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Abstract. We study the Birkhoff centre B(V) of a Paradistributive Latticoid (PDL) V. Assuming the existence of a greatest

element and at least one minimal element, we prove that B(V) forms a relatively complemented sub-PDL and derive a

decomposition theorem characterizing its elements via direct products. We establish functoriality of B(−) with respect

to products and lattice-quotients enforcing commutativity, and we show a bijection between B(V) and complemented

principal ideals of V. For associative PDLs, we obtain a correspondence between B(V) and factor-congruences, hence

direct decompositions. The results extend earlier work on almost distributive lattices to the broader framework of PDLs

and connect with the theory of normal PDLs.

1. Introduction

The study of lattice-theoretic structures has been a central theme in algebra since the seminal

work of Birkhoff on lattice theory [4]. Classical distributive lattices and their generalizations have

found applications in universal algebra, logic, and computer science [5]. Among the significant

extensions of distributive lattices, the notion of almost distributive lattices (ADLs) introduced by

Swamy and Rao [12] has provided a flexible framework in which distributivity is relaxed, yet

many desirable structural properties are preserved. Further investigations into the Birkhoff centre

of ADLs were initiated by Swamy and Ramesh [11], establishing a foundation for decomposition

theorems in this more general setting.
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The concept of relative complementation in distributive lattices, studied by Ershov [7], plays a

fundamental role in understanding the structural behaviour of such lattices. In parallel, varieties of

Birkhoff systems have been examined by Harding and Romanowska [8,9], providing a categorical

perspective that enriches the algebraic study of lattices and their generalizations.

Motivated by these developments, the class of paradistributive latticoids (PDLs) was recently

introduced by Bandaru and Ajjarapu [2], and subsequently enriched through further studies

on normality and parapseudo-complementation [1, 3]. PDLs naturally generalize ADLs while

incorporating inherent order-theoretic and algebraic features that allow the study of ideals, filters,

and congruences in a broader setting. The introduction of normal PDLs [3] extends the earlier

work on normal lattices [6,10] and connects with classical investigations on prime ideals and prime

filters. Such structures are particularly well-suited for analysing congruences and factorizations,

drawing upon techniques from universal algebra [5].

Within this context, the present paper develops a theory of the Birkhoff centre B(V) for a PDL

V. This continues the line of investigation from ADLs [11] and provides a systematic analysis

of the decomposition and factorization properties of PDLs. In particular, we show that B(V)

forms a relatively complemented sub-PDL and establish a direct product decomposition theorem.

Furthermore, we demonstrate functoriality with respect to products and quotients enforcing com-

mutativity, and obtain bijections between the Birkhoff centre and complemented principal ideals

as well as between B(V) and factor-congruences in associative PDLs. These results mirror classical

decomposition phenomena studied in lattice theory [4, 6, 7, 10], while situating them within the

new framework of PDLs.

The remainder of this paper is organized as follows. In Section 2, we recall the basic axioms

and structural properties of PDLs. Section 3 develops the theory of the Birkhoff centre for PDLs,

presenting its algebraic characterizations, decomposition theorems, and connections with ideals,

filters, and congruences. Section 4 summarizes the results and suggests further directions, includ-

ing Stone-type dualities and topological representations for special classes of PDLs.

2. Preliminaries on PDLs

Definition 2.1. [2] An algebra (V,∨,∧, 1) of type (2, 2, 0) is a Paradistributive Latticoid (PDL), if for
all x, y, z ∈ V:

(LD∨) x∨ (y∧ z) = (x∨ y)∧ (x∨ z),

(RD∨) (x∧ y)∨ z = (x∨ z)∧ (y∨ z),

(L1) (x∨ y)∧ y = y, (L2) (x∨ y)∧ x = x,

(L3) x∨ (x∧ y) = x, (I1) x∨ 1 = 1.

We write x ≤ y iff x∧ y = x (equivalently, x∨ y = y).

We use ideals and filters in the PDL sense.
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Definition 2.2. [2] A non-empty U ⊆ V is an ideal if x, y ∈ U⇒ x∨ y ∈ U and x ∈ U, a ∈ V ⇒ x∧ a ∈
U.

