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1. Introduction

Matthews [23, 24] introduced the concept of partial metric spaces as
a part of the study of denotational semantics of dataflow networks. He
showed that the Banach contraction principle can be generalized to the
partial metric context. Based on the notion of partial metric spaces, several
authors have proved fixed point theorems in partial metric spaces (see, for
example, [2], [3], [4], [16], [17], [19], [23-26], [28]). See also the presentation
by Bakutin et al. [7] where the motivation for introducing non-zero
distance (i.e., the “distance” p where p(x, x) = 0 need not hold) is explained,
which is also leading to interesting research in foundations of topology.

There are also many generalizations of Banach contractive
condition. Remarks on some recent fixed point theorems can be found in
[6] and [18]. In 2006, Bhaskar and Lakshmikantham [10] introduced and
proved some coupled fixed point results in a partially ordered metric
space. There are many authors obtained important coupled fixed point
theorems (see [1], [14], [15], [18], [20], [21], [22], [29]).

Berinde and Borcut [8] introduced the concept of tripled fixed point
for nonlinear mappings in partially ordered complete metric space. Aydi
et al. [5] presented tripled coincidence theorem for weak ¢@-contractions in
partially ordered metric space. There are some authors obtained important
tripled fixed point theorems (see, for example [9], [12], [13]).

The aim of this paper is to continue the study of the tripled fixed
points but now in partially ordered 0-complete partial metric spaces (see
Bin Ahmad et al. [11] where authors proved fixed point theorems in 0-
complete partial metric spaces). The following definitions and results will
be needed in the sequel.

2. Notation and preliminaries

Definition 2.1. A partial metric on a nonempty set X is a function p: X* —
R*such that forall x, ¥,z € X :

Phx=yepE)=pE Y=Yy,

(P2) p(x, X) < p (%, Y),

P3)p(x, y)=p (¥, %),
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PHpx, 2)sp ) +P Y, 2)-pP W, Y).

A partial metric space is a pair (X, p) such that X is a nonempty set and p is
a partial metric on X. Each partial metric p on X generates a T topology 7,
on X with a base of the family of open p—balls {B, (x, €) : xeX, e>0} , where
B,(x, &) ={yeX:p(x,y) <p (x,x) + &} for allxeX and € > 0.

Definition 2.2. A sequence {x,} in a partial metric space (X, p) converges to
xeX if and only if p(x, X) = lim, -« P(X,,,X);

(i) a sequence {x,} in a partial metric space (X, p) is called 0-Cauchy if
hmlz,lﬂ—>00 p(xmxm )=0

(ii) a partial metric space (X, p) is 0-complete if every 0-Cauchy sequence
{x,} in X converges, with respect to 7,, to a point x € X such that p(x,x)=0. In
this case, p is a 0-complete partial metric on X.

(iii) A mappingf: X — X is said to be continuous at x, € X if for every ¢ >
0, there exists 6 > 0 such that f (B, (x,, 9)c B, (f (x,) , €) .

This definition of continuity is equivalent to the following statement:

(iv) A mapping f: X — X is said to be continuous at x, € X where (X, p) is
a partial metric space if and only if p (f (x,), f (x))) = P (f (%)), f (%))
whenever p (x,, X,) = p(x,, X,) as 1 — .

Remark 2.3. (1) A limit of a sequence in a partial metric space does not
need to be unique. Moreover, the function p(,-) does not need to be

continuous in the sense that x, - x and y, —» y implies p(x,.y,) > p(x.y) .

(2) [3] However, p(Xx,.y,)—> p(x,y) =0 then pP(X,,¥) > p(x,y) forall ye x .

Definition 2.4. [8] Let (X, ) be a partially ordered set. The mapping F: X*

— X is said to have the mixed monotone property if for any x,y,z e X

X, X, € X, x, £x,= F(x,y,2) < F(X,,Y,2),

V.Y, e Xy, Sy,=> F(x,y,,2) 2 F(x,Y,,2),

2,2, X,2,22,= F(x,y,2,) < F(x,y,2,).

An element (x,y,z) e X’ is called a tripled fixed point of F if
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F(x,y,z2)=x, F(y,x,y)=y and F(z,y,x)=1z.

Definition 2.5. [8] Let (X, ) be a partially ordered set, F: X° — X and ¢

X — X two mappings. The mapping F is said to have the mixed ¢-
monotone property if for any x,y,z e X

X, X, € X, gx, < 9x, = F(x,Y,2) < F(x,,y,2),

VoY, € X, 09y, <9y, => F(x,y,,2) 2 F(x,Y,,2),

2,,2,€ X,0z, <9z, = F(X,y,2,) < F(X,Y,2,).
An element (x, y, z) is called a tripled coincidence point of F and g if
F(x,y,z)=9x, F(y,x,y)=9gy and F(z,y,x) =9z .

while (¢x, gy, §2) is said a tripled point of coincidence of mappings F and g.
Moreover, (x,y,z) is called a tripled common fixed pointof F and g if

F(x,y,z)=gx=x, F(y,x,y)=9gy=y and F(z,y,x)=9gz=2z.

At last, mappings F and ¢ are called commutative if for all x,y,z e X

9(F(x,y,2)) = F(gx,9y,92) .

Definition 2.6. [5] Let (X, < )be an ordered set and p be a partial metric on

X. Wesay that (X, p, ) is regular if it has the following properties:

(i) if for non-decreasing sequence {x,} holds p(x,.x) > p(x,x), thenx, = x
for all n,
(i) if for non-increasing sequence {y,} holds p(y,.y) > p(y.y), theny,” v

for all n.
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Lemma 2.7. [18, 27] Let (X, p) be a 0-complete partial metric space and let
{x.}{v.} and {z,} be sequences in X such that

11mi1—>00 p ( nr n+1) - hmn—>00 p (yn/ yn+1) - hmn—>00 p ( nrs n+l) 0

If at least one of sequences{x,},{/,} and {z,} is not a 0-Cauchy sequence in
(X, p), then there exist € > 0 and two sequences {m(k)} and {n(k)} of positive
integers such that m(k) > n(k) > k and the following four sequences

P Xy » X)) + PWomgey » Yy ) + PZiy » Zuio)s
P(x,,,(k) ’ xn(k)+1) +ply mky » Y n(k)+1) +P (Zm(k) ’ le(k)+1)/
PXigy1r Xy ) + PWmgo1r Yooy ) + PEgy1r Zoy )s

P Xyt Xngysr) + PWmgy-1s Yugyr) + PCongy-1r Zngyn) #

tend to &+ whenk > .
3. Main results

Firstly, let us consider the set of functions

D = {go [0, +0) - [0,+OO)‘(/)('[)<'[ and lim o(r)<t, t> O} .

