International Journal of Analysis and Applications ISSN 2291-8639 Volume 3, Number 1 (2013),53-59 http://www.etamaths.com

GENERALIZED IDENTITIES INVOLVING COMMON FACTORS OF GENERALIZED FIBONACCI, JACOBSTHAL AND JACOBSTHAL-LUCAS NUMBERS

YASHWANT K. PANWAR^{1,*}, BIJENDRA SINGH² AND V. K. GUPTA³

Abstract. In this paper, we present generalized identities involving common factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. Binet's formula will employ to obtain the identities.

1. Introduction

It is well-known that the Fibonacci sequence is most prominent examples of recursive sequence. The Fibonacci sequence is famous for possessing wonderful and amazing properties. Fibonacci numbers are a popular topic for mathematical enrichment and popularization. The Fibonacci appear in numerous mathematical problems. The Fibonacci numbers F_n are terms of the sequence $\{0,1,1,2,3,5,...\}$ wherein each term is the sum of the two previous terms, beginning with the values $F_0 = 0$ and $F_1 = 1$.

There are a lot of identities of Fibonacci and Lucas numbers described in [7]. M. Thongmoon [6], defined various identities of Fibonacci and Lucas numbers. Singh, Bhadouria and Sikhwal [2], present some generalized identities involving common factors of Fibonacci and Lucas numbers. Gupta

©2013 Authors retain the copyrights of their papers, and all open Access articles are distributed under the terms of the Creative Commons Attribution License.

²⁰¹⁰ Mathematics Subject Classification. 11B39,11B37

Key words and phrases. Generalized Fibonacci numbers, Jacobsthal and jacobsthal-Lucas numbers, Binet's formula.

and Panwar [8], present identities involving common factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers. In this paper, we present generalized identities involving common factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers.

2. Preliminaries

Before presenting our main theorems, we will need to introduce some known results and notations.

Generalized Fibonacci sequence [9], is defined as

$$F_{k} = p F_{k-1} + q F_{k-2}$$
, $k \ge 2 \ with \ F_{0} = a$, $F_{1} = b$, (2.1)

where p, q, a & b are positive integers.

For different values of p, q, a & b many sequences can be determined.

If
$$p = 1$$
, $q = a = b = 2$, we get

$$V_k = V_{k-1} + 2V_{k-2}$$
 for $k \ge 2$ with $V_0 = 2$, $V_1 = 2$ (2.2)

The first few terms of $\{V_k\}_{k>0}$ are 2, 2, 6, 10, 22, 42 and so on.

Its Binet forms is defined by

$$V_{k} = 2 \frac{\Re_{1}^{k+1} - \Re_{2}^{k+1}}{\Re_{1} - \Re_{2}}$$
 (2.3)

The Jacobsthal sequence [1], is defined by the recurrence relation

$$J_k = J_{k-1} + 2j_{k-2}$$
, $k \ge 2$ with $J_0 = 0$, $J_1 = 1$ (2.4)

Its Binet's formula is defined by

$$J_{k} = \frac{\Re_{1}^{k} - \Re_{2}^{k}}{\Re_{1} - \Re_{2}}$$
 (2.5)

The Jacobsthal-Lucas sequence [1], is defined by the recurrence relation

$$j_k = j_{k-1} + 2 j_{k-2}, \quad k \ge 2 \quad with \quad j_0 = 2, \quad j_1 = 1$$
 (2.6)

Its Binet's formula is defined by

$$j_k = \Re_1^k + \Re_2^k \tag{2.7}$$

where \Re_1 & \Re_2 are the roots of the characteristic equation $x^2 - x - 2 = 0$.

3. Main results

Generalized Fibonacci sequence ([9], [10]), similar to the other second order classical sequences. In this section we present generalized identities involving common factors of generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers. We shall use the Binet's formula for derivation.

Theorem 1: If v_k is the generalized Fibonacci numbers and j_k is Jacobsthal-Lucas numbers, then,