A non-empty F ⊆ V is a filter if x, y ∈ F⇒ x∧ y ∈ F and x ∈ F, a ∈ V ⇒ a∨ x ∈ F.
For S ⊆ V, the ideal generated by S is (S] = {(x1 ∨ · · · ∨ xn) ∧ a : xi ∈ S, a ∈ V, n ≥ 1}, and the

principal ideal/ filter are (a] and [a), respectively.

We shall use the following congruences [2] frequently. In any PDL, for a ∈ V,

ϕa := {(x, y) : x∨ a = y∨ a}

is a congruence; if V is associative (that is ∧ is associative), then also

θa := {(x, y) : x∧ a = y∧ a}

is a congruence. Minimal elements are characterized by m is minimal⇔ x∨m = x for all x.

3. Birkhoff Centre for PDLs

In ADLs with 0 and maximal elements, the Birkhoff centre [11] B(L) is defined by the existence

of a complement b with a ∧ b = 0 and a ∨ b maximal. For PDLs a greatest element 1 is built in;

however a global least element need not exist. The natural adaptation is:

Definition 3.1. Let (V,∨,∧, 1) be a PDL that has at least one minimal element m. Define

B(V) :=
{

a ∈ V| there exists b ∈ V such that a∧ b = m and a∨ b = 1
}
.

If a, b satisfy a∧ b = m and a∨ b = 1, we call a and b complements (with respect to (m, 1)).

Remark 3.1. When V has a least element 0 (e.g. on each interval [m, 1] or in finite examples) the condition
a∧ b = m reduces to a∧ b = 0 after translating the base-point; in PDLs with a unique maximal element 1,
“a∨ b maximal” is equivalent to a∨ b = 1.

Theorem 3.1. Let V be a PDL with greatest element 1 and at least one minimal element m. Then B(V) is
a subalgebra of V (closed under ∧ and ∨) and is relatively complemented: for all a ≤ b in B(V) there exists
c ∈ B(V) with a∧ c = m and a∨ c = b.

Proof. Let a1, a2 ∈ B(V) with complements b1, b2 (so ai ∧ bi = m and ai ∨ bi = 1). Using the PDL

distributivities, one verifies

(a1 ∧ a2)∧ (b1 ∨ b2) = (a1 ∧ a2 ∧ b1)∨ (a1 ∧ a2 ∧ b2) = m,

and

(a1 ∧ a2)∨ (b1 ∨ b2) = (a1 ∨ b1 ∨ b2)∧ (a2 ∨ b1 ∨ b2) = 1,

since ai ∨ bi = 1. Thus b1 ∨ b2 complements a1 ∧ a2, so a1 ∧ a2 ∈ B(V). A symmetric argument

shows a1 ∨ a2 ∈ B(V) and yields relative complements inside B(V) as stated. �

Theorem 3.2. If V1, V2 are PDLs each with a greatest element and at least one minimal element, then
B(V1 ×V2) = B(V1) × B(V2).
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Proof. Minimal (resp. greatest) elements of the product are componentwise minimal (resp. greatest).

If ai ∈ B(Vi) has complement bi with ai ∧ bi = mi and ai ∨ bi = 1i, then (a1, a2) and (b1, b2) witness

that (a1, a2) ∈ B(V1 ×V2). The converse is similar. �

Theorem 3.3. For a ∈ V, the following are equivalent;

(1) a ∈ B(V)

(2) there exist PDLs V1, V2 with greatest and minimal elements and an isomorphism f : V → V1 ×V2

such that f (a) = (1V1 , mV2).

Proof. (1)⇒ (2): If a ∈ B(V) pick a complement b with a∧ b = m, a∨ b = 1. Let V1 := (a] = {a∧ x :

x ∈ V} and V2 := (b] = {b∧ x : x ∈ V}. Define f (x) = (a∧ x, b∧ x). Routine calculations show f is

a PDL isomorphism with f (a) = (a, m), where a is top of V1 and m minimal of V2.

(2)⇒ (1): If f (a) = (1, m2) and m2 is minimal in V2, pick any element b ∈ V with f (b) = (m1, 1)

(where m1 is minimal in V1). Then a∧ b maps to (m1, m2) (minimal) and a∨ b maps to (1, 1) (top),

so a ∈ B(V). �

Remark 3.2. The proof mirrors the classical ADL result, with “maximal” replaced by equality to 1 and 0

replaced by a chosen minimal m.

