, {i;} is a Cauchy sequence in (tf(g,t)),. As (T
f e (tf(g,1)), so thatlimy_,., 7, = f. Since Hy € B((7£(q,t)),), one has hrnb_)oo Huy, = H, f. Since
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limy_, Hrutp = limy_,o HMTb = g. Therefore, HA? = 3. Hence g € Range(H,). So Range(H,) is
closed. Next, assume the necessity setup is confirmed. Hence, thereis ¢ > 0so thatv(H; f) > ov(f),
with f € ((Tf(q,t))v)( - IfK = {b € (ker(A))" 1 1Ayl < Q} # 0, hence for ag € K, one has

ker(A4))°

er

o) = () )= Y [ﬁ(zl“ el O 5)]’

T -1
pny 12t

5 [m@ EL el 6>]“

< sup og'v(es),
Yl+2 +rl_ 1 po ( 11[))

1=0
which introduces a contradiction. So K = ¢, we have |A;| > o, with b € (ker(A)). This proves the

theorem. O

Theorem 5.7. Suppose A € RN and (L (q,t)), is a pre-quasi Banach pssf. Hence, there are a > 0 and
1> 0o that a < |Ay| < 1, for every b € N, if and only if, Hy € B((tL(q,t))y) is invertible.

Proof. Assume the enough setup are proved. Suppose x € RV with x;, = Alb In view of Theorem
5.1, the operators H) and H, are bounded linear. We get H).H, = H,.H), = I. Hence H, = H;l.
After, assume H, is invertible. Hence Range(H,) = ((Tf (g, t))v)N. So, Range(H)) is closed.
Therefore, by using Theorem 5.6, there is @ > 0 so that |A;| > a, for every b € (ker(4))“. We have
ker(A) = 0, if Ay, = 0, with by € N, which gives e,, € ker(H,), this explains a contradiction, as
ker(H,) is trivial. Therefore, |1;| > a, for every b € N. Since H, € {w. By using Theorem 5.1, there
is 1 > 0 so that |A;| < 7, for every b € N. Therefore, we have a < [A;| <1, withb € N. m|

Definition 5.2. [46] An operator U € B(&) is named Fredholm if dim(Range(U) )¢ < oo, dim(ker(U)) <
oo and Range(U) is closed, where (Range(U) )¢ marks the complement of Range(U).

Theorem 5.8. Suppose (t£(q,t)), is a pre-quasi Banach pssf and Hy € B((tf(q,t)),). Hence Hy is
Fredholm operator, if and only if, (i) ker(A) @ N NI and (i) |Ay| > o, with b € (ker(A))".

Proof. Let the enough conditions be satisfied. Assumeker(1) & N isaninfinite, hencee, € ker(H, ),
for every b € ker(A). Since e,’s are linearly independent, one obtains that dim(ker(H,)) = oo,
which explains a contradiction. Hence, ker(A) & N must be finite. The setup (ii) follows from
Theorem 5.6. Next, suppose the conditions (i) and (ii) are confirmed. In view of Theorem 5.6, the
condition (ii) explains that Range(H, ) is closed. The setup (i) gives that dim(ker(H,)) < co and
dim((Range(H,))) < co. Hence H, is Fredholm. ]

6. FEATURES OF PRE-QuaAsI IDEAL

In this section, we introduce the enough setup (not necessary) on (tf(g,t)), such that
the closure of F = @(Tf(q,t))v' This investigates a negative answer of Rhoades [41] open prob-
lem about the linearity of s— type (£ (g,t)), spaces. Secondly, for which conditions on (£ (g, t)),,

are ﬁ(ﬁ( )), closed and complete? Thirdly, we explain the enough setup on (t£(g,t))y such

q.t
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that B« (F (@) is strictly contained for different weights and powers. We offer the setup so that
]BD(
(f(

P (gt
BS . (o 1)), is simple. Fifthly, we investigate the enough conditions on (t£(g,t))y such that the space

), is minimum. Fourthly, we introduce the conditions so that the Banach pre-quasi ideal

of all bounded linear operators which sequence of eigenvalues in (£ (g, t)), equals @(Tf (@)
6.1. Finite rank pre-quasi ideal.

Theorem 6.1. @(Tf(q,t))v(P’Q) = the closure of F(P,Q), suppose the setups of theorem 4.3 are estab-
lished. But the converse is not necessarily true.

Proof. To investigate that the closure of F(P,Q) C @( 1, (P, Q). Ase € (tf(q,t))v, for every
I € N and (t(g,t)), is a linear space. Let Z € F(P,Q), one gets (a1(2))2, € F. To explain that
@(Tf(q,t))u(P’ Q) C the closure of F(P,Q). Assume Z € B* (< (1)), (P @), we obtain (a(Z))2, €

1=0
(tf(g,t))y. Since v(al(Z))l o < o, let p € (0,1), hence there is [y € N — {0} with v((al(Z));’ilo) <

zh+3 5, for some d > 1, where 1) = max{l, Z

t
Since o € 5 , we get
1= lg(rl+2+rl ) } l( ) g

o+ -1 o+ -1

ZZIO [5 (Zz 0 Yzqz21, (Z) 6) )tl < 3 [ﬁ (ZIZZO 124207 (Z)’ 6) Jtl

1=Ip+1 I=lp+1 - 6.1)
- ﬁ(zlz:O rzqzaZ(Z),ﬁ) I P
= é[ T+ -1 ] < 2m+3nd
Hence there is Y € Fy;, (P, Q) so that rank(Y) < 2]y and
ilf): [P(Z’Z_o vz - Y|,6)]t’ < ZZK‘ [ﬁ (T rq-lZ - Y||,6)}” . o)
1=2l5+1 Uz + -1 - I=lp+1 U2 +u—1 2h3nd’ .
since (t;) € I » N e, we have
Iy
sup p’ [Z v2g:I1Z — Y, 6) < s 63)
1=l =0 1
Therefore, one has
i [ﬁ(zi:o t.q-lZ - Yn,ﬁ)]“ . 61
— T2+ 1 -1 2M+3nd” '

In view of inequalities (1)-(5), one gets

d(Z,Y) =v(a(Z- Y))l .