It is clear that for ¢ e ® holds ¢(0) = 0 and lim,_,,. ¢" (f) = 0 for t > 0.
Indeed since ¢ (f) is a decreasing sequence for all { > 0, we have that
m,,. ¢ ()=6>0.If 6> 0, we get §=lim,_,,, " (f) =lim , 9(p" (1)<

@ (t)>6

S, which is a contradiction.

Our first main result is the following theorem. This theorem
extends some recently results from usual metric spaces to the case of
partial metric spaces.
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Theorem 3.1. Let (X, <) be a partially ordered set and suppose there is a
partial metric p on X such that (X, p) is a partial metric space. Suppose
F:Xx > X and g: X > x are such that F has the mixed g-monotone
property with F(x*)c g(x) and ¢(X) is a 0-complete subspace of X.
Assume there is a function ¢e® such that

pP(F(x,y,z),F(u,v,w))+ p(F(y,x,y),F(v,u,v))+ p(F(z,y,x),F(w,v,u))

<5, [ P(eX,9W) + P9y, gv) + P(g2,gW) ) 3.1)
< goL ;

for any x,y,z,u,v,we x for which gx=< g¢u, gy> gv and gz< gw. Suppose
either F is continuous or (X, p, <) is regular. If there exist x,,y,,2, € X
such that

8% = F(Xo, Yo, Z0) » 8Y07 E(Wo, %o, Yo) and 82,= F(2,, Yo, X,),
then there exist x,y,z e X such that
F(x,y,z) = gx, F(y,x,y) =gy, and F(z,y,x) = 9z,

that is., F and g have a tripled coincidence point.
Proof. Let us consider sequences {x,},{v,} and {z,} in X such that
9x,,,=F(x,.y,.2,),9Y,.,=F(y,.x,.y,) and g9z, =F(z,.vy,.x,) for n=0,1,2,...
We will prove by induction that

8,2 8%, 8Yun” 8Ynand 82,% 87, (3.2)

Since gX,~ F(Xy, Yy, Z,) and gx, = F (x,.,Y,.2,) we have gx,% gx,. This is true

for n=0. We suppose that (3.2) is true for some 7>0. Since F has the mixed
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g-monotone property, by ¢x,=< gx,.,, §/,,,< &Y, and gz,= gz,,, we have

that
gXn+1 =F (Xn' yn'zn)iF (Xn+1’ yn’ Zn) <_F (Xn+1’ yn’zn+1) iF (Xn+l’ yn+1’ Zn+1) = gx”+2

and similarly g¥,,,= &V, and §z,,,% 8z,,,. This means that (3.2) is true for

any ne N.
Consider the two possible cases:

* p(gxtnlrgxfz)zor p(gyml/yxn)zor p(gzmlrgzn)zo forsome ne N .

In this case, gx, =F(x,,y,.z,), 9y, =F(y,.x,,y,). 9z, =F(z,.,y,.X,) and

(x,.y,.2,) isa tripled coincidence pointof F and g.

o p(8%,,1,8%,) >0, P(§Y,1,¥%,) >0, P(82,,1,8%,) >0 for every neN.

Applying (3.1) with x=x,, y=y,, z=z,, u=x,,,, v=y,,; and w=z,,, we have:

p(F (Xn’ yn‘ zn)’ F (Xn+1‘ yn+1‘ Zn+1))Jr p(F (yn’xn‘ yn)l F (yn+1’xn+1’ yn+1))
+ p(F (Zn’ yn’Xn)' F (Zn+1‘ yn+1’Xn+1))

( X, 9X 1 n’ n+l Zn’ Zn+1 \
o P(9x,. 9%, )+ p(gyggy )+ p(9z,.9 ) (33)

<3

<3 p(gx,,9x, )+ p(9y,.9y,.,)+ p(9z,.,9Z )
3
=p(9x,.9x,.,)+ p(9y,.9y,,)+ p(9z,,9Z )

from which follows:

p(gxn+l’gxn+2)+ p(gyn+1’gyn+2)+ p(gzn+1’gzn+2)
< p(gx,,9%,,,)+ p(gy,,9y,,,)+ p(9z,,92, ;) (3.4)
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1
If we denote by 5,1=g(p(gxn,gxm)+ p(9y,,9y,,,)+ p(9z,,92,,,)), We can

conclude that {0,} is monotone decreasing. Therefore, s, > ¢ >0 when
n— oo,

We now prove that s =0. Assume, on the contrary, that s >o0. If
we write (3.3) as 5., < ¢(5,) and if we pass to the limit when n —» « , we

n+l —
obtain that

si<lim o (5)=lim  _9o(5)<s,

which is a contradiction. Hence,

. 1
lim g(p(gxn, ox,.,) + p(gy,.ay,.,) + p(9z,,9z,,)) =0. (3.5)

From (3.5) follows lim,—« P(8%,.1,8%,) = lim,—we P(8Y,.1,8Y%,)= lim,
p(gZiH]Ian) =O.

We next prove that {gx,}, {gy,} and {gz,} are 0-Cauchy sequence

in the space (X, p). Suppose that at least one of sequences {gx,}, {8¥.}, {82.}
is not a 0-Cauchy sequence. Then using Lemma 2.7. we get that there exist
¢ >0 and two sequences {m(k)} and {n(k)} of positive integers such that
m(k) > n(k) > k and the following four sequences

P(8% .y r 8%uty) + P&Ymety » &Yty ) + P(&Zmity » 8Znit))s
P(&%mty » 8% niyir) + P&Ymty » 8Ynsn) + PSZmge » 8Zniysn)s
P &% miy-1s 8%ugy ) + P&Ymiy-1r Yty ) + P(&Zumity-1, 8Zuy)s
P(Xmw-1r 8%Xniy1) + P&Ymwy1r 8Yniyin) + P&Zm-1r §Zngysn)s

all tend to e+ when k - . Applying condition (3.1) to elements X=X, ,,
y:ym(k)—lr Z=Zm(k)-1/ u:xn(k)/ U:yn(k) and w:Zn(k) we get that
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p(F (Xm(k)—l’ Y (k-1 Zm(k)—l)’ F (Xn(k)‘ Yoy Zn(k))) +
PCF (Yoo Xnmoar Yow 1) F Voo Xawo Yau ) +

p(F (Zm(k)—l’ Ymoo-1 Xm(k)—l)’ F (Zn(k)’ Yoy Xn(k)))

<5 ‘(p(gxm(k),pgxn(k,H PCIYnyrr I ogy) + |0(gzm(k),1.gzn(k))\|
> 0@
3 )

or

p(gxm(k)_lv gxn(k)) + p(gym(k)_lv gyn(k)) + p(gzm(k)_p gzn(k))

< 3 |( p(gxm(k),lvgxn(k))+ p(gym(k),lvgyn(k))+ p(gzm(k),llgzn(k))\'
S o .