$$\begin{split} &V_{2k+p}\,j_{2k+1} = V_{4k+p+1} - 2^{2k+1}V_{p-1} &, \ where \ k \geq 0 \ \& \ p \geq 0 \quad \text{(3.1)} \\ &\textbf{Proof:} \ V_{2k+p}\,j_{2k+1} = 2 \left(\frac{\Re _{1}^{2k+p+1} - \Re _{2}^{2k+p+1}}{\Re _{1} - \Re _{2}} \right) \left(\Re _{1}^{2k+1} + \Re _{2}^{2k+1} \right) \\ &= 2 \left(\frac{\Re _{1}^{4k+p+2} - \Re _{2}^{4k+p+2}}{\Re _{1} - \Re _{2}} \right) + \frac{2}{\left(\Re _{1} - \Re _{2} \right)} \left(\Re _{1}\Re _{2} \right)^{2k+1} \left(\Re _{1}^{p} - \Re _{2}^{p} \right) \\ &= V_{4k+p+1} + 2 \left(\Re _{1}\Re _{2} \right)^{2k+1} \left(\frac{\Re _{1}^{p} - \Re _{2}^{p}}{\Re _{1} - \Re _{2}} \right) \end{split}$$

$$= V_{4k+p+1} - 2^{2k+1}V_{p-1}$$

This completes the proof.

Corollary 1.1:

- (i) If p = 0, then: $V_{2k} j_{2k+1} = V_{4k+1}$
- (ii) If p = 1, then: $V_{2k+1} j_{2k+1} = V_{4k+2} 4^{k+1}$
- (iii) If p = 2, then: $V_{2k+2} j_{2k+1} = V_{4k+3} 4^{k+1}$

Corollary 1.2:
$$V_{2k+p}j_{2k+1} = 2J_{4k+p+2} - 4^{k+1}J_p$$
, where $k \ge 0$ & $p \ge 0$ (3.2)

Following theorems can be solved by Binet's formulae (2.3), (2.5) and (2.7)

Theorem 2:
$$V_{2k+p} j_{2k+2} = V_{4k+p+2} + 4^{k+1} V_{p-2}$$
, where $k \ge 0$ & $p \ge 0$ (3.3)

Corollary 2.1:

- (i) If p = 0, then: $V_{2k} j_{2k+2} = V_{4k+2} + 2^{2k+1}$
- $(ii) \qquad If \ p=1\,,\,then:\, V_{_{2\,k+1}}\,j_{_{2\,k+2}}=V_{_{4\,k+3}}$
- $(iii) \quad If \ p=2 \ , \ then: \ V_{2k+2} j_{2k+2} = V_{4k+4} + 2^{2k+3}$

Corollary 2.2:
$$V_{2k+p}j_{2k+2} = 2\{J_{4k+p+2} + 4^{k+1}J_{p-1}\}$$
, where $k \ge 0$ & $p \ge 0$ (3.4)

Theorem 3:
$$V_{2k+p} j_{2k} = V_{4k+p} + 4^k V_p$$
, where $k \ge 0$ & $p \ge 0$ (3.5)

Corollary 3.1:

- (i) If p = 0, then: $V_{2k} j_{2k} = V_{4k} + 2^{2k+1}$
- (ii) If p = 1, then: $V_{2k+1}j_{2k} = V_{4k+1} + 2^{2k+1}$
- (iii) If p = 2, then: $V_{2k+2}j_{2k} = V_{4k+2} + 3(2^{2k+1})$

Corollary 3.2:
$$V_{2k+p} j_{2k} = 2 \{ J_{4k+p+1} + 4^k J_{p+1} \}$$
, where $k \ge 0$ & $p \ge 0$ (3.6)

Theorem 4:
$$V_{2k-p} j_{2k+1} = V_{4k+1-p} - 2^{2k+1} V_{-p-1}$$
, where $k \ge 0$ & $p \ge 0$ (3.7)

Corollary 4.1:

- (i) If p = 0, then: $V_{2k} j_{2k+1} = V_{4k+1}$
- $(ii) \qquad If \ \ p=1 \, , \ then: \ V_{2\,k-1} \, j_{2\,k+1} = V_{4\,k} \, \, 2^{\,2\,k+1}$
- (iii) If p = 2, then: $V_{2k-2}j_{2k+1} = V_{4k-1} + 4^k$

Corollary 4.2:
$$V_{2k-p}j_{2k+1} = 2\{J_{4k-p+2} - 2^{2k+1}J_{-p}\}$$
, where $k \ge 0$ & $p \ge 0$ (3.8)

Theorem 5:
$$V_{2k-p} j_{2k-1} = V_{4k-1-p} - 2^{2k-1} V_{1-p}$$
, where $k \ge 0$ & $p \ge 0$ (3.9)

Corollary 5.1:

- (i) If p = 0, then: $V_{2k} j_{2k-1} = V_{4k-1} 4^k$
- (ii) If p = 1, then: $V_{2k-1}j_{2k-1} = V_{4k-2} 4^k$
- (iii) If p = 2, then: $V_{2k-2}j_{2k-1} = V_{4k-3}$

