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SECOND HANKEL DETERMINANT FOR BI-UNIVALENT

ANALYTIC FUNCTIONS ASSOCIATED WITH HOHLOV

OPERATOR

G. MURUGUSUNDARAMOORTHY∗ AND K. VIJAYA

Abstract. In the present paper, we consider a subclass of the function class

Σ of bi-univalent analytic functions in the open unit disk ∆ associated with
Hohlov operator and we obtain the functional |a2a4−a23| for the function class

Σ . Our result gives corresponding |a2a4 − a23| for the subclasses of Σ defined
in the literature.

1. Introduction

Let A be the class of functions given by the power series

(1.1) f(z) = z +

∞∑
n=2

anz
n (z ∈ ∆).

and analytic in the open unit disk

∆ := {z : z ∈ C and |z| < 1}.
Also let Ω be the family of functions f ∈ A which are univalent in ∆ and satisfying
the normalization conditions (see[4]):

f(0) = f ′(0)− 1 = 0.

The well-known Koebe one-quarter theorem (see[4]) asserts that the image of ∆
under every univalent function f ∈ Ω contains a disk of radius 1

4 . Thus, the inverse
of f ∈ Ω is a univalent analytic function on the disk ∆ρ := {z : z ∈ C and |z| <
ρ; ρ ≥ 1

4}. Therefore, for each function f(z) = w ∈ Ω, there is an inverse function

f−1(w) of f(z) defined by

f−1(f(z)) = z (z ∈ ∆)

and
f(f−1(w)) = w (w ∈ ∆ρ)

where

(1.2) g(w) = f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + ....

A function f ∈ Ω is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆.
Let Σ denote the class of bi-univalent function in ∆ given by (1.1). The concept of
bi-univalent analytic functions was introduced by Lewin [14] in 1967 and he showed
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that |a2| < 1.51. Subsequently, Brannan and Clunie [1] conjectured that |a2| ≤
√

2.
Netanyahu [18], on the other hand, showed that maxf∈Σ |a2| = 4

3 . The coefficient
estimate problem for each of the following Taylor-Maclaurin coefficients |an| (n ∈
N \ {1, 2})is presumably still an open problem. In [3](see also [2, 7, 20, 22, 23]),
certain subclasses of the bi-univalent analytic functions class Σ were introduced
and non-sharp estimates on the first two coefficients |a2| and |a3| were found.

In 1976, Noonan and Thomas [19] defined the qth Hankel determinant of f for
q ≥ 1 by

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ .
Further, Fekete and Szegö [6] considered the Hankel determinant of f ∈ A for

q = 2 and n = 1, H2(1) =

∣∣∣∣ a1 a2

a2 a3

∣∣∣∣ . They made an early study for the estimates

of |a3 − µa2
2| when a1 = 1 with µ real. The well known result due to them states

that if f ∈ A, then

|a3 − µa2
2| ≤


4µ− 3 if µ ≥ 1,

1 + 2 exp(−2µ
1−µ ) if 0 ≤ µ ≤ 1,

3− 4µ if µ ≤ 0.

Furthermore, Hummel [9, 10] obtained sharp estimates for |a3 − µa2
2| when f

is convex functions and also Keogh and Merkes [13] obtained sharp estimates for
|a3 − µa2

2| when f is close-to-convex, starlike and convex in ∆. Here we consider
the Hankel determinant of f ∈ A for q = 2 and n = 2,

H2(2) =

∣∣∣∣ a2 a3

a3 a4

∣∣∣∣ .
For the functions f, g ∈ A and given by the series

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n (z ∈ ∆),

the Hadamard product (or convolution) of f and g denoted by f ∗ g is defined as

(f ∗ g)(z) =

∞∑
n=0

anbnz
n = (g ∗ f)(z) (z ∈ ∆).

By using the Hadamard product (or convolution ), Hohlov (cf.[11]) introduced and
studied the linear operator Ia,bc : Ω→ Ω defined by

Ia,bc f(z) = z2F1(a, b; c; z) ∗ f(z) (f ∈ Ω, z ∈ ∆),

where 2F1(z) known as Gaussian hypergeometric function is defined by
(1.3)

2F1(z) = 2F1(a, b; c; z) =

∞∑
n=0

(a)n(b)n
(c)n(1)n

zn (a, b ∈ C, c ∈ C\Z−0 =: {0,−1,−2, . . . })
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and (λ)n is the Pochhamer symbol or shifted factorial, written in terms of the
gamma function Γ, by

(λ)n =
Γ(λ+ n)

Γ(λ)
=

{
1, n = 0

λ(λ+ 1)....(λ+ n− 1), n ∈ N := {1, 2, 3, .....}.

