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GENERALIZED IDENTITIES INVOLVING COMMON
FACTORS OF GENERALIZED FIBONACCI, JACOBSTHAL
AND JACOBSTHAL-LUCAS NUMBERS

YASHWANT K. PANWARY, BIJENDRA SINGH? AND V. K. GUPTA3

Abstract. In this paper, we present generalized identities involving
common factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas
numbers. Binet’s formula will employ to obtain the identities.

1. Introduction

It is well-known that the Fibonacci sequence is most prominent examples of
recursive sequence. The Fibonacci sequence is famous for possessing
wonderful and amazing properties. Fibonacci numbers are a popular topic
for mathematical enrichment and popularization. The Fibonacci appear in
numerous mathematical problems. The Fibonacci numbers F, are terms of
the sequence {0,1,1,2,3,5,...} wherein each term is the sum of the two previous
terms, beginning with the values F, =0andF, =1.

There are a lot of identities of Fibonacci and Lucas numbers described in [7].
M. Thongmoon [6], defined wvarious identities of Fibonacci and Lucas

numbers. Singh, Bhadouria and Sikhwal [2], present some generalized
identities involving common factors of Fibonacci and Lucas numbers. Gupta
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and Panwar [8], present identities involving common factors of generalized
Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. In this paper, we present
generalized identities involving common factors of generalized Fibonacci,
Jacobsthal and jacobsthal-Lucas numbers.

2. Preliminaries

Before presenting our main theorems, we will need to introduce some known
results and notations.

Generalized Fibonacci sequence [9], is defined as

F, = pPF,_,+9F,_,. k=2with F,=a, F =b, (21)

k 2

where p, q, a & b are positive integers.
For different valuesof p, q, a & b many sequences can be determined.
If p=1,q=a=b=2,weget

V, =V,  +2V for k >2 with Vv, =2,V =2 (2.2)

The first few terms of {v,}  are2,2,6,10,22,42 and soon.

Its Binet forms is defined by

k+1 k+1
R - R
v o—2 o T (2.3)
R, - N

The Jacobsthal sequence [1], is defined by the recurrence relation

J,=3J,,+2j,,, k=2 withJ,=0,J, =1 (2.4)

Its Binet’s formula is defined by
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= R, -R, (2.5)
N, -N,
The Jacobsthal-Lucas sequence [1], is defined by the recurrence relation

jo=d o, +20,,, k=22 with j,=2, j =1 (2.6)

Its Binet’s formula is defined by
=%+ R, (2.7)

where %, & %, are the roots of the characteristic equation x* - x-2=0.

3. Main results

Generalized Fibonacci sequence ([9], [10]), similar to the other second order
classical sequences. In this section we present generalized identities involving
common factors of generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas
numbers. We shall use the Binet’s formula for derivation.

Theorem 1: If v, is the generalized Fibonacci numbers and j, is Jacobsthal-Lucas

numbers, then,

Voo dair = Vas pos — 22'”1VH , where k>0 & p=0 (3.1)
(m2k+p+1_m2k+p+l\ . -
Proof: V2k+p12k+1: 2| - - |(m1 + R, )

\ SR1_SR2 )

(m4k+p+2_m4k+p+2\ 2 .
- 2| = — |+ (w.,)" (0] -w])
L R, -N, ) (R, -%R,)
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-2V

:V4k+p+l p-1

This completes the proof.

Corollary 1.1:

(i) If p=0,then:V \Y

2k Jaker = Vi

\ -4

2ketdoker = Vakae

(iii) If p=2,then:V

(i) If p=1,then:V

a2 Jokir = Vakas —

Corollary 1.2: v 23 — 4

2kep Jaksr = 4K+ p+2

J, ., wherek>0& p=0 (3.2)
Following theorems can be solved by Binet’s formulae (2.3), (2.5) and (2.7)

Theorem2:v, j, ,=Vv,  ,+4"'V , , wherek>=0& p>0 (3.3)

Corollary 2.1:
- - 2k +1
(i) If p=0,then:V, j,..,=V,.,,+2
(i) It p=1,then: V, il = Vi,
- 2k+3
(iii) If p=2,then: V, .j,.,=V,,.*+2
Corollary 2.2: v, j, ,=2{J, ., +4""3, |, wherek>0& p=0 (3.4)
Theorem3: v, j, =V, , +4"V , wherek=0& p>0 (3.5)
Corollary 3.1:
- . 2k+1
(i) If p=0,then:V, j,, =V, +2
.. . - 2k+1
(ii) If p=1,then:V, .j,, =V,..,+2
(iii) 1f p=2,then:V, ,j, =V, ,+3(2"")

k

Corollary 3.2: v, j, =2{J,. ., +43, .} . wherek>0& p=>0 (3.6)
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Theorem4:v, j, . .=v, .  -2"7v , wherek>0& p>0
Corollary 4.1:

(i) If p=0,then:V, j,... =V,

(i) If p=1,then:V,, j,,. =V, —2"

- k

(iii) If p=2,then:V, .j,,=V, ,+4
Corollary 4.2: v, j, . =2{3, ,.,-2""3 } , wherek>=0& p=>0
Theorem5: v, j, =V, , -2V, , wherek>0& p>0 (3.9)
Corollary 5.1:

(iy If p=0,then:V, j, =V, , 4"

(i) If p=1,then:V,, j, =V, ,-4"

(iii) If p=2,then: V, i, .=V, ,

. . 2k-1
Corollary 5.2: v, j, , = 2{3, ,-2""3,,} , wherek>0& p=>0
. . k
Theorem6: v, j, =v,  +4°V , wherek>0& p=0 (3.11)
Corollary 6.1:
(i) If p=0,then:V, j, =V, +2°"
(ii) If p=1,then:V, .j,, =V,
(iii)y If p=2,then:V, ,j, =V, ,+4"
Corollary 6.2: v, j, =2{J, ,,+4“3_ ] , wherek=0& p=0
2k+1

Theorem7: v, j, =V, V., ., wherek>0& p>0 (3.13)
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Corollary 7.1:

(1)

(i)
(iii)

Corollary 7.2: v

2k +1

If p=0,then:V, j,, =V, +2

4k

\"

2k Joker = Vi

If p=1,then:V

2k +3

If p=2,then:V, j,..,=V + 2

4k+2

=2{J 2%

4k+p+1

J,,} , wherek>0& p>0 (3.14)

2k J2k+p

4. Conclusion

In this paper we have derived many identities of generalized common factors

of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers with the

help of their Binet’s formula. The concept can be executed for Fibonacci-Like

sequences as well as polynomials.
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