Let η be the smallest congruence on V such that V/η is a lattice (i.e. the commutativity conditions

forced). Then η identifies those pairs (x, y) with x∧ y = y and y∧ x = x.

Theorem 3.4. The canonical map induces a natural isomorphism

B(V)/η|B(V) � B(V/η).

Proof. If a/η ∈ B(V/η), pick b/η with a/η ∧ b/η = m/η and a/η ∨ b/η = 1/η. Then a ∧ b is

η-equivalent to a minimal element and a∨ b to 1, implying a ∈ B(V). The map a 7→ a/η is surjective

from B(V) onto B(V/η) with kernel η ∩ (B(V) × B(V)), yielding the stated isomorphism by the

homomorphism theorem. �

Let us recall (a] is the principal ideal [2] generated by a, and [a) is the principal filter [2]. In PDLs

we have a dual isomorphism between principal ideals and principal filters given by (a] ↔ [a),
and (a] ⊆ (b] ⇐⇒ b ∧ a = a ⇐⇒ b ∨ a = b. We use this to connect B(V) with complemented

principal ideals.

Definition 3.2. A principal ideal (a] is complemented if there exists some b such that

(a] ∩ (b] = (m] and [a)∨ [b) = [1),

with m a minimal element and 1 the greatest element.

Theorem 3.5. For a PDL V with 1 and a minimal m, the map

Φ : B(V) −→ {complemented principal ideals}, Φ(a) = (a]

is a bijection. Its inverse sends a complemented principal ideal (a] to a.
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Proof. If a ∈ B(V), choose b with a ∧ b = m and a ∨ b = 1. Then (a] ∩ (b] = ( a ∧ b] = (m] and

[a) ∨ [b) = [a∧ b), so (a] is complemented. Conversely, if (a] is complemented by some (b] in the

stated sense, then a∧ b = m and a∨ b = 1, so a ∈ B(V). Uniqueness is immediate. �

Assume V is an associative PDL [2] so that θc := {(x, y) : x∧ c = y∧ c} is a congruence for each

c. A congruence Θ is a factor congruence if there exists Φ with Θ ∩Φ = ∆ and Θ ◦Φ = V × V,

equivalently V � V/Θ ×V/Φ.

Theorem 3.6. Let V be an associative PDL with 1 and a minimal m. Then a congruence Θ is a factor-
congruence iff Θ = θa for some a ∈ B(V). Consequently, elements of B(V) are in bijection with direct
decompositions of V up to isomorphism.

Proof. (⇒) Suppose Θ is a factor-congruence. Pick Φ with Θ∩Φ = ∆ and Θ ◦Φ = V ×V. Choose

b with (1, b) ∈ Φ and a with (a, 1) ∈ Θ. Then (a∧ b, m) ∈ Θ ∩Φ, forcing a∧ b = m. From (1, b) ∈ Φ

and (a, 1) ∈ Θ one deduces (1, a ∨ b) ∈ Θ ∩Φ, hence a ∨ b = 1. Thus a ∈ B(V). For any x, y, if

(x, y) ∈ θa then a∧ x = a∧ y; using (a, 1) ∈ Θ gives (x, y) ∈ Θ, so θa ⊆ Θ. Conversely, if (x, y) ∈ Θ

then (a∧ x, a∧ y) ∈ Θ, but also in Φ via (m, a∧ x) and (m, a∧ y); hence a∧ x = a∧ y, so (x, y) ∈ θa.

Thus Θ = θa.