_ Z[ ; orzqz—az<z_y>,a>]t’ ¥ (mzzo rzqz—az<z—y>,6>]“

T+ 1 -1 T+ -1
=3l

i t+y-—1 Y42 + Yo, — 1

1=0 1=l

33210:[5(22 0 1217 = Y1, 0)] N i(p(z%“rzqzaz(z Y), O)JMO
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3l oo
Lorg:llZ =Y YII,

< Z + E

[ T2 T — =

——— —\\[
IZ”OZU 1.0:0,(Z-Y), O) ]

v+ —1

— —_— — _\\4
i Y. orqZ =Y, 0) .\ i 5 (Ziloo 1.g.0.(Z-Y) + Zi+221;> 1.q.0,(Z-Y), 0)
e o+ -1 = 2+ -1
—_ — —\\{ _ _—
b (p(ZionlZ=YI0))" & (P(22 vg:0:(Z-1),0))
<3 +2M1 Yy +
z T+ -1 Ty 1 —
—0 1=
—_—— \\!
o ~ (p (ZIZ-S-ZZI;) 1.4.0,(Z-Y), 0) :
Z o+ -1
1=l
_ o\ _ — o\
e (P2 YI0) e (P2 e (2 - Y),0))
B Z‘ T+ -1 * Z‘ T+ -1 *
1=0 I=ly
w (=(v! — o )\
i1 Z p (Zz:o Vo2l Gz 420z 21 (Z = Y), 0)
= T+ 1 -1

b (5 lo ) t

p (Lo vq:IZ— Y11,0))’ . _ oo\

<3 +22 T supp| Y 1.4.1Z-Y],0 — | +
Y p— supp ZZS 24:NZ = Y] ;'; o

o) — = A\

Zh_lz P (i t:4:02(2),0) <

~ oty -1

=0

On the other hand, one has a negative example as I; € @(Tf(q/t))v (P,Q), where 1,4, = 1, for all

zeNandt=(0,-1,2,2,2,...),but (/) ¢ 3 ». This shows the proof. O
6.2. Banach pre-quasi ideal.

Theorem 6.2. If the setups of theorem 4.3 are established, then the function Y is a pre-quasi norm on
IBS(Tf(q,t))U’ '(/Ulth T(Z) = U(Sq(Z));OZO,fOT all Z S IBS(Tf(q,t))u (p, Q)

PTOOf. (1): When X € ﬁ(’ff(q,t))u(?’ Q), ‘{I(X) = U(Sq(X));ozo > 0and ‘Y(X) = U(Sq(X));o:O = 0,
if and only if, s,(X) = 0, for all g € N, if and only if, X = 0,
(2): there is Eg > 1 with ¥(aX) = v(sq(aX));":O < Epla|¥(X), for all X € @(Tf(q,t))u (P,Q) and
a € R,
(3): one has DyGg > 1 so that for Xy, X, € BS (<F (P Q), one can see

Y (X1 +X2) =v(sg(X1 + X2)) 2 < GO( (54 ](Xl))q o T (s [g](XZ))q 0)
< DoGo (v(59(X1))%g + v(55(X2))5)

(4): wehave p > 1,if X e B(Py,P), Y € ]B_S( Foh), (P, Q) and Z € B(Q Qo), then ¥ (ZYX) =
v(5g(2YX)) oo S VUIXNIZlIsg (Y)) 2 < 0 ||X||‘F( ) 1ZII-
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O

Theorem 6.3. If the setups of theorem 4.3 are established, hence (ﬁ(ﬁr( )’ ‘I’) is a pre-quasi Banach ideal,

where ¥ (X) = v((m)[’io)

Proof. As (tf(g,t)), is a pre-modular pssf, hence from theorem 6.2, ¥ is a pre-quasi norm

on BS(r, ), Suppose (Xp)ien is a Cauchy sequence in ]B_s(rf(q,t))v (P,Q). As B(P,Q) 2

B (2 (0.))s (P,Q), one obtains

— (v — o =\
= | p (Zzzo 1225 (Xa = Xb)/ 0) q0 to
(X = Xp) ;[ S > (2 1%, - 1)

hence (Xp)pen is a Cauchy sequence in B(P, Q). Since B(P,Q) is a Banach space, then there is
X € B(P,Q) with l}im 1Xy — XII = 0. Since (s;(Xp));2, € (tf(g,t))y, for every b € N. According to

1=
Definition 4.2 setups (ii), (iii) and (v), one gets

~ (p(L. Iz ZZ—/_ !
T(X):Z[p(zz:e qs@f) o))

r -
= 4211

t

o +1r-1 o+ -1

sz"“‘li P (Zzmo reespy) (X —Xb)'a)]tl +2n—1i P (Ezm 12053 (%), 0)

I=0

Ny W\ (e ——— \\
< o1 Z p ( 2—0 ¥2q2 IX = X3l 0) 421D, Z p (Zz:O 120252(Xs), 0) ‘o
e T+ 11 py T+ 1 -1
Therefore, (s;(X));2, € (tf(g,t))y, then X € ﬁ(rf(q,t))v (P, Q). m]

6.3. Minimum pre-quasi ideal.

Theorem 6.4. Suppose P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setups of

theorem 4.3 are confirmed with 1 < tl(l) < tl(z), and 0 < ql(z) < ql(l),for all 1 € N, hence

(P,Q) ¢ @(

(")) o ()0t

v

(P,Q), then (s,(2)) € (Tf((q(l)), (t(l))))v. One obtains

v

Proof. LetZ € B®
roof Le (£ )

@
tl

i[ﬁ(ziorzvé”ﬁ,ﬁ)] <i[ﬁ(ziorzq£”sz<z»6)] .

T+ 11 ty+ 1 -1

=0 1=0
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then Z € ﬁ(ﬁ((qu)),(tfz)))) (P,Q). Next, if we choose (s;(Z));2, with p( - Orzqg ) Z),ﬁ) =
r,+(2)+—r11 one gets Z € B(P, Q) such that
RV
L
i Ll gl s:(X),0)) 5
= —_—
- v+ -1 Z:OZ+1 ’
and
- _ _ 1—== = 1 e
i z OrZEIz SZ i z —o =4z Sz(Z), 0) :i( 1 )t](_l) <o
e Uy + 10— — -1 A+
Therefore, Z ¢ BS P,Q dZeB® P,Q).
erefore, 2 € B (e g >>)v( ) an (i), P

Clearly, ﬁ( 2))) (P,Q) c B(PQ). Next, if we put (s/(Z)), such that

(g, (1 10

— = -1
(XZ Orzqz sZ(Z) 0) = rljé;rr’ . We have Z € B(P,Q) such that Z ¢ lBS( Fa?) (t(z)))) (P, Q).
VT el D)

This explains the proof. O

Theorem 6.5. Let P and Q be Banach spaces with dim(P) = dim(Q) = oo, and the setups of theorem

4.3 are established with (%)I:O ¢ {((1,)), hence IB“( F(0)), 1S Mnimum.