Note that 2F1(z) is symmetric in a and b and that the series (1.3) terminates if at
least one of the numerator parameter a and b is zero or a negative integer.Observe
that for the function f of the form (1.1), we have

Ia,bc f(z) = z +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1(1)n−1
anz

n

= z +

∞∑
n=2

Φnanz
n (z ∈ ∆),(1.4)

where

Φn =
(a)n−1(b)n−1

(c)n−1(1)n−1
.

Making use of Hohlov operator we consider a new subclass of Σ due to Panigarhi
and Murugusundaramoorthy[20] as given below

Definition 1.1. [20] A function f ∈ Σ and of the form (1.1)is said to be in the

class Ma,b;c
Σ (β, λ) if the following conditions are satisfied:

(1.5) <
[
(1− λ)

Ia,bc f(z)

z
+ λ

(
Ia,bc f(z)

)′]
> β (0 ≤ β < 1, λ ≥ 1, z ∈ ∆)

and

(1.6) <
[
(1− λ)

Ia,bc g(w)

w
+ λ

(
Ia,bc g(w)

)′]
> β (0 ≤ β < 1, λ ≥ 1, w ∈ ∆)

where the function g is the inverse of f given by (1.2).

It is of interest to note that by taking a = b and c = 1 we state the following
subclass FΣ(β, λ) due to Frasin et al.[7].

Example 1.2. [7] A function f ∈ Σ and of the form (1.1) is said to be in the class
FΣ(β, λ) if the following conditions are satisfied:

(1.7) <
[
(1− λ)

f(z)

z
+ λf ′(z)

]
> β (0 ≤ β < 1, λ ≥ 1, z ∈ ∆)

and

(1.8) <
[
(1− λ)

g(w)

w
+ λg′(w)

]
> β (0 ≤ β < 1, λ ≥ 1, w ∈ ∆)

where the function g is the inverse of f given by (1.2).

It is of interest to note that by taking a = b; c = 1 and λ = 1 we state the
following subclass HΣ(β) due to Srivastava et al.[22]. By taking a = b; c = 1 and
we state the following :
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Example 1.3. [22] A function f ∈ Σ and of the form (1.1) is said to be in the
class HΣ(β) if the following conditions are satisfied:

< [f ′(z)] > β (0 ≤ β < 1, z ∈ ∆)

and

< [g′(w)] > β (0 ≤ β < 1, w ∈ ∆)

where the function g is the inverse of f given by (1.2).

The object of the present paper is to determine the functional |a2a4 − a2
3| for

the function f ∈ Ma,b;c
Σ (β, λ). Our result gives corresponding |a2a4 − a2

3| for the
subclasses of Σ defined in the Examples 1.2 and 1.3.

2. coefficient bounds for the function class Ma,b;c
Σ (β, λ)

We need the following lemma for our investigation.

Lemma 2.1. (see [4], p. 41) Let P be the class of all analytic functions p(z) of
the form

(2.1) p(z) = 1 +

∞∑
n=1

pnz
n

satisfying <(p(z)) > 0 (z ∈ ∆) and p(0) = 1. Then

|pn| ≤ 2 (n = 1, 2, 3, ...).

This inequality is sharp for each n. In particular, equality holds for all n for the
function

p(z) =
1 + z

1− z
= 1 +

∞∑
n=1

2zn.

Lemma 2.2. If the function p ∈ P is given by the series

(2.2) 2p2 = p2
1 + x(4− p2

1),

(2.3) 4p3 = p3
1 + 2(4− p2

1)p1x− p1(4− p2
1)x2 + 2(4− p2

1)(1− |x|2z),

for some x, z with |x| ≤ 1 and |z| ≤ 1.

Lemma 2.3. [8] The power series for p given in (2.1) converges in ∆ to a function
in P if and only if the Toeplitz determinants

(2.4) Dn =

∣∣∣∣∣∣∣∣∣
2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

∣∣∣∣∣∣∣∣∣ , n = 1, 2, 3, . . .

and c−k = ck, are all nonnegative. They are strictly positive except for

p(z) =

m∑
k=1

ρkp0(eitkz), ρk > 0, tk real

and tk 6= tj for k 6= j in this case Dn > 0 for n < m− 1 and Dn = 0 for n ≥ m.