\ 3 J

If we pass to the limit when n - « , we obtain

([ P(I% 910 9%, + PAY s Y og) + PLIZ, 0000 9Z,00) )
e <3lim, o] (k-1 Q) (k)-1 Q) (k)-1 Q) |

3 J

A
=3lim, ¢[_K)<3i=g )
37 L3 3
which is a contradiction. (We denote p(9x, 1 9%,4,) +P(9Y0iyar o) +
p(gzm(k)—l’ gzn(k)) Wlth Ak ),

This shows that {gx,} ,{gy,} and {gz,} are 0-Cauchy sequences in

the space (X, p). Since gX is a O-complete, there exist x,y,z ¢ X such that

hmn—)oop(gxn/ gX) = p(gx/ gX) = 0/ hmn—>°0 p(gyn/ gy) = p(gy/ gy) = 0/ and
lim, e p(82,, §2) = P(87, 82) = 0.

Suppose that F is continuous. We have

P(gx,F (X, y,2)) < p(gx,9x,.,)+ p(gx, . F (X, y,2)). (3.6)

It holds that p(gx,gx,,,) > p(gx,9x) =0 when n - « and
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(9%, F(x,y,2)) = p(F(x,,¥,,2,),F(x,y,2)) > p(F(x,y,2),F(x,y,2)) when

n— o,
When n —» « from (3.6) follows:

p(gx,F(x,y,2)) <0+ p(F(x,y,2),F(x,y,2)) = p(F(x,y,2),F(x,y,2)) .
According to the property (p2) of the partial metric space, we have

P(9x, F(x,y,2)) = p(F(x,y,2), F(x,y,2)) .
Similarly, we have

p(agy,F(y,x,¥))=p(F(y,x,y),F(y,x,¥))
and
p(9z,F(z,y,x)) = p(F(z,y,x),F(z,y,x)).

Since x= x,y> yand z= z, according to condition (3.1) with x=u, y=v, z=w

we obtain

P(F(x,y,2),F(x,y,2))+ p(F(y,x,¥),F(y.,x,¥)+ p(F(z,y,x),F(z,y,x))=0

from which follows
pP(F(x,y,2),F(x,y,2))=0, p(F(y,x,y),F(y.x, y))=0and
p(F(z,y,x),F(z,y,x))=0
or, equivalently

p(gx,F(x,y,2))=0, p(gy.F(y.x,y)) =0and p(gz,F(z,y,x)) =0. (3.7)
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From (3.7) follows
gx=F(x,y,2), 9y = F(y,x,y)and gz = F(z,y,x) . (3.8)

Hence, in this case, we have proved that F and ¢ have a tripled
coincidence point.

Suppose that (X, p, *) is regular. Then, since (gx,,gy, 9z,) is
comparable with (gx, gy, gz ) we have that according to (3.1)

P(F(X, Y, z,) F(x,y,2))+ p(F(y, X,,¥,), F(y, x, ¥))+ p(F(z,,y,,X,),F(z,y,%))

(p( p(gx,,9x) + p(gy;,gy)+ p(9z,,92)) (3.9)

<3

or

p(gx,..,F(x,y,2))+ p(gy,.,.,.F(y.x,y))+ p(9z, .., . F(z,y,%))

[ p(gx,, gx) + p(gy;,gy)+ p(9z,.92) ) (3.10)

< 3¢

Now, taking limitas n - « from (3.10) follows:
p(gx, F(x,y,2))+ p(gy,F (¥, x,y)) + p(9z, F (z,y,x)) =0. (3.11)

As n—+oo we have p(gx,,gx) —> p(gx,gx)=0 , p(gy,.g9y)—> p(gy.gy)=0
and p(9z,,92) > p(gz,9z) =0. We also have, as n—>+x, p(gx,.,, F(x,y,2))
- p(ox.F(x,y,2)) , Py, .Fly.x,y)—> p@gy, Fy, xy) and
p(9z,,,,F(z,y,x)) > p(9z, F(z,y,x)) (see Remark 2.3 (2)]).

From (3.11) follows
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p(gx, F(x,y,2))=0, p(ay,F(y,x,y))=0and p(gz, F(z,vy,x)) =0
or
gx=F(x,y,2), gy =F(y,x,y)and gz = F(z,y,x) .

In this case we have also proved that F and ¢ have a tripled coincidence
point.
0

When we consider a partial metric instead of a standard metric then
the Theorem 3.1 is the result of Aydi et al. [5] but the method used in the
proof of this theorem is completely different from that used by Aydi et al.
[5]. Also, in Theorem 3.1. we consider a weaker assumption for the
function g.

Corollary 3.2. Let (X, <) be a partially ordered set and suppose there is a

partial metric p on X such that (X, p) is a O-complete partial metric space.
Suppose F:x° - x and g:Xx —» X are such that F has the mixed g-
monotone property with F(X*) c g(x) and g(X) is a 0-complete subspace

of X. Assume there exists « €[0,1) such that

P(F(x,y,2),F(u,v,w))+ p(F(y,x,y),F(v,u,v))+ p(F (z,y,x),F(w,v,u))

(3.12)
<a(p(gx,gu)+ p(gy.gv)+ p(gz,gw))

for any x,y,z,u,v,we X for which gx= gu, gy~ ¢v and gz= gw. Suppose
either F is continuous or (X, p, ) is regular. If there exist x,,¥,,2, € X
such that

ngiF(xo, Yor Z0) gyoi F(yOI X,, ¥) and gZOiF(ZO/ Yo, Xo) ,

then there exist x,y,z e X such that
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F(x,y,z)=g9x, F(y,x,y) =49y, and F(z,y,x) =9z,
that is., F and g have a tripled coincidence point.

Proof: Follows by taking ¢(t) = «t in Theorem 3.1.
[l

Corollary 3.3 Let (X, <) be a partially ordered set and suppose there is a

partial metric p on X such that (X, p) is a O-complete partial metric space.
Suppose F : X’ —» x has the mixed monotone property. Assume there is a
function @e® such that

P(F(x,y,2),F(u,v,w))+ p(F(y,x,y),F(v,u,v))+ p(F(z,y,x),F(w,v,u))

(p( p(x,u)+ p(y,v)+ p(z,w))
3

<3

forany x,y,z,u,v,we X for which x< u, ¥y~ vand z< w.Suppose either F

is continuous or (X, p, <) isregular. If there exist x,, y,,z, € X such that

Xo= F(Xo, Yo, 20) Yo F(Wo, %o, Yo) and 2,2 F(2,, Yo, X,) ,
then there exist x,y,z e X such that
F(x,y,z2)=x, F(y,x,y)=y, and F(z,y,x) =z,
that is., F has a tripled fixed point.

Proof. Follows from Theorem 3.1 by taking g = ix (the identity map).
U

Our second result is the following theorem which improve the main
result from [13] in several direction.



TRIPLED COINCIDENCE POINTS 92

Theorem 3.4. Let (X, <) be a partially ordered set and suppose there is a

partial metric p on X such that (X, p) is a partial metric space. Suppose
F:Xx > X and g: X —» x are such that F has the mixed g-monotone
property with F(x*)c g(x) and ¢(X) is a 0-complete subspace of X.