Proof. Suppose the enough setups are confirmed. Then (]B_arf( ot 1), where
_ — .\
= [P (le:O 12q:0:(Z), 0) l
¥(z) =), -
= U tr-1
B(P,Q), hence there is 1 > 0 with ¥(Z) < n||Z||, for every Z € B(P, Q). According to Dvoretzky’s
theorem [47], for every b € N, one obtains quotient spaces #/Y}, and subspaces M, of Q which
can be mapped onto fg by isomorphisms V}, and X}, with ||Vb||||Vl:1|| <2and ||Xb||||X;1|| <2. Let],
be the identity operator on fg, T}, be the quotient operator from # onto #/Y} and ], is the natural

, is a pre-quasi Banach ideal. Suppose @Tf(q,t) (P,Q) =

embedding operator from M, into Q. Suppose m; is the Bernstein numbers [2] then
1 =m:(ly) = m(XpX, VoV, ") < IXpllmz (X5 I V)lIV, = 1Xplim (1 X5 1 Vi) IV, ]
< IXlld= (1o X5 Vo)V, = 1Xolld= (Jo X, IV To)IIV,,
< Xl (X, T Ve To) IV, I,

for 0 <1 <b. We have
1

!
Y g < 5[2 IXpllezgza: (1o X, sV Ty)IV; 11,0 | =
z=0

z=0

_\\ 1
P (Lot (X, VT, 0)

T+ 1 -1

£
Z_lz—orzqz 1
== < (I1XGINMVE f
(rmﬂl_l (D% IIV; )
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Hence, for some g > 1, one gets

A\
P (Lot (X, VT, 0)

b Z[ rq t[ b
z=0 ~zZ"z 1
== | < alIXllV R
D) Sy L
b Zl I‘q t
z=0 "Z"z 1 1
=0 < oIV (X TV Ty) =
V|G| < ey i )
b 1 t
Y029z 1 )
=20 EE L < ol NV N X L, Ve Tl =
; T T < enKllVy X VLTl
b Zl rq t
= z"z _ _ ~ ~
Z =022 < onlIXplllV, M T X NIV Tl = onll XV, X IVl < 4on.
vy +1—1

T
o

Therefore, we have a contradiction, if b — o. Then P and Q both cannot be infinite dimensional
if @Tf (o) (P, Q) = B(P,Q). This shows the proof. mi

Theorem 6.6. Suppose P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setups of

Z]z: 12z p— . ..
¢) N ¢ L)) hence Bdff(q,t) is minimum.

theorem 4.3 are confirmed with (ri+2 1),

6.4. Simple Banach pre-quasi ideal.

Lemma 6.7. [3]IfM € B(P,Q) and M ¢ A(P,Q), then there are operators Q € B(P) and L € B(Q) so
that LMQey = ey, forallx e N.

Theorem 6.8. [3] Suppose EF is a Banach space with dim(EF) = oo, then
F(&) ¢ AE") ¢ K(E") ¢ BE).

Theorem 6.9. Suppose P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setups of

theorem 4.3 are confirmed with 1 < tl(l) < tl(z), and 0 < ql(z) < ql(l),for all 1 € N, hence

IB(@( F((q® (t<2)))) (P,Q),ﬁ(

T (ql )r 1

Proof. Let X € IB(@( « ) (P,Q)) and

£ (M), (1))

1>))) (P, Q)) In view of Lemma 6.7, there are Y €

xe ﬂ(ﬁ(ﬁ((qf”)xt;”»
]B(@ e @ ) (P,Q)) and Z € ]B(@ e (s ) (SD,Q)) with ZXYI, = I,. Therefore, for
(@) (F(a™.")

v

v
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every b € N, we get
1

_ - t
= (p(Ziowat )szub) o)’
Mollgs IZ S

(eF ™),

- @00
p(Cioorq”s.(1),0)
T+ 1 -1

(e
<IZXVMlE, e <D
(eFta®hg ™), =0

This contradicts Theorem 6.4. Then X € ﬂ(ﬁ( ; | ) (P,Q)), which
Ty

v

finishes the proof. O

Corollary 6.10. Assume P and Q are Banach spaces with dim(P) = dim(Q) = oo, and the setups of

theorem 4.3 are established with 1 < tl(l) < tl(2), and 0 < ‘71(2) < ql(l),for alll € N, hence

Proof. Evidently, as A C K. m]

Definition 6.1. [3] A Banach space E is named simple if the algebra B(EF) includes one and only one
non-trivial closed ideal.

Theorem 6.11. Let P and Q be Banach spaces with dim(P) = dim(Q) = oo, and the setups of theorem
4.3 are satisfied, hence ﬁ(rf(q,t))v is simple.

Proof. Assume the closed ideal W(ﬁ(rf(q,t))v (P,Q)) includes an operator X ¢ ﬂ(ﬁ(,[f(qlt))u (P,Q)).
In view of Lemma 6.7, we have Y, Z € B(ﬁ(ff(qrt))u (P,Q)) with ZXYT, = I,,. This gives that

15 g, @@ € KB (g0, (P Q). Then BBz, (P, Q) = K(B(rr(q), (P, Q). Hence,

B® (17 (4,¢)), 18 simple Banach space. m]
6.5. Eigenvalues of s-type operators.

Notations 6.12.
(B_ssl?)/\ = {(]B_SSF) (P,Q); Pand Q are Banach Spaces} where

(ﬁaF)A (P,Q) := {X €B(P,Q) : (M(X))2, € E and |IX - p(Ai(X),0)I|| is not invertible, for all
le N }
Theorem 6.13. Let P and Q be Banach spaces with dim(P) = dim(Q) = co, and the setups of theorem

4
4.3 are established with inf; (%flzqzl) > 0, hence

S— A
(Bt a,) (P Q) =By, (P, Q).
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Proof. Suppose X € (]B (@) (P Q), hence (A(X));2, € (tf(g,1))y and [IX = p(A;(X),0)I]| = 0,
foralll € N. We have X = p(A(X),0 )I, for every I € N, so

5(50%),0) = B (FOMX),001),0) = (X, 0),
for every I € N. Therefore, (5;(X))

o € ( £(g,t)),, then X € ﬁ(Tf(q,t))v(PrQ)-
secondly suppose X € ﬁ(ﬁ(q’m“ (P,Q). Then <Sl (X))l 0 € € (tf(g,t)),. Hence, we have

P zorzqzmﬁ)t Y0t T —\1t
Z Ty + 17— 1 ) _11 (ruz‘z—fr; 21] L [p(SZ(X)/O)] .