In the following theorem we determine the second hankel coefficient results for
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Theorem 2.4. Let f ∈Ma,b;c
Σ (β, λ) be given by (1.1). Then

(2.5)

|a2a4−a2
3| ≤


4(1− β2)

[
(1+λ)3Φ3

2+4(1−β)2(1+3λ)Φ4

(1+λ)4(1+3λ)Φ4
2Φ4

]
, β ∈

[
0, 1−

√
(1+λ)3 Φ3

2

8(1+3λ)Φ4

]
9(1+λ)2(1−β)2Φ2

2

2(1+3α)Φ4[(1+λ)3Φ3
2−2(1−β)2(1+3λ)Φ4]

, β ∈
(

1−
√

(1+λ)3 Φ3
2

8(1+3λ)Φ4
, 1

)
.

Proof. Since f ∈ Ma,b;c
Σ (β, λ), there exists two functions φ(z) and ψ(z) ∈ P satis-

fying the conditions of Lemma 2.1 such that

(2.6) (1− λ)
Ia,bc f(z)

z
+ λ

(
Ia,bc f(z)

)′
= β + (1− β)φ(z)

and

(2.7) (1− λ)
Ia,bc g(w)

w
+ λ

(
Ia,bc g(w)

)′
= β + (1− β)ψ(z)

where

(2.8) φ(z) = 1 + c1z + c2z
2 + c3z

3 + ...

and

(2.9) ψ(w) = 1 + d1w + d2w
2 + d3w

3 + ....

. Equating the coefficients in (2.6) and (2.7)gives

(2.10) (1 + λ)Φ2a2 = (1− β)c1

(2.11) (1 + 2λ)Φ3a3 = (1− β)c2

(2.12) (1 + 3λ)Φ4a4 = (1− β)c3

and

(2.13) −(1 + λ)Φ2a2 = (1− β)d1

(2.14) (1 + 2λ)Φ3(2a2
2 − a3) = (1− β)d2

(2.15) −(1 + 3λ)Φ4(5a3
2 − 5a2a3 + a4) = (1− β)d3

From (2.10) and (2.13) gives

(2.16) a2 =
1− β

(1 + λ)Φ2
c1 = − 1− β

(1 + λ)Φ2
d1

which implies

c1 = −d1

Now from(2.11) and (2.14), we obtain

(2.17) a3 =
(1− β)2

(1 + λ)2 Φ2
2

c21 +
(1− β)

4(1 + 2λ)Φ3
(c1 − c2).

On the other hand, subtracting (2.15) from (2.12) and using (2.16), we get
(2.18)

a4 =
1

2(1 + 3λ)Φ4

[
−5(1 + 3λ)(1− β)3Φ4

(1 + λ)3Φ3
2

c31 +
5(1 + 3λ)(1− β)Φ4

(1 + λ)Φ2
a3c1 + (1− β)(c3 − d3)

]
.
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Thus we establish that

(2.19) |a2a4 − a2
3| =

∣∣∣∣− (1− β)4

(1 + λ)4Φ4
2

c41 +
(1− β)3c21(c2 − d2)

8(1 + λ)2(1 + 2λ)Φ2
2Φ3

+
(1− β)2

2(1 + λ)(1 + 3λ)Φ4Φ2
c1(c3 − d3)− (1− β)2(c2 − d2)2

∣∣∣∣ .
According to Lemma2.2 we have

2c2 = c21 + x(4− c21), and 2d2 = d2
1 + x(4− d2

1),

hence we have

(2.20) c2 = d2

and further

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− |x|2z),

4d3 = d3
1 + 2(4− d2

1)d1x− d1(4− d2
1)x2 + 2(4− d2

1)(1− |x|2z)

(2.21) c3 − d3 =
1

2
c31 + c1(4− c21)x− 1

2
c1(4− c21)x2

(2.22) |a2a4 − a2
3| =

∣∣∣∣ −(1− β)4

(1 + λ)4Φ4
2

c41 +
(1− β)2

4(1 + λ)(1 + 3λ)Φ4Φ2
c41

+
(1− β)2c21(4− c21)x

2(1 + λ)(1 + 3λ)Φ4Φ2
− (1− β)2c21(4− c21)x2

4(1 + λ)(1 + 3λ)Φ4Φ2

∣∣∣∣
Letting c1 = c, we may assume without restriction that c ∈ [0, 2] since φ ∈ P so
|c1| ≤ 2.Thus,applying triangle inequality on (2.19),with µ = |x| ≤ 1, we obtain