Assume there is a function ¢e® such that
P(F(X,y,2),F(u,v,w)) < p(max{p(gx,gu), p(gy,gv), p(gz,gw)}) (3.13)

for any x,y,z,u,v,we x for which gx=< ¢u, gy> gv and gz< gw. Suppose
either F is continuous or (X, p, <) is regular. If there exist x,,y,.2, € X
such that

8% = F(Xo, Yo, Z0) , 8Yo7_ E(Wo, %o, Yo) and 82,= F(2,, Yo, Xo),
then there exist x,y,z e X such that
F(x,y,z) = 9gx, F(y,x,y) =gy, and F(z,y,x) = gz,
that is., F and g have a tripled coincidence point.
Proof. Let us consider sequences {x,},{y,} and {z,} in X such that
9x,.,=F(x,.y,.2,),9y,.,=F(y,.x,.y,) and gz, =F(z,.vy,. x,) for n=0,1,2,...

Proceeding exactly as in Theorem 3.1 we have that gx,~ ¢xX,.;, §¥... % &Y,

and gzni anJrl,

If p(8%,,1,8%:)=0, P(8YuaYX,)=0 and p(8z,,,,82,)=0 for some ne N , then
(X, ¥, 2,) isa tripled coincidence point of F and g.

So, we will consider the case when p(gx,,,,8%,)>0, P(&Y,..,Y¥X,)>0,
p(gZ,7+1,gZ,1)>O for every ne N . Applylng (313) with X=X, Y=Y,, 2=2,, U=X, 4,
v=Y,,, and w=z,,, we have:
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PF (X, Y, 2,0 F (X0 Yo 2,,,)) < @ (max {p(gx,,9x%,.,), P(9Y,, 9Y,,,), P(92,,92,.,)})

that is.,

P(9x,.1. 9%,,,) <@ (max{p(gx,,9x,,), P(9y,, 9Y,.,) P(92,,92,.,)}) -

Similarly, we have
P(9Y,.109Y,.,) <@ (max{p(gx,. 9x,,), P(9y,.9Y,.,) P(92,.92 ,)})

and
p(9z,.,.92,,) <@ (max{p(g9x,,9x,,), P(9y, 9y,.,), P(9z,,92,,)}).

It follows:

max { p(9x,,,, 9%,,,), P(9Y,,,, 9Y,,,). P(9Z,,,,92,,)} (3.14)
<g(max{p(gx,,9%,,), P(9Y,, 9Y,..), P(92,,92,,,)})

If we denote by &,=max{p(gx, 9%, ,) p(9y, 9y,,) p(9z,.92,,,)} , we can
conclude that {J,} is monotone decreasing. Therefore, 5, - 5" >0 when
n— o,

We now prove that s =0. Assume, on the contrary, that § >0 . If
we write (3.14) as ,,, < ¢ (5,) and if we pass to the limit when n - « , we

obtain that 6 < ¢(5") <6 , which is a contradiction. Hence,

Iimnamo max { p(gxn’ an+1)’ p(gyn’ gyn+1)’ p(gzn’ gzn+1)} =0 7
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and it follows lim,—w P(8X,.1,8%,) = 1im,—w P($Y,1.1,8YX,)= 1im, e P(Z,,1,8%,)
=0.

We next prove that {gx,},{gy,} and {gz,} are 0-Cauchy sequences
in the space (X, p). If at least one of sequences {gx,},{gy,} and {gz, } is not
a 0-Cauchy sequence, it means that
max { p(gx,,9X,), p(gy,.9y,). p(9z,,9z,)} doesnottend to 0 when n,m - « .

It means that there exist two sequences {m(k)} and {n(k)} of positive
integers such that m(k) > n(k) > k and the following four sequences

max{p(g Xty » gxm(k))r P&y n(ky r 8Ym) )P (gzn(k) ’ gzm(k))}/
max{p(gx,,(k)+l ’ gxm(k))r P(g]/,,(k)+1, Yk ), P(gZ,7(k)+1 ’ gzm(k))}/
max{p (gxn(k) ;& xm(k)—l)l Py (k) » Y m(ky-1 ), P (gz,,(k) ’ gzln(k)-l)}/
max{p(g Xk # gxm(k)-l)/ P (gyn(k)+1 7 8Y ), P (gzn(k)+1 ’ gzm(k)-l)}/

all tend to &+ when k - . The proofis identical as in [18] and [27].

Applying condition (3.13) to elements X=X,y, Y=VY,x), 2=Zux), U=X,g0.1,
U=Y,,4, and W=z, , we get that:

p(gxn(k)+1’ ng(k)) = p(F (Xn(k)‘ yn(k)’ Zn(k))’ F (Xm(k)—l’ ym(k)—l’ Zm(k)—l))

(3.15)

< @ (max{P(9%, 4, 9% 0105 PO ayr W mgoya)s PLOZ, 000 92,00 )} )-
Similarly, we have

p(gyn(k)+1‘ gym(k)) = p(F (yn(k)’ Xn(k)’ yn(k))’ F (ym(k)—l' Xm(k)—l’ ym(k)—l))

< @ (max{P(9Y,4, 9Ymgoy1) PLIX00 9% 000) ) ) (3.16)

<@ (max{ p(gxn(k)’ ng(k)—l)’ p(gyn(k), gym(k)—l)‘ p(gzn(k). gzm(k)-l)})
and

p(gzn(k)+1’ gzm(k)) = p(F (Zn(k)’ yn(k)’ Xn(k))’ F (Zm(k)—l’ ym(k)—l’ Xm(k)—l))

(3.17)

< @ (max{P(9Z,4y: 92,001 P(Y,000 OV a)s PLOX, 0 8%, 00 ) )
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From (3.15), (3.16) and (3.17) we have

max{p(gxn(km, ng(k))’ p(gyn(k)+l‘ gym(k))’ p(gzn(k)+1' gzm(k))}
< max (g (max { P(9X, g0 0%, ))s PAIY 14y Y o) PLOZ,0 82,000} )|

=@ (max{P(9X, ) 9%, 0)2) PIY, 00 9V naoa)s PLIZ, 000 92, ) 0))
(k) (k) (k) (k) (k) (k)

If we pass to the limit when k - » we get &<p(¢)<¢, which is a
contradiction since &>0.

This shows that {gx,},{gy,} and {gz,} are 0-Cauchy sequences in
the space (X, p). Since §X is a 0-complete, there exist x,y,z e X such that

hmn—)oop(gxn/ gX) = p(gx, gX) = 0/ hmn—)w P(gym gy) = p(gy/ gy) = O/ and
hmlz—>00 p(gzm gZ) = p(gzl gZ) = 0

Suppose that F is continuous. As in the proof of the Theorem 3.1 we
have

p(gx,F(x,y,2))=p(F(x,y,2),F(Xx,y,2)),

p(gy. F(y.x,¥))=p(F(y.x,y),F(y.x,¥)),
and
p(gzl F(Zr y,X)) = p(F(Z!va)l F(Zr y,X)) .