1=0

Therefore, lim;_,., 5;(X) = 0. Assume [|X — p(s;(X),0)I||"! exists, for every | € N. Hence ||X —
ﬁ(sl(X),ﬁ)Ill‘1 exists and bounded, for every | € N. Then, lim;_, || X — ﬁ(sl(X),ﬁ)Ill‘1 = |IX|I!
exists and bounded. As (@(15( q,t))v"F) is a pre-quasi operator ideal, we get

[=XX"€Bri), (P,Q) = (s1(1)2, € Th(g t) = lim si(I) = 0.

So we have a contradiction, since lim;_,, 5;(I) = 1. Hence ||X — p(s;(X),0)I|| = 0, for every [ € N.
A

Hence ||X — p(A;(X ) 0)I]| = 0, for every I € N. This gives X € (IB (F (1)), ) (P, Q). This shows the

proof. O

7. KaNNAN CONTRACTION OPERATOR

Definition 7.1. A pre-quasi normed pssf v on EF confirms the Fatou property, if for every sequence
{#7) € &} with limgeo v( ~ 1) = 0 and each Z € &, then v(zZ ~ ) < sup; infyjv(Z - ).

tl ]‘1

- = Zz rZ z)zrs

Theorem 7.1. The function v(f) = {Z [P(r :_rq le ) establishes the Fatou property, for all
— 2 T 10—

f e tE(q,t), assume the setups of theorem 4.3 are confirmed.

Proof. Suppose {?} c (Tf (g, t))v with limy_, v(? —¢) = 0. As the space (Tf (g, t))v is a pre-quasi
closed space, then g € (Tf (g, t))v. Hence, for all f € (Tf (g, t))v, we have

— > _Zé:zz_z__216 tl%
v(f—é_’){Z[p( v 1g) ) ]

T 1 —
= 1211

1
AT

o, (7(Eh o= - £8),0) p(zlova: (s -50.0)) |

< +
IZ(; -1 ZZ-:; o+ -1

b
< Sljlpg;fv(f 8").
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— (] — =\\k
- < [ Pp(Xi—01292f2,0
Theorem 7.2. The function v(f) = Z[ (r i :_Zr i ) does not establish the Fatou property, for all
42 T —

1=0
f e tE(q,t), suppose the setups of theorem 4.3 are satisfied.

Proof. Suppose @} c (Tf (g, t))v with limy,_, v(? —¢) = 0. As the space (Tf (g, t))v is a pre-quasi
closed space, then g € (’cf (g, t))v. Hence, for all f € (Tf (g, t))v, we obtains

= (p(X) o e0:(F - 22),0))'
Zozz z
Z‘[ T+ -1 J

=0

= p( 2= orzv/z(fz p( 2= orzv/z(gé’—gz),o)

, D))«
_|_
Z U+ 1 — Z‘ -1

=0

IA

2hlsup1nfv(f gb).
jobi

Therefore, v does not establish the Fatou property. m]

Now, we investigate the enough setups on (Tf (4, t))v under definite pre-quasi norm so that there

is an unique fixed point of Kannan contraction operator.

Definition 7.2. [25] An operator W : EL — &F is named a Kannan v-contraction, if there is A € [0, 3),
such that v(Wz — Wt) < A(v(Wz —Z) + v(Wt —t)), for every z,t € EF.

A vector z € &F is named a fixed point of W, if W(z) = Z.

Theorem 7.3. Suppose the setups of theorem 4.3 are established, and W : (Tf (g, t))v - (Tf (q,t))v is

. 029z 1z —
Kannan v-contraction operator, where v( f lz [ . - — )] ] , for every f € tk(q,t), then W
I+2 1=
1=0

has a unique fixed point.

Proof. Suppose f € tk(g,t), then W"f € £ (q,t). Since W is a Kannan v-contraction operator, we

have

V(WML F W F) < A

V(W"TF — W F) + o(W™f - W) =

— j— — — 2 j— j—
v(WHLf = W) < T o(W"f = WL f) < (%) v(W"Lf =W f) <

Ay - =

<|— - f).

_(1—A) v(Wf=f)
Therefore, for every m,n € N with n > m, we have

V(W' = WF) < A (v(W™"f = WTF) + (W' f - W1 f))

N
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Hence, {W" f} is a Cauchy sequence in (Tf (g, t))v. Since the space (Tf (g, t))v is pre-quasi Banach
space. Then, there exists g € (Tf (g, t))v so that lim,—.o W" f = 3. To explain that Wg = 3. As v
has the Fatou property, we have

—_— —_— m —_— —_—
v(Wg —3) <supinfo(W" f—W"f) < sup inf.(i) v(Wf-f)=0,
i mi i mz1 1-A
hence Wg = g. So, g is a fixed point of W. To investigate that the fixed point is unique. Assume
we have two distinct fixed points b, g€ (Tf (g, t))v of W. Then, one obtains

v(b-3) <v(Wb-Wg) < A(v(Wb-b) +v(Wg-3)) =0.
Hence,E =g O

Corollary 7.4. Assume the setups of theorem 4.3 are confirmed, and W : (Tf (q,t))v - (Tf (q,t))v is

— ! - A
_ < (P (X2 129212,0
Kannan v-contraction operator, where v(f) = {Z[ (r - :_Zr - Zl
1+2 1~

I=0

1
tn
)] ] , for all f € tE(qg,t), hence W
has an unique fixed point b with v(W™ f —b) < A (%)m_l v(WFf=Ff).

Proof. According to Theorem 7.3, there is an unique fixed point b of W. Therefore, one obtains

— - — - — J— — — m_l — —
v(W"F D) = v(W"F ~ WB) < A(v(W"F ~ W"UF) + o(WE - 7)) = /\(%) V(WF=TF).

O

Definition 7.3. Assume EL is a pre-quasi normed pssf, W : EL — &L and be EL. The operator W is named
v-sequentially continuous at b, if and only if, if lim,—eo v(£, — b) = 0, then lim,_,c v(WE; — Wb) = 0.

