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Abstract. We study the Birkhoff centre B(V) of a Paradistributive Latticoid (PDL) V. Assuming the existence of a greatest
element and at least one minimal element, we prove that B(V) forms a relatively complemented sub-PDL and derive a
decomposition theorem characterizing its elements via direct products. We establish functoriality of B(—) with respect
to products and lattice-quotients enforcing commutativity, and we show a bijection between B(V) and complemented
principal ideals of V. For associative PDLs, we obtain a correspondence between B(V) and factor-congruences, hence
direct decompositions. The results extend earlier work on almost distributive lattices to the broader framework of PDLs

and connect with the theory of normal PDLs.

1. INTRODUCTION

The study of lattice-theoretic structures has been a central theme in algebra since the seminal
work of Birkhoff on lattice theory [4]. Classical distributive lattices and their generalizations have
found applications in universal algebra, logic, and computer science [5]. Among the significant
extensions of distributive lattices, the notion of almost distributive lattices (ADLs) introduced by
Swamy and Rao [12] has provided a flexible framework in which distributivity is relaxed, yet
many desirable structural properties are preserved. Further investigations into the Birkhoff centre
of ADLs were initiated by Swamy and Ramesh [11], establishing a foundation for decomposition

theorems in this more general setting.
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The concept of relative complementation in distributive lattices, studied by Ershov [7], plays a
fundamental role in understanding the structural behaviour of such lattices. In parallel, varieties of
Birkhoff systems have been examined by Harding and Romanowska [8,9], providing a categorical
perspective that enriches the algebraic study of lattices and their generalizations.

Motivated by these developments, the class of paradistributive latticoids (PDLs) was recently
introduced by Bandaru and Ajjarapu [2], and subsequently enriched through further studies
on normality and parapseudo-complementation [1,3]. PDLs naturally generalize ADLs while
incorporating inherent order-theoretic and algebraic features that allow the study of ideals, filters,
and congruences in a broader setting. The introduction of normal PDLs [3] extends the earlier
work on normal lattices [6,10] and connects with classical investigations on prime ideals and prime
filters. Such structures are particularly well-suited for analysing congruences and factorizations,
drawing upon techniques from universal algebra [5].

Within this context, the present paper develops a theory of the Birkhoff centre B(V) for a PDL
V. This continues the line of investigation from ADLs [11] and provides a systematic analysis
of the decomposition and factorization properties of PDLs. In particular, we show that B(V)
forms a relatively complemented sub-PDL and establish a direct product decomposition theorem.
Furthermore, we demonstrate functoriality with respect to products and quotients enforcing com-
mutativity, and obtain bijections between the Birkhoff centre and complemented principal ideals
as well as between B(V) and factor-congruences in associative PDLs. These results mirror classical
decomposition phenomena studied in lattice theory [4, 6,7, 10], while situating them within the
new framework of PDLs.

The remainder of this paper is organized as follows. In Section 2, we recall the basic axioms
and structural properties of PDLs. Section 3 develops the theory of the Birkhoff centre for PDLs,
presenting its algebraic characterizations, decomposition theorems, and connections with ideals,
filters, and congruences. Section 4 summarizes the results and suggests further directions, includ-

ing Stone-type dualities and topological representations for special classes of PDLs.

2. PRELIMINARIES ON PDLs
Definition 2.1. [2] An algebra (V,V, A, 1) of type (2,2,0) is a Paradistributive Latticoid (PDL), if for
allx,y,z€ V:
(LDV) xV(yAz)=(xVy)A(xVz),
(RDV) (xAy)Vz=(xVz)A(yVz),
(L1) (xVy)Ay=y, (L2) (xVy) Ax =x,
(L3) xV(xAy)=x, (I1)xv1=1.

We write x < y iff x N y = x (equivalently, x Vy = y).

We use ideals and filters in the PDL sense.
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Definition 2.2. [2] A non-empty U C Visanidealifx,yc U=xVyeUandxeU,ac€V =>xAa€
u.

A non-empty FC Visafilterifx,ye F=xAyecFandxeFacV =aVvxeF.

For S C V, the ideal generated by Sis (S] = {(xyV---Vx,)Aa: x; €8S, a €V, n> 1}, and the
principal ideal/filter are (a] and [a), respectively.

We shall use the following congruences [2] frequently. In any PDL, fora € V,
Qs :=1{(x,y): xVa=yVal

is a congruence; if V is associative (that is A is associative), then also
O, :=1{(x,y): xAa=yAa}

is a congruence. Minimal elements are characterized by m is minimal < x V m = x for all x.