Applying condition (3.13) with x=u, y=v, z=w we have
that p(F (x,y,2),F(x,y,2))=0. Similarly, we have p(F (y,x,y),F(y.x,y)) =0
and p(F(z,y,x),F(z,y,x))=0. It follows

gx=F(x,y,z), gy =F(y,x,y)and gz =F(z,y,x) .

Suppose that (X, p, %) is regular. Then, since (gx,.9y,.92,) is
comparable with (gx, gy, gz ) we have that according to (3.13)
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P(F(x,.Y,.2,),F(x,y,2)) < g (max{p(gx,,9x), p(ay,,9y), p(9z,,92)})
P(F (Y, %, ¥,) F(y.x,¥)) <o (max{p(gy, gy), p(gx,,9x), P(9y,,9y)})

P(F(z,.y,.%x,).F(z,y.x)) <¢(max{p(9z,,92), p(gy,,9y), P(9X,,9x)})

or

p(ax, . F(x,y.z))+ p(ay,...F(y.x,y))+ p(9z,,,F(z,y,x))
<3¢ (max {p(gx,,9x), p(ay,.ay), p(9z,,92)}) (3.18)

Now, taking limitas n - « from (3.18) follows:
p(gx, F (X, y,2)) + p(gy,F (y,x,¥)) + p(9z,F (z,y,x)) =0. (3.19)
From (3.19) follows gx = F(x,y,2), gy = F(y,x,y)and gz = F(z,y,x) .

In both cases we have obtained that F and ¢ have a tripled

coincidence point.
O

Corollary 3.5. Let (X, <) be a partially ordered set and suppose there is a

partial metric p on X such that (X, p) is a O-complete partial metric space.
Suppose F:x° - X and g:X —» x are such that F has the mixed g¢-
monotone property with F(x*) c g(x) and g(X) is a 0-complete subspace
of X and

P(F(x,y,z),F(u,v,w)) < jp(gx,gu)+kp(gy,gv) +Ip(gz, gw)

for any x,y,z,u,v,we X for which gx= gu, gy~ gv and gz=< gw and
j+k+1<1. Suppose either F is continuous or (X, p, <) is regular. If there

exist x,.v,.2, € X suchthat

ngiP(xo, Yor Z0) gy(): F(yOI X,, Yo) and gZOiF(Zo/ Yo, Xo) ,
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then there exist x,y,z e X such that
F(x,y,z)=9x, F(y,x,y) =gy, and F(z,y,x) =9z,

that is., F and g have a tripled coincidence point.

Proof.
Since
ip(gx, gu) + kp(gy,gv) +Ip(gz, gw) < A max{p(gx,gu), p(gy,gv), p(gz,gw)}, for

2 = j+k+1,then the proof follows from Theorem 3.4 taking ¢ (t) = 4t .
[l

The following corollary is the result of Berinde and Borcut in [8]
when we consider a partial metric instead of a standard metric.

Corollary 3.6. Let (X, <) be a partially ordered set and suppose there is a

partial metric p on X such that (X, p) is a O-complete partial metric space.
Suppose F : x° - x has the mixed monotone property and

P(F(x,y,2z),F(u,v,w)) < jp(x,u) +kp(y,v)+Ip(z,w)

for any x,y,z,u,v,we X for which x< u, y>v and z< w and j+k+1<L
Suppose either F is continuous or (X, p, X)) is regular. If there exist

X, ¥, 2, € X such that
xo:F(xm Yo, %) Yoo E(¥,, %o, Y) and ZoiF(Zo/ Yo, Xo)
then there exist x,y,z e X such that
F(x,y.z)=x, F(y,x,y) =y, and F(z,y,x) =z,
that is, F has a tripled fixed point.

Proof. Follows from corollary 3.5 by taking ¢ =iy (the identity map).
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u

In several papers, the authors also considered some additional
conditions to ensure the uniqueness of the coupled fixed point, of the
coupled coincidence or of the tripled fixed point, respectively. So, we state
and prove the corresponding result regarding the uniqueness of tripled
coincidence points in the context of partially ordered O-complete partial
metric spaces.

Theorem 3.7. In addition to hypotheses of Theorem 3.1 (resp. Theorem 3.4.)
assume that for any two elements (%, y, z), (X', y*, z*)e X° there exists (1,

v,w)e X*such that (F(u, v,w) , F(v, u, v) , F(w, v, u)) is comparable to both

(Feey, 2), Py, 5, y), Bz y, ) and (FQ, Y7, 29, By, X7, y°) , F@ 7, x0).

Then ¢ and F have a unique tripled coincidence point.

Proof. Theorem 3.1 implies that there exists a tripled coincidence point (¥,
y,z)e X°, thatis

gx=F(x,y,2),8y=Fy,x,y), gz=Fzy,x).

Suppose that there exists another tripled coincidence point (¥, y*, z%) € X°
and hence

gx'=F(x', vy, 2, , 8y =Fy, x,y), 2= F(z', y', x°).

We will prove that gx = gx*, gy = gy* and gz =gz".

From given condition, we get there exists (4, v,w)e X*such that (F(u,
v,w), F(v, u,v), F(w, v, 1)) is comparable to both (F(x, , 2) , F(y, %, ), F(z, ¥,
x)) and (F(', 7, 2), F(v, X7, ), F(Z, 7, X7).

Put u, = u, v, = v,w, = w and analogously to the proof of Theorem
3.1, choose sequences {#,}, {v,} and {w,} satisfying

gu,,, = F(u,,v,,w), gv,,=F(v,u,v) and gw , = F(w, v u) for

n=0,1,2,...

n+1
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Starting from ¥, = X, Yy = ¥, 2, = z and x,=x", y, =y, 7,

0

=z, choose

sequences {x,}.{y,}.{z,}and {x }.{y }.{z,} satisfying

gxn+1 = F(Xn’yn’zn)’ gyn+l = F(yn’xn’yn)/ gzn+1 = F(Zn’yn’xn)
and 0%, = F (X0 Y20, 0¥, = F(Y, %0y, , 92, = F(z,.y,.%,) for
n=0,1,2,...