Theorem 7.5. Suppose the setups of theorem 4.3 are established, and W : (Tf (g, t))v - (Tf (g, t))v, where
t

- Z’o: P (Z,IZ:O rZ‘JZJTZI 6)

v(f) = | T tu- 1

W, if the next setup are verified:

, for all f € t£(q,t). The vector g € (Tf(q, t))v is the only fixed point of

(a): W is Kannan v-contraction operator,

(b): W is v-sequentially continuous at g € (Tf (g, t))v,

(c): thereisv € (T’f (g, t))v so that the sequence of iterates {IW™v} has a subsequence {IW™iv} converges
to g.

Proof. Suppose the enough setups are established. Let g be not a fixed point of W, then Wg # g.

In view of the setups (b) and (c), one obtains

lim v(W"f-3) =0and lim v(W"*1f-Wg) =0.

m;—oo m;—00
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Since the operator W is Kannan v-contraction, we have
0 < v(Wg-3) = v((Wg - W"Tf) + (W"f —3) + (W™ f - W"f))
m,~—1 _ _
< 2272y (W15 - Wg) + 292 (W5 - ) + 212 (15 AA) o(WF - ).

let m; — oo, we get a contradiction. Hence, ¢ is a fixed point of W. To show that the fixed point g

is one. Assume we have two distinct fixed points g,b € (Tf (q, t))v of W. Hence, one gets
v(g-b) <v(Wg-Wb) < A(v(Wg-3) +v(Wb-b)) =0.

Therefore, g = b. m]

[oe] 0]

1 2143\ 1 2143\
Example 7.6. If T : ( (( 5T )l 0,(14%2)1_0))0 - (TF (( Ear )l 0’(14%2)1—0))1)’ where

2043

[o¢]

( l Z 6) T2
z=0 z45/ — o0 00
. F 1 2143
Z rl+2 + rl ! wlth f E (Tr (( (l+5)t, )l:O ,( l+2 )l_o))v and

=0

017 -18) = oL - §) < o)+ o)) = (o177 + vtz )
Forevery f,g € ( (( (l+15)r1 ):0,(216%3);00))]) with v(f) € [0,1) and v(g) € [1,0), we obtain

o1 -19) = v - < o)+ o) < (o) +0(D)

Therefore, the operator T is Kannan v-contraction. Since v confirms the Fatou property. In view of Theorem

7.3, the operator T has a unique fixed point 6 € (Tf (( (l+15)rl) , (21%3);0 0)) .
1=0 =

Suppose {W} c (Tf ((m)l . (211423)1 0)) with lim, e U(W ~ W) = 0, where
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W € (Tf (( L ) , (%)7’0)) with v(m) = 1. Since the pre-quasi norm v is continuous, we have
1=0 =

{(5g) >0

lim v(Tf@ f_O)) = lim v(? _ E) _

4— 0 A—00 5

Hence, T is not v-sequentially continuous at f(©). Therefore, the operator T is not continuous at f©)
243

_ 1 E — 1+2
P (ZZ:O =57 O) 7 r 1\ 243\
o +1—1 with f € (Tr (( (+5)n )1:0 ’ (H_Z)Z_O))U'

o

Since for all f,3 € (Tf (( T )l Ny (%)lo))v with v(f),v(3) € [0,1), we have

Let v(f) =

gk

1

I
o

17 -19) = o4 - $) 2oy 4 o)) = Z(oaT -7+ oir5-3)
Let f, ge( f(((lé)q)io,(%)zo))v with v(f),v(g) € [1,00), we have
o17-19) oL -5 < Yoty o) = LoF -+ vi13-3)

Therefore, the operator T is Kannan v-contraction and T™ (J_’) =

(o]

Evidently, T is v-sequentially continuous at 6 € (Tf ((@)1:0 , (_)io))v and {T" f} has a subsequence
T"™i f} converges to 0. According Theorem 7.5, the element
0¢ (Tf (( (l+15)r, ):OO (21153 )l 0)) is the only fixed point of T.
Example 7.7. Let .
7 (ot () ), = () )
I £ 5

p(zto ) )”_2

hai z=0 z+5/ _ ) o

_ ; F 1 20+3

- IZ o+ 1y — (with f € (Tr (( (+5) )zzo '( 2 )10))1; and

T(f) =

[T OV [E Ny T
3
S
| = I
—
~
N—r
Il
W=
>
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Since for all f,3 € (Tf ((m)io , (%)Zo))v with fo, %0 € [0,3), we get
o(TF=T9) = oG5 T = T)) 5 =0 +05)

IA
IS
—_—

o(TF = F) + (T -3))

Therefore, the operator T is Kannan v-contraction. Obviously, T is v-sequentially continuous at %E €
F 1" (23 7 e (LF 1" (23 N 1
(Tr (( ST )l . (l+2 )l 0)) and there is f € (Tl. (( =T )l . (l+2 )l 0)) with fo € [0, 3) such that the

sequenceof iterates {T" f} = {Zm el + 1 f} includes a subsequence {T" f} = { et G f} con-

verges to %E. In view of Theorem 7.5, the operator T has one fixed point %a € (If (( 0 +15)r1 )l . (2le23 ) l 0))

- - 1 (o) (243)
Note that T is not continuous at 361 € (’cr (( 5 )1:0 ,( ) )1_0))0.

2043
- _( l fz 6) I+2
— z=0 z+5” _ 00 oo
21+3 :
Let v(f) = Z P , for all f € (Tf (((l+15)rz)l_0’(l+i2)lo))v' Since for all

f.ge (Tf (( (l+15)r,) ) (211:23)1 0)) with fo, 30 € [0, %), we have

o(TF-T8) = v(s(F-%0 i T o~ T ) < o0 + ()

< — (017 =)+ 0(13-3))

Forall f,5 € (Tf (( (l+15)r] )1:0 , (%)1_0))1) with fo, 30 € (3,1], hence for all € > 0, one has

o(TF~T8) =0 < e(v(TF - ) + v(TE - 7))

Forall f, 5 € (Tf (( (l+15)r1) N (%)io))v with fo € [0,1) and 3o € (3, 1], we have

1=0
- f 1 3f 1 = = 1 S
o(TF = T8) = vy < g=v() = 7=v(TF =) < = (o7 =) +v(13-B))
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Therefore, the operator T is Kannan v-contraction. Since v confirms the Fatou property. According to

Theorem 7.3, the operator T has an unique fixed point 1y € (Tf (( (l+15)r, )I:O , (%)zo))v

We offer the existence of a fixed point of Kannan contraction operator in the pre-quasi Banach

operator ideal generated by (TIF (g, t))v and s— numbers.