(2.23) |a2a4 − a2
3| ≤

(1− β)4

(1 + λ)4Φ4
2

c4 +
(1− β)2

4(1 + λ)(1 + 3λ)Φ4Φ2
c4

+
(1− β)2c2(4− c2)µ

2(1 + λ)(1 + 3λ)Φ4Φ2
+

(1− β)2c2(4− c2)µ2

4(1 + λ)(1 + 3λ)Φ4Φ2
= F (µ)

Differentiating F (µ), we get

F ′(µ) =
(1− β)2c21(4− c21)

4(1 + λ)(1 + 3λ)Φ4Φ2
+

(1− β)2c2(4− c2)µ

2(1 + λ)(1 + 3λ)Φ4Φ2

By using elementary calculus, one can show that F ′(µ) > 0 for µ > 0 hence F is
an increasing function and thus ,the upper bound for F (µ) corresponds to µ = 1,in
which case

(2.24) F (µ) = F (1) =

[
(1− β)4

(1 + λ)4Φ4
2

+
(1− β)2

4(1 + λ)(1 + 3λ)Φ4Φ2

]
c4

+
3(1− β)2c2(4− c2)

4(1 + λ)(1 + 3λ)Φ4Φ2
= G(c)

Assume that G(c) has a maximum value in an interior of c ∈ [0, 2], by elementary
calculations we find

(2.25) G′(c) =

[
4(1− β)4

(1 + λ)4Φ4
2

− 2(1− β)2

(1 + λ)(1 + 3λ)Φ4Φ2

]
c3+

6(1− β)2c

(1 + λ)(1 + 3λ)Φ4Φ2
.
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ThenG′(c) = 0 implies the real critical point c01 = 0 or c02 =
√

3(1+λ)3 Φ3
2

(1+λ)3Φ3
2−2(1−β)2(1+3λ)Φ4

.

After some calculations we concluded following cases:

Case 1: When β ∈
[
0, 1−

√
(1+λ)3 Φ3

2

8(1+3λ)Φ4

]
, we observe that c02 ≥ 2, that is,

c02 is out of the interval (0, 2). Therefore the maximum value of G(c) occurs at
c01 = 0 or c = c02 which contradicts our assumption of having the maximum value
at the interior point of c ∈ [0, 2]. Since G is an increasing function in the interval
[0, 2], maximum point of G must be on the boundary of c ∈ [0, 2], that is, c = 2.
Thus, we have

max
0≤c≤2

G1(p) = G(2) = 4(1− β2)

[
(1 + λ)3Φ3

2 + 4(1− β)2(1 + 3λ)Φ4

(1 + λ)4(1 + 3λ)Φ4
2Φ4

]
Case 2: When β ∈

(
1−

√
(1+λ)3 Φ3

2

8(1+3λ)Φ4
, 1

)
, we observe that c02 ≤ 2, that is,

c02 is interior of the interval [0, 2]. Since G′′(c02) < 0, the maximum value of G(c)
occurs at c = c02. Thus, we have

max
0≤c≤2

G(c) = G(c02) = G

(√
3(1 + λ)3 Φ3

2

(1 + λ)3Φ3
2 − 2(1− β)2(1 + 3λ)Φ4

)

=
9(1 + λ)2(1− β)2Φ2

2

2(1 + 3α)Φ4[(1 + λ)3Φ3
2 − 2(1− β)2(1 + 3λ)Φ4]

.

�

Concluding Remarks: Suitably specializing the parameter λ one can state the

Hankel coefficients for various subclasses ofMa,b;c
Σ (β, λ). In fact, by choosing a = b

and c = 1 we have Φ2 = 1; Φ3 = 1; Φ4 = 1 hence we state the Hankel determinant
coefficients for the function f ∈ FΣ(β, λ) studied in[7] as given below:
(2.26)

|a2a4 − a2
3| ≤


4(1− β2)

[
(1+λ)3+4(1−β)2(1+3λ)

(1+λ)4(1+3λ)

]
, β ∈

[
0, 1−

√
(1+λ)3

8(1+3λ)

]
9(1+λ)2(1−β)2

2(1+3α)[(1+λ)3−2(1−β)2(1+3λ)] , β ∈
(

1−
√

(1+λ)3

8(1+3λ) , 1
)
.

Also by choosing λ = 1 one can easily derive Hankel determinant |a2a4 − a2
3| for

the functions f ∈ HΣ studied by Srivastava et al.[22].
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