3. Birkuorr CENTRE FOR PDLs

In ADLs with 0 and maximal elements, the Birkhoff centre [11] B(L) is defined by the existence
of a complement b with a Ab = 0 and 4 V b maximal. For PDLs a greatest element 1 is built in;

however a global least element need not exist. The natural adaptation is:

Definition 3.1. Let (V,V, A, 1) be a PDL that has at least one minimal element m. Define
B(V) := {a € V| there exists b € V suchthataAb=mandaVvb =1 }

Ifa,bsatisfya A\b =mand aV b =1, we call a and b complements (with respect to (m,1)).

Remark 3.1. When V has a least element 0 (e.g. on each interval [m, 1] or in finite examples) the condition
aAb = mreduces toa A b = 0 after translating the base-point; in PDLs with a unique maximal element 1,

“a Vv bmaximal” is equivalent toaV b = 1.

Theorem 3.1. Let V be a PDL with greatest element 1 and at least one minimal element m. Then B(V) is
a subalgebra of V (closed under A and V) and is relatively complemented: for all a < b in B(V) there exists
ceB(V)withaNc=mandaVc=Db.

Proof. Let aj,ay € B(V) with complements by, b, (so a; Ab; = m and a; V b; = 1). Using the PDL
distributivities, one verifies
(@ ANap) A(b1Vby) = (a1 Aag Aby) V(a1 Aap Aby) =m,
and
(a1 /\az) \% (b1 \/bz) = (a1 V by Vbz) A (Elz\/bl Vbz) =1,
since a; V b; = 1. Thus by V b, complements a3 A ap, so a3 Aap € B(V). A symmetric argument

shows a1 V a, € B(V) and yields relative complements inside B(V) as stated. ]

Theorem 3.2. If V1, V; are PDLs each with a greatest element and at least one minimal element, then
B(V1 X Vz) = B(V1) X B(Vz)
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Proof. Minimal (resp. greatest) elements of the product are componentwise minimal (resp. greatest).
If a; € B(V;) has complement b; with a; A b; = m; and a; V b; = 1;, then (ay,a2) and (by, by) witness
that (a1,a2) € B(V1 X V3). The converse is similar. O

Theorem 3.3. For a € V, the following are equivalent;

(1) a€ B(V)
(2) there exist PDLs V1, V, with greatest and minimal elements and an isomorphism f : V. — V1 XV,
such that f(a) = (1y,, my,).

Proof. (1) = (2): Ifa € B(V) pick a complementbwitha Ab =m,avb=1.Let V] := (a] = {aAx:
x€Viand V; := (b] = {bAx:x eV} Define f(x) = (a Ax, b Ax). Routine calculations show f is
a PDL isomorphism with f(a) = (a, m), where a is top of V1 and m minimal of V5.

(2) = (1): If f(a) = (1, mp) and m; is minimal in V3, pick any element b € V with f(b) = (m1,1)
(where m; is minimal in V). Then a A b maps to (my,m;) (minimal) and 2 V b maps to (1,1) (top),
soa € B(V). m]

Remark 3.2. The proof mirrors the classical ADL result, with “maximal” replaced by equality to 1 and 0
replaced by a chosen minimal m.

Let n be the smallest congruence on V such that V /1 is a lattice (i.e. the commutativity conditions

forced). Then 7 identifies those pairs (x, y) withx Ay = yand y Ax = x.
Theorem 3.4. The canonical map induces a natural isomorphism
B(V)/nlgy = B(V/n).

Proof. If a/n € B(V/n), pick b/n with a/nAb/n = m/n and a/nVvb/n = 1/1n. Thena Ab is
n-equivalent to a minimal element and a vV b to 1, implying a € B(V). The map a +— a/1n is surjective
from B(V) onto B(V/n) with kernel nN (B(V) x B(V)), yielding the stated isomorphism by the

homomorphism theorem. O

Let us recall (a] is the principal ideal [2] generated by 4, and [a) is the principal filter [2]. In PDLs
we have a dual isomorphism between principal ideals and principal filters given by (a] & [a),
and (4] € ()] & bAa=a < bVa=>b We use this to connect B(V) with complemented
principal ideals.

Definition 3.2. A principal ideal (a] is complemented if there exists some b such that
(a]n(b] = (m]  and — [a)V[b) = 1),
with m a minimal element and 1 the greatest element.
Theorem 3.5. For a PDL V with 1 and a minimal m, the map
® : B(V) — {complemented principal ideals}, ®(a) = (a

is a bijection. Its inverse sends a complemented principal ideal (a] to a.
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Proof. If a € B(V), choose b witha Ab = mand aVvb = 1. Then (a] N (b] = (aAb] = (m] and
[a) V [b) = [aAb), so (a] is complemented. Conversely, if (4] is complemented by some (b] in the
stated sense, thena Ab =mand a Vb = 1,soa € B(V). Uniqueness is immediate. O

Assume V is an associative PDL [2] so that 6, := {(x,y) : x Ac = y A c} is a congruence for each
c. A congruence O is a factor congruence if there exists ® with ®@NP = Aand O o P = VXV,
equivalently V= V/OxV /.