Definition 7.4. A pre-quasi norm ¥ on the ideal BSgr, where ¥ (W) = v((sa(W));x’:O), confirms the

Fatou property if for every sequence {Walsen € BSgr(Z, M) with lim,—eo ¥ (W, — W) = 0 and each
V € Bsgr (Z,M), then ¥ (V — W) < sup, infi, ¥ (V = W)).

Theorem 7.8. The pre-quasi norm ¥ (W) =
pre-q (W) ;), g
property, for every W € @( ) (P, Q), when the setups of theorem 4.3 are satisfied.

T

1
_ — \\b17
00 Zl: 1.0,5,(W),0
{p( 20 12425 (W) ) does not establish the Fatou

Proof. Let the conditions be confirmed and {Wy}en C ﬁ(ﬁ(q n) (P,Q) with limy,—co ¥ (W, —
W) = 0. As the space @(Tp @) is a pre-quasi closed ideal. Hence, W € ﬁ(ﬁ(‘m) (P,Q). Then,
forall Ve @(Tf(qi)) (P,Q), one has

v

00 [ﬁ(zéorzqzsz(V—W),a)]tl !

e o+ -1
_— tl % s - tl %I
i P (Xl teusizy (V- Wy),0) . i P (Zlg tetizs iy (W —W5),0)
= T+ 1 -1 i T+ -1
1
—(l — .\
= P (Zz:() rquSZ(V - Wi); 0)
< 2271—1 271—1 zh % inf
=( + +2) Sl;pglm ;}‘ to+1 -1
Hence, ¥ does not verify the Fatou property. m]

Definition 7.5. [25] An operator W : Bsgr(Z, M) — Bsgr(Z, M) is called a Kannan ¥-contraction, if
thereis A € [0, 1), so that ¥ (WV — WT) < A(¥(WV = V) + ¥(WT = T)), for each V, T € Bsgr (Z, M).

Definition 7.6. For the pre-quasi norm ¥ on the ideal Bsgr, where ¥(W) = U((Sa(W));’iO)/ G :

Bégr(Z,M) — BSgr(Z,M) and B € BSgr(Z,M). The operator G is named ¥-sequentially continuous
at B, if and only if, if limy, e ¥ (W,, — B) = 0, then lim,,—,oo ¥ (GW,, — GB) = 0.

Theorem 7.9. Assume the setups of theorem 4.3 are established and G : ﬁ(Tf(q,t))v(P’Q) -

{i [5 (lezo 12425:(W), 0

B -
B (Tf(q’t))v(ﬂ Q), where ¥ (W) 2, p—"

P,Q) is the unique fixed point of G, if the next setups are fulfilled:

1h
)] } , for every W € B_S(Tf(q,f))v(P’Q)'

The vector A € @(rf(q/f))u(
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(a): G is Kannan Y-contraction mapping,

(b): G is Y-sequentially continuous at a point A € @(Tp(q’t)) (P,Q),
(c): thereis B € ﬁ(ﬁ @) (P, Q) such that the sequence of iterates {G" B} has a subsequence {G™B}

converges to A.

Proof. Let the enough setups be satisfied. Assume A is not a fixed point of G, then GA # A. In

view of the conditions (b) and (c), one has

lim ¥(G"B-A)=0and lim ¥(G"B-GA)=0.

m;—0oo m;—00

As G is Kannan Y-contraction operator, we get

0<¥(GA-A) = ¥((GA-G""'B) + (G"B~A) + (G" "B~ G"B))
< (271 420 4 oMY (GM B - GA) + (22 21+ 2N R (GMB - A)

mi—1
4 (2271 4ol g o) (ﬁ) ¥(GB - B).

For m; — oo, one obtains a contradiction. Hence, A is a fixed point of G. To prove that the

fixed point A is unique. Assume we have two distinct fixed points A, D € ﬁ( @), (P, Q) of G.

ok
Therefore, one gets

¥(A-D) < ¥(GA—GD) < /\(‘I’(GA ~A)+¥(GD - D)) —0.
So,A=D. O

Example 7.10. Suppose

T\ 7

o) " ) ),

%
— s;(H) =)\
= , for eac € & 3\ , &) an
| U2 +1-1 (Trp(( (l+14)rl )170 (211+_23)z:0))v
H w(H)e[0,1),
ey — | YD €0
7, Y(H)€[l,0)

T

Since for all Hy, H; € S( F( )) with ¥(Hy), ¥ (Hy) € [0,1), we have

( 1 )m (21+3)°°
T4y )y \ 52 )1=0)),

o -tk =¥ - ) < (e e
V2

= W(T(Mf‘h —Hl) —|—‘F(MH2 —Hz)).
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)) with Y(Hy), Y (Hy) € [1, ), one has

()" (2/+3)°°
t\\ (+4)y -0 1+2 J1=0 v

Hi H V2 (., 6H 6H.
¥ (MH: - MHy) =¥ (5~ =) < W(T(Tl)+‘f’(72>)
= {/;/%(T(MHl ~ Hy) + ¥ (MH, ~ )}

)) with ¥(Hy) € [0,1) and ¥ (Hz) € [1, ), one gets

v

{1\~ (21+3)°°
I+4)ry )’ 42 /1=0

H, H, < 4\/5 T(5H1)+ 4\/2 T(sHZ)
V125 6 V216 7

(‘I’(MHl ~Hy) 4+ ¥(MH, - Hz)).

B, ¥H)eo1),

7, ¥(H) €1, )

Evidently, M is Y-sequentially continuous at the zero operator ® € S( (

Therefore, the operator M is Kannan ¥-contraction and M"™(H) =

2I+3 El?’ld
z+4 7 )iy’ l+2

{M"H} has a subsequence {M"iH} converges to ®. According to Theorem 7.9, the zero opemtor

QXS S( (( ) 2z+3);’°0)) is the only fixed point of M.

(I+4)y )l 0 ( +2 )=

Assume {H®)} C S( (( ) is such that lim,_, ‘Y(H(“) —H(O)) = 0, where

1 ) 2]+3
Ty )y I+2

)) with 1I’(H ()) = 1. Since the pre-quasi norm ¥ is continuous, we have

H® es N .
( (((H-i) )1 0’(%)1:0 Y
(0) (0) (0)
lim ¥(MH"® - MH”) = lim ‘P(H6 - H7 ): (112 )> 0.