Taking into account properties of coincidence points, itis easy to see that it
canbe doneso that x,=x,y,=y,z,=zand x, =x", y. =y , 2. =2

=z ,i.e,
8X, = F(X, Y, Z)/ &Y, = F(y/ X, y); 82, = F(Z/ Y, X)

n

and
gx, =FO, v, 2, , gy = (', X', i), 8z.'= F(2', i, X).
for all neN.
Since (F(x,y,2), F(y, %, ¥), F(z, Y, X)) = (8%, 8%, 821) = (8, 8Y, 87) and
(F(u, v,w) , F(v, u, v) , F(w, v, u))= (gu,, §v,, §w,) are comparable, then gx=<
gu,, gy~ 8v, and gz=< gw,. It is clear that (gx, gV, §2) and (gu,, gv,, §W,) are
also comparable, that is gx=< gu,, gy~ v, and gz= gw,for all n > 1. Then,

from (3.1) and using the proof of Theorem 3.1 we have:

p(gx,gu )+ p(gy,gv )+ p(9z,gw )
3
p(F(x,y,z),F(u v, ,w))+ p(F(y x,y),F(v ,u ,v))+ p(F(z,y,x),F(w_ v ,u))
3
(/ p(gx,gu )+ p(gy,gv,)+ p(gz, gw, ))
3

IA

(3.20)

o plax,gu, )+ p(gy.gv, )+ p(9z, 9w, ,))
3

<9

IN

wm( P(gx,guy)+ p(ay,gv,)+ p(9z,gw,) )
3

By letting n — oo in relation (3.20) we obtain
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p(gx,gu, )+ p(gy.,gv, )+ p(9z,gw )
3

lim
n— oo

=0,

that is.,
lim p(gx,gu,,)=0,1lim  p(gy,gv,,)=0,lim  p(gz,gw, ,)=0.(3.21)
Similarly, one can prove that:

lim  _ p(gx.,gu, ., )=0,lim _ p(gy .gv,,)=0,
lim_ p(gz*,gwnﬂ):o. (3.22)

Now by (p4), (3.21) and (3.22) we have:

p(gx’ gx*) = p(gx’ gu”ﬂ) + p(gulHl/ gx*) - p(gum-lr g”ml)
< p(gx/ gu12+l) + p(gun+1/ gx*) - 0 asn — OO,

P(&Y, 8Y") < P(&Y, 80u1) + P(8Vss1, 8Y7) — P(&Vrs1, §0ri1)
< p(gyl ngrl) + p(ngrll gx*) —>0asn— oo,

P8z, 82") < P(82, §Wy.1) + P(8Wi1, 8Z7) = P8Wry, §Wyia)
< P82, §W,) + P(§W;,, 827) — O as 1 — oo,

from which it follows that gx = ¢x*, gy = g¥* and gz = ¢z".

The proof of the uniqueness result in the case of Theorem 3.4. is
similar.
Remark 3.8. Taking ¢(f) = at (resp. § = ix ) in Theorem 3.7. we obtain the

uniqueness result of tripled fixed points in Corollary 3.2 (resp. Corollary
3.3).
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The following example shows that Theorem 3.1 is more general than
Theorem 2.2 from [5].

Example 3.9. Let (X, p)= (Q N [0,+=), p) be endowed with usual order,
where Q denotes the set of rational numbers and p is given by p(x, v)
=max{x, y}. A partial metric space (X, p) is a 0-complete partial metric
space. Suppose that g: X—»>X and F: X *-X are such that gx = x and
X—y+12
SO
{0, X<y

X =y

forallx,y,z e X and (p(t)=3—t, for all te [0,). From (1) follows:
4

L=

X=Y+2Z U=-V+W Yy—X+Yy V-U+V Z-y+X W-V+uU
m ax , + max : + max ,
4 4 4 4 4 4

4 4 4 4

U-VvV+WwW Y—-—X+Y W-V+uU 20+ 2y +2wW —2v —X
+ + ,

3
R= —(max{x,u}+ max {y,v}+ max{z,w})=3w
4 4

2U+ 2y + 2w - 2v — X 2u+2y+2w
4 ) 4

F and ¢ have a tripled coincidence point. It is easy to show that (0,0,0) is a

tripled coincidence point.

We have that L= <R and it follows that

On the other hand, consider the same problem in the standard
metricd(x,y) = |x - y| and take x=u and z=w. Then, from (1) follows

- u_y+w_u—v+w| y—u+y_v—u+v|+ w—y+u_w—v+u|_| —v|
N P R 4 | 4 s 7
3 ~ N |y -]

R_4(|xfu|+|y v|+|z W|)—3 R
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Hence L < R does not hold and the existence of a tripled
coincidence point can not be obtained.

4. A new type tripled coincidence point

In the sequel of this paper we introduce a new type tripled coincidence
point which is maybe more natural than ones in Berinde and Borcut [8].

Definition 4.1. Let (X,< ) be a partially ordered set, F: X * —» X and g: X —

X two mappings. Suppose that the mapping F has the mixed g-monotone
property. An element (x,y,z) is called a new type tripled coincidence

point of F and g if
F(x,y,z)=09x, F(y,x,y)=g9y and F(z,y,z)=g9z.

while (g%, gy, gz) is said a new type tripled point of coincidence of
mappings F and ¢. Moreover, (x,y,z) is called a new type tripled common

fixed pointof F and g if
F(x,y,z)=9gx=xXx, F(y,x,y)=9y=yand F(z,y,z2)=9z=1z.

Now, for this new tripled case, we announce the following two
results:

Theorem 4.2. Let (X, <) be a partially ordered set and suppose there is a

partial metric p on X such that (X, p) is a partial metric space. Suppose
F:X°> X and g:X - x are such that F has the mixed g-monotone

property with F(x*)c g(x) and ¢(X) is a O-complete subspace of X.

Assume there is a function ¢e® such that

P(F(x,y,2),F(u,v,w))+ p(F(y.x,y),F(v,u,v))+ p(F(z,y,2),F(w,v,w))

<3

(p( p(gx, gu) + p(gy,gv) + p(gz, gw) ) (4.1)
3
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for any x,y,z,u,v,we x for which gx=< gu, gy> gv and gz< gw. Suppose
either F is continuous or (X, p, <) is regular. If there exist x,,y,,2, ¢ X
such that

gxoiF(x()/ YorZo), SYo~ E(,, o, ¥) and gZOiF(ZOI Yo, %),
then there exist x,y,z e x such that

F(x,y,z)=9x, F(y,x,y) =gy, and F(z,y,2) = 9z,
that is., F and ¢ have a new type tripled coincidence point.

Proof. The proof is very similiar to the proof of the Theorem 3.1, so we
will omit it. Only here, we consider sequences {x,}, {y,} and {z,} in X

such that
ox,.,=F(x,,y,.2,), 9y,., = F(y,.x,.y,) and gz,,,=F(z,.y,.z,) for n=0,1,2,...
[l

Theorem 4.3. Let (X, <) be a partially ordered set and suppose there is a

partial metric p on X such that (X, p) is a partial metric space. Suppose
F:X°> X and g: X —» x are such that F has the mixed g-monotone
property with F(x*)c g(x) and g(X) is a O-complete subspace of X.