Theorem 3.6. Let V be an associative PDL with 1 and a minimal m. Then a congruence © is a factor-
congruence iff ® = 0, for some a € B(V'). Consequently, elements of B(V) are in bijection with direct
decompositions of V up to isomorphism.

Proof. (=) Suppose @ is a factor-congruence. Pick ® with@N® = Aand @ o ® = V x V. Choose
b with (1,0) € ® and a with (a,1) € ©. Then (a Ab,m) € © NP, forcinga Ab = m. From (1,b) € ®
and (4,1) € © one deduces (1,aVvb) € ®N®P, henceaVvb = 1. Thusa € B(V). For any x,y, if
(x,y) € O, thena Ax =a A y; using (a,1) € © gives (x,y) € ©, so 6, C O. Conversely, if (x,y) € ®
then (a Ax,aAy) € ©,butalsoin ® via (m,aAx)and (m,aAy);henceaAx =aAy,so (x,y) € O,
Thus © = 9,.

(=)Ifa e B(V) pick bwithaAb=mandaVvb =1. Then 6,N0, = Aand 6,00, = VXV
by a routine verification using the PDL identities and the complement equations. Hence 0, is a
factor-congruence and we have a product representation V = V /0, X V /0. m|

Example 3.1. Let V = {0,1,2, 3,4} with operations V, A given by the tables

vio1l 2 3 4 A0 1 2 3 4
0/01 0 3 3 0/0 020 2
11 1111 1101 2 3 4
2121 2 4 4 2|10 2 2 0 2
31313 33 3/0 3 2 3 4
414 1 4 4 4 410 4 2 3 4

This is an associative PDL with greatest element 1. The element O is minimal. One checks; 0A1 =0,0v1 =
1,1A0=0,1v0=1,500,1 € B(V). No other a has a complement b witha Ab =0andaVv b =1 (by
inspecting the tables), hence B(V') = {0, 1}. By Theorem 3.6, the only nontrivial factor-congruences are 6y
and 01 = A, yielding the trivial product factorization.

Example 3.2. If V1 and V; are finite associative PDLs each with minimal O; and top 1;, then B(V1 X V) =
B(Vy) x B(V2). By Theorem 3.2. In particular, if B(V;) = {0;, 1;} then

B(Vl X Vz) = {(01,02), (01,12), (11,02), (11, 12)}.

Definition 3.3. [3] A PDL V is called normal if every prime filter of V contains a unique minimal prime
filter of V.
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Theorem 3.7. Let f : V — W be a surjective PDL homomorphism with V normal. Then W is normal and

f(B(V)) = B(W).

Proof. Let K = ker(f) and 7 : V — V/K be the canonical projection. Since f is surjective, there
exists an isomorphism ¢ : V/K — W such that f = ¢ o . To prove normality of W, let Q be a
prime filter of W. Then f~!(Q) is a prime filter of V. As V is normal, f~!(Q) contains a unique
minimal prime M. Thus ¢(nt(M)) is the unique minimal prime of W contained in Q. Hence W is
normal.

Now, we will prove f(B(V)) = B(W), ifa € B(V), then there exists b € V such thataAb =0
and aVvb = 1. Applying f gives f(a) A f(b) = 0 and f(a) vV f(b) = 1, hence f(a) € B(W). Thus
F(B(V)) € B(W).

Conversely, if c € B(W), then c has a complementd € W. Choosea, b € V with f(a) = ¢, f(b) = d.
Consider the ideals I = f~!((c]) and ] = f~!((d]) in V. Since (c] and (d] are complementary in
W, normality of V ensures I and ] contain complementary principal ideals (a9] and (bp]. Thus
ap € B(V) and f(ag) = c. Hence B(W) € f(B(V)). Therefore f(B(V)) = B(W). m]

We have ¢ = {[a) |ae S}forSCVand T ={aec V| [a) € T} for T C PE(V).

Theorem 3.8. If | C V is a filter regarded as a sub-PDL and V is normal, then | is normal if and only if the
image ¢ = {[a) | a € ]} is normal inside PF(V). In this case B(]) = JNB(V).

Proof. 1t is easy to observe that (—)¢ and (—) are inverse bijections between filters of | and filters
of J°, preserving primality and minimal primes. Hence | is normal < J° is normal.