Corollary 5.2:
$$V_{2k-p}j_{2k-1} = 2\{J_{4k-p} - 2^{2k-1}J_{2-p}\}$$
, where $k \ge 0$ & $p \ge 0$ (3.10)

Theorem 6:
$$V_{2k-p} j_{2k} = V_{4k-p} + 4^k V_{-p}$$
, where $k \ge 0$ & $p \ge 0$ (3.11)

Corollary 6.1:

- (i) If p = 0, then: $V_{2k} j_{2k} = V_{4k} + 2^{2k+1}$
- (ii) If p = 1, then: $V_{2k-1}j_{2k} = V_{4k-1}$
- (iii) If p = 2, then: $V_{2k-2}j_{2k} = V_{4k-2} + 4^{k}$

Corollary 6.2:
$$V_{2k-p}j_{2k} = 2\{J_{4k-p+1} + 4^k J_{1-p}\}$$
, where $k \ge 0$ & $p \ge 0$ (3.12)

Theorem 7:
$$V_{2k}j_{2k+p} = V_{4k+p} + 2^{2k+1}V_{p-2}$$
, where $k \ge 0$ & $p \ge 0$ (3.13)

Corollary 7.1:

- $(i) \qquad If \ \ p = 0 \; , \; then: \; V_{_{2\,k}} \; j_{_{2\,k}} = V_{_{4\,k}} \; + \; 2^{^{2\,k+1}}$
- (ii) If p = 1, then: $V_{2k} j_{2k+1} = V_{4k+1}$
- $(iii) \quad \ If \ \, p=2 \, , \, then: \, \, V_{_{2\,k}} \, j_{_{2\,k+2}} = V_{_{4\,k+2}} + 2^{^{2\,k+3}}$

Corollary 7.2:
$$V_{2k} j_{2k+p} = 2 \{ J_{4k+p+1} + 2^{2k+1} J_{p-1} \}$$
, where $k \ge 0$ & $p \ge 0$ (3.14)

4. Conclusion

In this paper we have derived many identities of generalized common factors of generalized Fibonacci, Jacobsthal and jacobsthal-Lucas numbers with the help of their Binet's formula. The concept can be executed for Fibonacci-Like sequences as well as polynomials.

5. Acknowledgment: We are thankful to referees for their valuable comments.

REFERENCES

- [1] A. F. Horadam, "Jacobsthal Representation Numbers", Fibonacci Quarterly, Vol.34, No.1, (1996), 40-54.
- [2] B. Singh, P. Bhadouria and O. Sikhwal, "Generalized Identities Involving Common Factors of Fibonacci and Lucas Numbers" International Journal of Algebra, Vol. 5, No. 13, (2011), 637-645.
- [3] B. Singh, V. K. Gupta and Y. K. Panwar, Some Identities of Generalized Fibonacci Sequences, South pacific journal of Pure and Applied Mathematics, Vol.1, No.1, (2012), 80-86.
- [4] Hoggatt, V.E. Jr., Fibonacci and Lucas Numbers, Houghton Mifflin Co., Boston (1969).
- [5] Hoggatt, V.E. Jr., Phillips, J.W. and Leonard, H. Jr., "Twenty-four Master Identities", The Fibonacci Quarterly, Vol.9, No.1, (1971), 1-17.
- [6] M. Thongmoon, "New Identities for the Even and Odd Fibonacci and Lucas Numbers", Int. J. Contemp. Math. Sciences, Vol. 4, No.7 (2009), 303-308.
- [7] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York (2001).

- [8] V. K. Gupta and Y. K. Panwar "Common factors of generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers", International Journal of Applied Mathematical Research, Vol.1, No.4 (2012), 377-382.
- [9] V. K. Gupta, Y. K. Panwar and O. Sikhwal, "Generalized Fibonacci sequences", Theoretical Mathematics & Applications, Vol.2, No.2 (2012), 115-124.
- [10] Y. K. Panwar, Generalized Fibonacci sequences, LAP, Germany (2012).

¹DEPARTMENT OF MATHEMATICS, MANDSAUR INSTITUTE OF TECHNOLOGY, MANDSAUR, INDIA

²SCHOOL OF STUDIES IN MATHEMATICS, VIKRAM UNIVERSITY UJJAIN, INDIA ³DEPARTMENT OF MATHEMATICS, GOVT. MADHAV SCIENCE COLLEGE, UJJAIN, INDIA

*CORRESPONDING AUTHOR