Assume there is a function @e® such that
P(F(x,y,2),F(u,v,w)) < g (max{p(gx,gu), p(gy,gv), p(gz,gw)}) (4.2)

for any x,y,z,u,v,we X for which gx= ¢u, gy>~ gv and gz< gw. Suppose
either F is continuous or (X, p, ) is regular. If there exist x,,y,,2, € X
such that

gxoiF(xo/ Yor Z0) Yo E(Y,, X, Yo) and gZOiF(ZOI Yo, Z),
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then there exist x,y,z e X such that
F(x,y,z2)=9x, F(y,x,y) =gy, and F(z,y,2) = 9z,
that is., F and ¢ have a new type tripled coincidence point.

Proof. The proof is similiar to the proof of the Theorem 3.4. Here, we
considersequences {x,}, {y,} and {z,} in X such that

ox,,=F(x,,y,.2,), 9y,., = F(y,.x,,y,) and gz, , = F(z,.vy,.z,) for n=0,1,2,...

It holds that gx, < 8x,,,, 8%, &Y, and gz, 8z,,, Applying (4.2) with x=x,,

]/=Zm z=X,, u=xn+1/ U=Z;1+1 and w=x”+1 we have:

p(F (Xn’ yn‘ Zn)’ F (Xn+1’ yn+1‘ Zn+1))

<@ (max{p(gx,,9%,,), P(9y,, 9Y,.,), P(92,,92,.,)})
that is.,

p(9x,,,.9X,.,) <@ (max{p(gx,,9%,,), P(9Y,,9Y,.,), P(92,,92,,,)})

Similarly, we have

P(9Y,.1 9Y,,,) <@ (max{p(gx,, 9x,,), P(9y,,9Y,.,)})

<g(max{p(gx,,9%,,), p(9y,, 9Y,,,), P(92,,92, ,,)})

and
p(9z,.,.92,,,) <¢(max{p(ay,.0y,,) P(9z,,92,,,)})

<@ (max{p(gx,,9%,..), P(9y,.9Y,.,), P(92,,92,.)})

It follows:
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max { p(9X,,,,»9%,,,), P(9Y,.,»9Y,.,) P(92,.,,92,.,,)} 4.3)
<g@(max{p(gx,,9%,,), p(9Y,, 9Y,.,), P(92,,92,,,)})

As in the proof of the Theorem 3.4. it follows lim, o P(8%,,1,8%,) = lim, s«
p(gytz+1rgyx11)= hmn—)w p(gzmlrgzn) =0.

We next prove that {gx,},{gy,} and {gz,} are 0-Cauchy sequences

in the space (X, p) in the same way as in the proof of the Theorem 3 4.
Applylng COl’ldlthIl (4.2) tO elel’nentS x=xn(/\—), y=zﬂ(k), Z:x”(k), u=xm(k)_1, v=zm(k)_l
and w=Xx,,,, we have:

p(gxn(k)+1’ ng(k)) = p(F (Xn(k)’ yn(k)‘ Zn(k))’ F (Xm(k)—l‘ ym(k)—l’ Zm(k)—l))

< @ (max { P(9%, (0 WXngoy 1) PO oy Y 1)r PLOZ 02000 1)})

Similarly, we have

P(IYsg0yiar W mey) S @ (Max { PCOX, 00 X000 4) PIY 0 9Y g 1) PLOZ,00 92000 1)) )

and

P92, 00010 920 0) < @ (Max { P(IX, 0 9% 0100 PLOYoyr 8 gy 1) PLIZ, 000 92,00 )} )-

From the previous we have:
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max { P(9X, .1 9%y PLIY yirans Vi) PLIZ, 00000 92, ))

< max{(p (maX{ p(an(k), ng(k)—l)’ p(gyn(k)l gym(k),l)f p(gzn(k)’ me(k)il)})}

@ (Max { (9%, 401 9%, 0010 PUAY a0y 9V s)s PIZ, 000 92,0 0)]
(k) (k) (k) (k) (k) (k)

If we pass to the limit when k - » we get &<p(¢)<¢, which is a
contradiction since & >0. This shows that {gx,},{gy,} and {gz,} are O-

Cauchy sequences in the space (X, p). Since ¢X is a 0-complete, there exist
x,y,ze X such that

lim, 0 p(8X,, §%) =P(8X, 8X) =0, lim,—«pP(8Y. 8Y) =pPQY, 8Y) =0, and
hmlz—>°° p(gzw gZ) = p(gzl gZ) = 0

Suppose that F is continuous. As in the proof of the Theorem 3.1 we
have

p(gx,F(x,y,z)) = p(F(x,y,2),F(x,y,2)),

p(gy. F(y.x,y))=p(F(y.x,y),F(y.x,y)),
and

p(9z,F(z,y,2)) = p(F(z,y,2),F(z,y.2)).

Since gx= gx, gz~ gz and gx = gx, then applying condition (4.2) with u=x,
v=z, w=X we obtain that p(F (x,y,z),F (x,y,z))=0.

Similarly, we have p(F (y.x,y).F(y.x,y))=0and p(F(z,y.z),F(z,y,z))=0. It follows
gx=F(x,y,z), gy = F(y,x,y)and gz=F(z,y,2).

Suppose that (X, p, %) is regular. Then, since (gx,.9y,.92,) is
comparable with (gx, gy, gz ) we have that according to (4.2)

P(F(x,.Y,.2,),F(X,y,2)) < g (max{p(gx,,9x), p(ay,,9y), p(9z,,92)})
P(F (Y, %, ¥,) F(y.x,¥)) <o (max{p(gy, gy), p(gx,,9x), p(gy,,9y)})

p(F(z,.y,.2,).F(z,y,2)) < p(max{p(9z,,92), p(9y,,9y) p(92,,92)})
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or

p(gx,...F(x,y,2))+ p(gy,...F(y.x,y¥))+ p(9z, . F(z,y,2))

<3¢ (max{p(gx,.9x), p(gy,.9y). p(9z,.92)}) (4.4)

Now, taking limitas n - « from (4.4) follows:
p(gx,F(x,y.2))+ p(gy.F (y.x,y)) + p(g9z,F (z,y,2)) =0. (4.5)
From (4.5) follows gx = F(x,y,z), gy = F(y,x,y)and gz = F(z,y,z2).

In both cases we have obtained that F and ¢ have a new type tripled

coincidence point.
O

The following example supports our new result.