Hence, M is not Y-sequentially continuous at H®), Therefore, the operator M is not continuous at H©),

8. EXISTENCE OF SOLUTIONS OF NON-LINEAR DIFFERENCE EQUATIONS

In this section, we explore a solution in (’c{D (g, t))v to summable equations say (8.1), defined

1

— tin

- & (PR refe

n [48], where the setups of theorem 4.3 are established and v(f) = Z [ (r == j_zr - 21 )) , for
2 T —

=0

all f e tf(q, ).

Examine the summable equations:

F=T+ ) Al m)g(m, fu), (8.1)
m=0

and assume W : (Tf (g, t)) - (Tf (g, t)) is constructed by

W(f)zen = (]/z + Z A(z,m)g ))ZEN. (8.2)
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Theorem 8.1. The summable equation (8.1) holds an unique solution in (Tf (g, t))v , when A : N*> — R,
Q: NX‘R[O 1] - R[0,1], f: N = R[0,1], 7 : N = R[0,1], 7: N — R[0,1], assume there is A € R so

that sup, I)\Ih € [0,3) and for all 1 € N, we have

Z(ZAZT” ) 8(mr77_m)]]rzqz S

1

Z( fZ+ZAzm f)]rzqz

meN z=0
1
+IAIY (z—m Y A(zm)g(m,n—m)]rzqz :
z=0 m=0

Proof. Let the conditions be established. Assume the mapping W : (fcf (g, t))v - (Tf (q,t))v is
defined by equation (8.2). Hence

— = _le: rzzw_z_W_z/6 gk
[z

r -
s 12t

- i 7 (E 0 (Znen Az m)[(m, Fo) = g (m, 7)) 1:,0) ||
B T2+ 1

-1
1=0
1
T — _ bk
coupt ) p(Xi0 (V2 — £ + Tinso Alzym)g(m, fiu) ) 124:,0) )
- lp =0 Ty + 17— 1
1
— — —\\fih
“w M|th] i P =1z + Lo Alz, m)g(m, 7)) quZ,O) ’
lp — g+ -1
f_l — —
= sup A" (v(Wf = f) + v(Wil - ).
o
In view of Theorem 7.3, we obtain an unique solution of equation (8.1) in (Tf (g, t))v .
Example 8.2. Suppose the sequence space (Tf ((m) (21130’) l 0)) where
1=0
Z W
— 1 fz n +
_ x| p (ZZ:O z+1’0) _ o0 S
= S — F 1 2143
v(f) = IZ(; watu-1 | foraife (o8 () o (B9)0)).
Assume the non-linear difference equations:
oo Th
—(32+6) 1 Z [ i S— (8.3)
=0 4+ m2 41

with b,d, f-5(t), f1(t) > 0, for all t € R and suppose

(£), fa(
el 20 ) el 221,
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is defined by

b

W), = ( (32+6) _|_Z z+mz—2) (8.4)
=0 N 0

Evidently, there is A € R such that sup, NI € [0, %) and for all | € N, one has

I (= IR
Y [Z (1) == ()" - <—1>"1)J 2

m=0 d +m2+1

z=0
I ) b_
< Ml Z e” SZ+6 Z(_l)z+m_2——2 1.4
2=0 m=0 +m?2+1
1 00 nh_
Al Z —(32+6) Z(_1)2+m_z——2 1.4, .
= m=0 T]Z_l +m?+1

According to Theorem 8.1, the non-linear difference equations (8.3) contain an unique solution in
F 1" (2143
(et (o) (2)5)),

Example 8.3. Suppose the sequence space (Tf (( L )H) , (%)ZO))U, where

=\ 12
— I fz n +
_ o P(Zz:o z+1’0) - « o0
B F 1 2143
o) = |\ L || T e (< () Ly (E2)2),

1=0

Assume the non-linear difference equations:

F=7+ Z ez+m2—2_, (85)

with b,d, f_5(t), f1(t) > 0, for all t € R and suppose
1 \7 (20+3)7 1 \" (2+3)7
) ) )L ) ()L
(r I+ D))o\ 1+2 )], I+ )y’ \1+2 )],

is defined by
b (o]
W2 = |7+ ez*’”z—z) : (8.6)
( Zé 42

Evidently, there is A € R such that sup, |/\|2l+4 €[0,3) and for all 1 € N, one has

Zez (e —em) 124>
m=0 d + b +2

1

b
<Al Z [yz fz + Z ez+mz—2_)rth

=+
z=0 -1 z=0 + fb 2
1 00 T]b
A Z Yz — N + Z M — 2 — | V242
=0 0 N+, 42
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According to Theorem 8.1, the non-linear difference equations (8.5) contain an unique solution in
1\ (2a3)®
(Tr (( (1) )1:0 '( 2 )1—0))1)'

Theorem 8.4. Consider the summable equations (8.1), and assume W : (Tf (g, t))v - (Tf (g, t))v is defined
by (8.2), where the setups of theorem 4.3 are established and

— - A\
_ 0 le: T ,0 _
v(f) = Z p( oteA:/: ) ,forall f € t£(q,t). The summable equation (8.1) has an unique solution
el oy tn-1 !

Ze ('cﬁT (g, t))v , if the following conditions are satisfied:
W: FA:N?2 >R, g: NxR[0,1] = R[0,1], f: N = R[0,1],7: N = R[0,1],7: N = R[0,1],
assume there is A € R so that 271 sup, A€ [0, %) and for all | € N, we have

1 S
Z (E ~fot Z A(Z,m)g(mff_m))rzqz

z=0 m=0

<A +

1
Z [Z A(Z,m)[g(m,f_m) - g(mln_m)]]rz‘h

z=0 \meN

1 00
Y (z— Y A(z,m>g<m,n—m>]rzqz
z=0 m=0

(2): W is v-sequentially continuous at Z € (Tf (g, t))v,
(3): thereis Y € (Tf (g, t))v with (WYY} has {W™Y} converging to Z.