(⇐) If a ∈ B(V) pick b with a ∧ b = m and a ∨ b = 1. Then θa ∩ θb = ∆ and θa ◦ θb = V ×V
by a routine verification using the PDL identities and the complement equations. Hence θa is a

factor-congruence and we have a product representation V � V/θa ×V/θb. �

Example 3.1. Let V = {0, 1, 2, 3, 4} with operations ∨,∧ given by the tables

∨ 0 1 2 3 4

0 0 1 0 3 3

1 1 1 1 1 1

2 2 1 2 4 4

3 3 1 3 3 3

4 4 1 4 4 4

∧ 0 1 2 3 4

0 0 0 2 0 2

1 0 1 2 3 4

2 0 2 2 0 2

3 0 3 2 3 4

4 0 4 2 3 4

This is an associative PDL with greatest element 1. The element 0 is minimal. One checks; 0∧1 = 0, 0∨1 =

1, 1∧ 0 = 0, 1∨ 0 = 1, so 0, 1 ∈ B(V). No other a has a complement b with a∧ b = 0 and a∨ b = 1 (by
inspecting the tables), hence B(V) = {0, 1}. By Theorem 3.6, the only nontrivial factor-congruences are θ0

and θ1 = ∆, yielding the trivial product factorization.

Example 3.2. If V1 and V2 are finite associative PDLs each with minimal 0i and top 1i, then B(V1 ×V2) =

B(V1) × B(V2). By Theorem 3.2. In particular, if B(Vi) = {0i, 1i} then

B(V1 ×V2) = {(01, 02), (01, 12), (11, 02), (11, 12)}.

Definition 3.3. [3] A PDL V is called normal if every prime filter of V contains a unique minimal prime
filter of V.
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Theorem 3.7. Let f : V →W be a surjective PDL homomorphism with V normal. Then W is normal and
f (B(V)) = B(W).

Proof. Let K = ker( f ) and π : V → V/K be the canonical projection. Since f is surjective, there

exists an isomorphism ϕ : V/K → W such that f = ϕ ◦ π. To prove normality of W, let Q be a

prime filter of W. Then f−1(Q) is a prime filter of V. As V is normal, f−1(Q) contains a unique

minimal prime M. Thus ϕ(π(M)) is the unique minimal prime of W contained in Q. Hence W is

normal.

Now, we will prove f (B(V)) = B(W), if a ∈ B(V), then there exists b ∈ V such that a ∧ b = 0

and a ∨ b = 1. Applying f gives f (a) ∧ f (b) = 0 and f (a) ∨ f (b) = 1, hence f (a) ∈ B(W). Thus

f (B(V)) ⊆ B(W).

Conversely, if c ∈ B(W), then c has a complement d ∈W. Choose a, b ∈ V with f (a) = c, f (b) = d.

Consider the ideals I = f−1((c]) and J = f−1((d]) in V. Since (c] and (d] are complementary in

W, normality of V ensures I and J contain complementary principal ideals (a0] and (b0]. Thus

a0 ∈ B(V) and f (a0) = c. Hence B(W) ⊆ f (B(V)). Therefore f (B(V)) = B(W). �

We have Se = {[a) | a ∈ S} for S ⊆ V and Tc = {a ∈ V | [a) ∈ T} for T ⊆ PF(V).

Theorem 3.8. If J ⊆ V is a filter regarded as a sub-PDL and V is normal, then J is normal if and only if the
image Je = {[a) | a ∈ J} is normal inside PF(V). In this case B(J) = J ∩ B(V).

Proof. It is easy to observe that (−)e and (−)c are inverse bijections between filters of J and filters

of Je, preserving primality and minimal primes. Hence J is normal⇔ Je is normal.

To prove B(J) = J ∩ B(V). If a ∈ B(J), then a ∈ J and a has a complement b ∈ J, so also a ∈ B(V).

Thus B(J) ⊆ J ∩ B(V).

If a ∈ J ∩ B(V), then a has a complement b ∈ V with [a) ∨ [b) = [1) in PF(V). Since [a) ∈ Je

and Je is normal, the complement [b) must also lie in Je, i.e. b ∈ J. Hence a ∈ B(J). Therefore

B(J) = J ∩ B(V). �

4. Conclusions and Further Directions

We introduced the Birkhoff centre B(V) of a Paradistributive Latticoid and established that it is a

relatively complemented sub-PDL, preserved under products and quotients, and in bijection with

complemented principal ideals. For associative PDLs, B(V) was shown to correspond to factor-

congruences and direct decompositions, extending classical results on almost distributive lattices.

Future research may explore Stone-type dualities, categorical properties of the functor B(−), the

role of normal PDLs, extensions to parapseudo-complemented structures, and computational

aspects of PDLs.
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