Example 4.4 Let X = R withp (x, ) =d (x,y) = | x — y| and usual order and
4x -4y +3z+1

48

let g(x) = x, F(x,y,2) = for all x, y, zeX. Further, take o¢(f)

= 17—;, te[0,+). All conditions of Theorem 4.1 are satisfied. Indeed, for x<

u,y~ vand z< w we have

1
p(F(x,y,2),F(u,v,w)) = E|4(xfu)74(y7v)+3(z fw)|

4
< —(|x—u|+|y—v|+|z—w|)
48

and similar

PCF (¥, %, ). F (v.0.v) = —(Jx —u+ |y - v)
48

7
SE(|X—U|+|y—V|+|Z—W|)

and
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p(F (Zr y,Z), F (W,V,W)) = L(|y —V|+ |Z — W|)
48

7
< —(|x—u|+ |y—v|+|z—w|).
48

Hence,

P(F(x,y,z),F(u,v,w))+ p(F(y,x,y),F(v,u,v))+ p(F(z,y,2), F(w,v,w))

<

3i p(x,u)+ p(y,v)+ p(z,w) _ 3(/)( p(x,u)+ p(y,v)+ p(z,w))
16 3 3 '

It follows that F and ¢ have a new type tripled coincidence point. Here,

11 1. . o .
—,—,— type tripled d t.
(45 T ) is a new type tripled coincidence poin

REFERENCES
[1] M. Abbas, M. Ali Khan and S. Radenovi¢, Common coupled fixed point theorems
in cone metric spaces for w-compatible mappings, Applied Mathematics and
Computation 217 (2010)195-202.
[2] M. Abbas, T. Nazir, S. Romaguera, Fixed point results for generalized cyclic
contraction mappings in partial metric spaces, Rev. R. Acad.Cienc.Exactas Fis.Nat. Ser.
A Mat. RACSAM. doi: 10.1007 /s13398-011-0051-5.
[3] T. Abdeljawad, E. Karapinar, K. Tas, Existence and uniqueness of a common
fixed pointon partial metric spaces, Appl. Math. Lett. 24 (2011) 1900-1904.
4] I. Altun, S. Romaguera, Characterizations of partial metric completeness in terms
of weakly contractive mappings having fixed point, Appl. Anal. Discrete Math. (to
appear) DOL 10.2298/ AADM120322009A
[5] H. Aydi, E. Karapinar, M. Postolache, Tripled coincidence point theorems for
weak @-contractions in partially ordered metric spaces, Fixed Point Theory and
Applications 2012,2012:44,doi: 10.1186/1687-1812-2012-44.
6] H. Aydi, E. Karapinar, B. Samet, Remarks on some recent fixed point theorems,
Fixed Point Theory and Applications 2012,2012:76,doi: 10.1186 /1687-1812-2012-76
[71 M. Bakutin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces, Am.
Math. Monthly 116 (2009) 708-718.
[8] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type
mappings in partially ordered metric spaces, Nonlinear Analysis 74 (2011) 4889-4897.



109 RAJIC

[91 V. Berinde, M. Borcut, Tripled coincidence theorems for contractive type
mappings in partially ordered metric spaces, Applied Mathematics and Computation
218 (2012) 5929-5936.

[10] T.G.Bhaskarand V. Lakshmikantham, Fixed point theorems in partially ordered
cone metric spaces and applications, Nonlinear Analysis 65 (2006) 825-832.

[11] A. G. Bin Ahmad, Z. M. Fadail, V. Cojbaéié Raji¢, S. Radenovi¢, Nonlinear
contractions in 0-complete partial metric spaces, Abstract and Applied Analysis, Vol.
2012, article ID 451239,12 pages, doi:10.1155/2012 /451239.

[12] M. Borcut, Tripled coincidence theorems for contractive type mappings in
partially ordered metric spaces, Applied Mathematics and Computation 218 (2012)
7339-7346.

[13] B.S. Coudhury, E. Karapinar and A. Kundu, Tripled coincidence point theorems
for nonlinear contractions in partially ordered metric spaces, International Journal of
Mathematics and Mathematical Sciences, 2012, in press.

[14] B.S. Choudhury and A.Kundu, A coupled coincidence point result in partially
ordered metric spaces for compatible mappings, Nonlinear Analysis 8 (2010) 2524-2531.
[15] Z. Golubovié¢, Z. Kadelburg, S. Radenovi¢ , Coupled coincidence points of
mappings in ordered partial metric spaces, Abstract and Applied Analysis, Vol. 2012,
Article ID 192581,18 pages, doi: 10.1155/2012 /192581.

[16] N. Hussain, Z. Kadelburg, S. Radenovié, Comparison functions and fixed point
results in partial metric spaces, Abstract and Applied Analysis, Vol. 2012, Article ID
605781,15 pages, doi:10.1155/2012 /605781

[17] D. Li¢, V. Pavlovié and V. Rakocevié, Some new extensions of Banach’s
contractions principle in partial metric spaces, Appl. Math. Lett. 24 (2011) 1326-1330.
[18] M. Jleli, V. Cojbasi¢ Raji¢, B. Samet and C. Vetro, Fixed point theorems on
ordered metric spaces and applications to nonlinear beam equations, Journal of Fixed
Point Theory and its Applications (2012), doi: 10.1007 /s11784-012-0081-4.

[19] Z. Kadelburg, H. K. Nashine, S. Radenovié, Fixed point results under various
contractive conditions in partial metric spaces, Rev. R. Acad.Cienc.Exactas Fis.Nat. Ser.
AMat. RACSAM. doi: 10.1007 /s13398-012-0066-6.

[20] V. Lakshmikantham and Lj. Ciri¢, Coupled fixed point theorems for nonlinear
contractions in partial ordered metric space, Nonlinear Analysis 70 (2009) 4341-4349.
[21] N. V. Luongand N. X. Thuan, Coupled fixed point theorems in partially ordered
metric spaces, Bulletin of Mathematical Analysis and Applications 4 (2010)16-24.

[22] N. V. Luong and N. X. Thuan, Coupled fixed points in partially ordered metric
spaces and application, Nonlinear Analysis, 74(2011)983-992.

[23] S.G. Matthews, Partial metric topology, Research Report 212. Dept. of Computer
Science, University of Warwick, 1992.

[24] S. G. Matthews, Partial metric topology, Proc. 8th Summer Conference on
General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183-197.

[25] S. Oltra, S. Romaguera, E. A. Saanchez-Perez, Bicompleting weightable quasi-
metric spaces and partial metric spaces, Rend. Circ.Mat. Palermo 51(2002)151-162.



TRIPLED COINCIDENCE POINTS 110

[26] S. Oltra and O. Valer, Banach’s fixed point theorem for partial metric spaces,
Rend. Istit. Math. Univ. Trieste 36 (2004) 17-26.

[27] S. Radenovié, Z. Kadelburg, D. Jandrli¢, A. Jandrli¢, Some results on weakly
contractive maps, Bulletin of the Iranian Mathematical Society (2011), available online
since 30 March 2011.

[28] S. Romaguera, Fixed point theorems for generalized contractions on partial
metric spaces, Topol. Appl. 159 (2012)194-199.

[29] B. Samet, Coupled fixed point theorems for a generalized Meir-Keeler
Contraction in partially ordered metric spaces, Nonlinear Analysis 72 (2010) 4508-4517.

University of Belgrade, Faculty of Economics, Kamenic¢ka 6,11000 Beograd, Serbia