To prove B(J) = JNB(V). Ifa € B(]), then a € | and 4 has a complement b € |, so alsoa € B(V).
Thus B(J) € JNB(V).

If a € JNnB(V), then a has a complement b € V with [a) V [b) = [1) in PF(V). Since [a) € J°
and J° is normal, the complement [b) must also lie in J¢, i.e. b € J. Hence a € B(J). Therefore

B(J) = JnB(V). o

4. CoNcLUSIONS AND FURTHER DIRECTIONS

We introduced the Birkhoff centre B(V) of a Paradistributive Latticoid and established that itis a
relatively complemented sub-PDL, preserved under products and quotients, and in bijection with
complemented principal ideals. For associative PDLs, B(V) was shown to correspond to factor-
congruences and direct decompositions, extending classical results on almost distributive lattices.
Future research may explore Stone-type dualities, categorical properties of the functor B(—), the
role of normal PDLs, extensions to parapseudo-complemented structures, and computational

aspects of PDLs.

Acknowledgments: This research was supported by University of Phayao and Thailand Science
Research and Innovation Fund (Fundamental Fund 2026, Grant No. 2287/2568).



Int. J. Anal. Appl. (2025), 23:295 7

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the

publication of this paper.

REFERENCES

[1] S. Ajjarapu, R. Bandaru, R. Shukla, Y.B. Jun, Parapseudo-Complementation on Paradistributive Latticoids, Eur. J.
Pure Appl. Math. 17 (2024), 1129-1145. https://doi.org/10.29020/nybg.ejpam.v17i2.5042.
[2] R. Bandaru, S. Ajjarapu, Paradistributive Latticoids, Eur. J. Pure Appl. Math. 17 (2024), 819-834. https://doi.org/10.
29020/nybg.ejpam.v17i2.5125.
[3] R. Bandaru, P. Patel, N. Rafi, R. Shukla, S. Ajjarapu, Normal Paradistributive Latticoids, Eur. ]. Pure Appl. Math.
17 (2024), 1306-1320. https://doi.org/10.29020/nybg.ejpam.v17i2.5127.
[4] G. Birkhoff, Lattice Theory, American Mathematical Society, 1967.
[5] S. Burris, H.P. Sankappanavar, A Course in Universal Algebra, Springer, New York, 1981. https://doi.org/10.1007/
978-1-4613-8130-3.
[6] W.H. Cornish, Normal Lattices, . Aust. Math. Soc. 14 (1972), 200-215. https://doi.org/10.1017/s1446788700010041.
[7] Y.L. Ershov, Relatively Complemented, Distributive Lattices, Algebr. Log. 18 (1979), 431-459. https://doi.org/10.
1007/bf01673954.
[8] J. Harding, A.B. Romanowska, Varieties of Birkhoff Systems Part I, Order 34 (2016), 45-68. https://doi.org/10.1007/
s11083-016-9388-x.
[9] J. Harding, A.B. Romanowska, Varieties of Birkhoff Systems Part II, Order 34 (2016), 69-89. https://doi.org/10.1007/
s11083-016-9392-1.
[10] Y.S. Pawar, Characterizations of Normal Lattices, Indian J. Pure Appl. Math. 24 (1993), 651-656.
[11] U.M. Swamy, S. Ramesh, Birkhoff Centre of an Almost Distributive Lattice, Int. J. Algebra 3 (2009), 539-546.
[12] U.M. Swamy, G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. Ser. A 31 (1981), 77-91. https://doi.org/10.
1017/s1446788700018498.


https://doi.org/10.29020/nybg.ejpam.v17i2.5042
https://doi.org/10.29020/nybg.ejpam.v17i2.5125
https://doi.org/10.29020/nybg.ejpam.v17i2.5125
https://doi.org/10.29020/nybg.ejpam.v17i2.5127
https://doi.org/10.1007/978-1-4613-8130-3
https://doi.org/10.1007/978-1-4613-8130-3
https://doi.org/10.1017/s1446788700010041
https://doi.org/10.1007/bf01673954
https://doi.org/10.1007/bf01673954
https://doi.org/10.1007/s11083-016-9388-x
https://doi.org/10.1007/s11083-016-9388-x
https://doi.org/10.1007/s11083-016-9392-1
https://doi.org/10.1007/s11083-016-9392-1
https://doi.org/10.1017/s1446788700018498
https://doi.org/10.1017/s1446788700018498

	1. Introduction
	2. Preliminaries on PDLs
	3. Birkhoff Centre for PDLs
	4. Conclusions and Further Directions
	Acknowledgments:
	 Conflicts of Interest:

	References