Al

Proof. One has

vy +r—1

i [5 (le:O 124z (WJTZ - W)ra) }tl

Ty + 71— 1

¥ [5(22_0 Tnen Az m0)[g(m, Fr) = g(m,n—mn)rzqz,ﬁ))”

2+ —1

= [ﬁ(z;_o (F-F+ z:::0A<z,m>g<mﬁ>)rzqz,6)}“ N

_ v _ —\\
o | P (le:O (Vz =z + =g Az, m)g(m, ) 1242, 0) l
T+ -1

= 2" Lsup A (U(W? —f) +v(Wn- ﬁ)) .
l
By Theorem 7.5, one gets an unique solution Z € (Trp (g, t))v of equation(8.1). m]

Example 8.5. Suppose the sequence space (Tf ((m)lzo , (%)io))v’ where

RN
—(y! £ g\
_ R P (ZZ:() Z+_1' O) _ %) s
— F 1 21+3
v(f) = ; o ,forall f € (’[r (( = )110,( ) )lzo))v'
Consider the summable equations (8.3).
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. < (243 © 243\ ,
o (el ), — (¢l (1) et 5

)) , and there is Y €
v

sume W is v-sequentially continuous at Z € (Tf ((m)l O,(%)i

(TF ((ﬁ) (%)T o)) with {W™Y)} has {W™Y) converging to Z. Evidently, there is A € R such
1=0

that 2"~ sup, |A| 2 T e [0, %) and for all | € N, one has

Z. (mio ((—1)’” - (—1)’”)] R

+m2+1

I ) i
<Al Z e 3z+6 Z(_1)2+MTZ——2 .0, +
z=0 m=0 ¢ Am2+1
! nb_
Al Z —(32+6) T+ Z 1)7Hm z=2 v,q.|.
2=0 o +m+1

By Theorem 8.6, the summable equations (8.3) have an unique solution
1\ (23
Ze ( (( G )l 0 (3 )z o))

In this part, we search for a solution to nonlinear matrix equations (8.7) at D € ]BS F

’I (qt
1
— h
= z orzqzsz
the conditions of theorem 4.3 are satisfied, and ¥ (G Z , for every
— U2+ 10—
Ge @(TFW)) (P, Q). Consider the summable equations
52(G) = 5.(P) + Z Alz,m) f(m,5,(G)), (8.7)
=0
and suppose W : ﬁ(T Fah), (P,Q) — B® (@), (P,Q) is defined by
W(G) = [sz(p) + Y Alz,m)f(m, sm(G))JI. (8.8)
m=0

Theorem 8.6. The summable equations (8.7) have one solution D € ﬁ(rf(q,t))v (P,Q), if the following
conditions are satisfied:
(@: A: N2 >R, f: NxR[0,1] - R[0,1],P € B(P,Q), T € B(P,Q), and for every z € N, there
is K so that sup, K € [0,0.5), with

Z A(z,m)(f(m,sm(G)) — f(m,sm(T)))‘
|

<K

5:(P) =5:(G) + ) Ala,m)f(m,5n(G))

meN

+

|

(b): W is ¥-sequentially continuous at a point D € B_S(Tf(q,t))u (P,Q),
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(c): thereis B € @(
converging to D.

) (P, Q) so that the sequence of iterates {W"B} has a subsequence {W" B}

v

7 (4.t)

Proof: Suppose the settings are verified. Consider the mapping W : IB_S(T;( ah) (P,Q) —
ﬁ(ﬂ:(q,t)) (P, Q) defined by (8.8). We have

[ = (5(Y! N o h
IIJ(WG_WT) _ Z p(zz:Orqu(Sz(G) SZ(T)),O)J }

=0 T2 +1— 1
- i B (Lo 1= Eonen Ala, m) (£(m,50(G)) = Flom,5(T))),0))'|
- —~ o+ -1

i (ﬁ(z’zzo 1202 (5:(P) = 52(G) + Lnen Alz,m) f(m,5,(G))), 0)

g+ -1

P (ZIZZO t2f (m B % + Yomen Az, m) f(m, Sm(T))) ’6) ]Hr

-1

=supkh (Y(WG-G)+¥(WT-T)).

z

In view of Theorem 7.9, one obtains an unique solution of equation (8.7) at D € @( <), (P, Q).

Example 8.7. Assume the class ﬁ( ) (P, Q), where

v

Fa()(32))
ST <\ 2
_ 5 —\\ I+
°° P(Zizoﬁﬁ) _
Y(G) = , I1GeBs P, Q).
© IZ;‘ varu-1 | (i) &9

Consider the non-linear difference equations:

) ey i tan(2m + 1) cosh(3m — z) cos” |s,— 2(G)|/ 8.9)

) sinh? |s,_ 1(G )|—|—s1nmz—|—1

wherez > 2andb,d > 0and let W : @( P,Q) — @( ) (P, Q) be defined

v

wa,t)((ﬁ),(%)))v(

1
as

ey i tan(2m + 1) cosh(3m — z) cos® |s,_»(G)|

W(G) = |e I. (8.10)
0 sinh? |s,— 1( )|+ sinmz + 1

Suppose W is Y-sequentially continuous at a point D € ]BS( ) (P,Q), and there is B €

(aD)((a) (E2))),

B° ( ()2 +3))) (P, Q) so that the sequence of iterates {IW*B} has a subsequence {W" B} converging to
SR A2 ),
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D. It is easy to see that

h(3m — b 1s,-2(G
e (m—z)cos S22 )l(tan(Zm +1)—tan(2m + 1))
2= sinh? s;-1(G)| +sinmz + 1

< LFe) 52(C) + i tan(2m + 1) gh(?ﬂn z) cos’ [5.2(G)|
25 =0 sinh? Is;-1(G)| + sinmz +1

1§ s D= )cor |
25 =0 sinh? Is;—1(T)| + sinmz + 1

By Theorem 8.6, the non-linear difference equations (8.9) have one solution D € BS (

)))v (P,Q).

() (1), (352

9. ConcLusION
In this article, we offer some topological and geometric properties of (Tf (q,t))v, of the mul-

tiplication maps acting on (Tf (q,t))v, of the class @(Tf(q,t))u' and of the class (]B_S(Tf (q/t))v)A. We
investigate the existence of a fixed point of Kannan contraction map acting on these spaces. Some
several numerical experiments are introduced to light our results. Furthermore, some successful
applications to the existence of solutions of non-linear difference equations are discussed. This
article has a number of advantages for researchers such as studying the fixed points of any contrac-
tion maps on this pre-quasi normed sequence space which is a generalization of the quasi normed
sequence spaces, a new general space of solutions for many difference equations, the spectrum of
any bounded linear operators between any two Banach spaces with s— numbers in this sequence
space and note that the closed operator ideals are certain to play an important function in the

principle of Banach lattices.
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