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SECOND HANKEL DETERMINANT FOR BI-UNIVALENT
ANALYTIC FUNCTIONS ASSOCIATED WITH HOHLOV
OPERATOR

G. MURUGUSUNDARAMOORTHY* AND K. VIJAYA

ABSTRACT. In the present paper, we consider a subclass of the function class
Y. of bi-univalent analytic functions in the open unit disk A associated with
Hohlov operator and we obtain the functional |agaq — a§| for the function class
3 . Our result gives corresponding |azaq — a%\ for the subclasses of > defined
in the literature.

1. INTRODUCTION

Let A be the class of functions given by the power series
(1.1) f(2) :z+2anz" (z € A).
n=2

and analytic in the open unit disk
A:={z:zeCand |z < 1}.

Also let €2 be the family of functions f € A which are univalent in A and satisfying
the normalization conditions (see[4]):

f(0)=f'(0) =1 =0.

The well-known Koebe one-quarter theorem (see[4]) asserts that the image of A
under every univalent function f € € contains a disk of radius i. Thus, the inverse
of f € Q is a univalent analytic function on the disk A, := {z: z € C and |2] <
p; p > 1}. Therefore, for each function f(z) = w € Q, there is an inverse function
f~1(w) of f(2) defined by

FlfE) =2 (z€4)
and
FEHw) =w (weA,)
where
(1.2) gw) = fH(w) =w — asw?® + (2a3 — az)w® — (5a3 — Sasaz + aqg)w* + ...
A function f € Q is said to be bi-univalent in A if both f and f~! are univalent in A.

Let ¥ denote the class of bi-univalent function in A given by (1.1). The concept of
bi-univalent analytic functions was introduced by Lewin [14] in 1967 and he showed
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that |as| < 1.51. Subsequently, Brannan and Clunie [1] conjectured that |ag| < /2.
Netanyahu [18], on the other hand, showed that max ey az| = 3. The coefficient
estimate problem for each of the following Taylor-Maclaurin coefficients |a,| (n €
N\ {1,2})is presumably still an open problem. In [3](see also [2, 7, 20, 22, 23]),
certain subclasses of the bi-univalent analytic functions class 3 were introduced
and non-sharp estimates on the first two coefficients |as| and |as| were found.

In 1976, Noonan and Thomas [19] defined the gth Hankel determinant of f for
q=1by

Ap p+1 - An+q—1
Ap+41 Ap+42 e Un4q
Hy(n) =
An+q—1 Qdntq .-+  (An42¢-2

Further, Fekete and Szegd [6] considered the Hankel determinant of f € A for
g=2andn=1, Hy(1) = @ 22
3
of lag — pa3| when a; = 1 with p real. The well known result due to them states
that if f € A, then

. They made an early study for the estimates

4p—3 it pu>1,
lag — pad] < { 1+2 exp(%) it 0<p<l,
3—4u if <0

Furthermore, Hummel [9, 10] obtained sharp estimates for |az — pa2| when f
is convex functions and also Keogh and Merkes [13] obtained sharp estimates for
lag — pa3| when f is close-to-convex, starlike and convex in A. Here we consider
the Hankel determinant of f € A for ¢ =2 and n = 2,
a2 as

Hy(2) =

az a4

For the functions f, g € A and given by the series

Zanz and g(z sz (z € A),

the Hadamard product (or convolution) of f and g denoted by f ¢ is defined as

Zanbz (g% )(z) (z€A).

n=0

By using the Hadamard product (or convolution ), Hohlov (cf.[11]) introduced and
studied the linear operator Z¢? : Q — Q defined by

I f(2) = 22 Fi(a,b;c52) * f(2)  (f € Q2 € A),

where o F(z) known as Gaussian hypergeometric function is defined by
(1.3)

oo nb
2Fi(2) = oF1(a,b; ¢; 2) Z Dn®n v (4 e eec\zs = {0,-1,-2,...})
n=0 Cn 1
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and (\),, is the Pochhamer symbol or shifted factorial, written in terms of the
gamma function T', by
I‘(A—i—n)_{l, n=20

M)n = AA+1).(A+n—1), neN:={1,2,3,.... }.

I'(A)

Note that 2 F;(z) is symmetric in @ and b and that the series (1.3) terminates if at
least one of the numerator parameter a and b is zero or a negative integer.Observe
that for the function f of the form (1.1), we have

a,b _ S (@)n—1(0)n—1 n
I8P f(z) = Z+712::27(C)n71(1)n71 anZ
(1.4) =z+ Z D,a,2" (z € A),
n=2
where

(@)n—1(b)n—1

(©n—1(n-1

Making use of Hohlov operator we consider a new subclass of ¥ due to Panigarhi
and Murugusundaramoorthy[20] as given below

®, =

Definition 1.1. [20] A function f € ¥ and of the form (1.1)is said to be in the
class ME"(B, \) if the following conditions are satisfied:

(1 5) e [(1—)\) g’b“ (Z) —s—)\(Ia:bf(z))/- > A (0<3<1 A>1.z2€ A)
. z (] | - b) - b)
and

(1.6) R [(1 Y|

FA(Zgw) | >8 (0<B<LA>1,weA)

I g(w)
w

where the function ¢ is the inverse of f given by (1.2).

It is of interest to note that by taking a = b and ¢ = 1 we state the following
subclass Fx (8, A) due to Frasin et al.[7].

Example 1.2. [7] A function f € ¥ and of the form (1.1) is said to be in the class
Fx(B, ) if the following conditions are satisfied:

(1.7) 8‘%{(1—A)J[(Z'Z)+)\f’(z)] >B (0<B<LA>1z€A)
and
(1.8) %{(1—)\)9(;@—#/\9’(11))} >B (0<B<1L,A>1L,weA)

where the function g is the inverse of f given by (1.2).

It is of interest to note that by taking a = b;c = 1 and A = 1 we state the
following subclass Hx(8) due to Srivastava et al.[22]. By taking a = b;¢ = 1 and
we state the following :
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Example 1.3. [22] A function f € ¥ and of the form (1.1) is said to be in the
class Hx(B) if the following conditions are satisfied:

RIf(2)>8 (0<B<1,z€4)
and

Rlg'(w)]>B (0<B<1LweA)
where the function g is the inverse of f given by (1.2).

The object of the present paper is to determine the functional |asas — a3| for
the function f € M%Y(8,A). Our result gives corresponding |agay — a3| for the
subclasses of 3 defined in the Examples 1.2 and 1.3.

2. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS M%"(8,\)

We need the following lemma for our investigation.

Lemma 2.1. (see [4], p. 41) Let P be the class of all analytic functions p(z) of
the form

(2.1) p(z) =1+ anz"
n=1

satisfying R(p(2)) > 0 (z € A) and p(0) = 1. Then
lpnl <2 (n=1,2,3,...).

This inequality is sharp for each m. In particular, equality holds for all n for the
function

p(z) = 1+271+22z

1—-2
Lemma 2.2. If the function p € P is given by the series
(2.2) 2p2 = pi +z(4 - p}),
(23)  dps =pi+2(4 - pHpz —pi(d - p)z® +2(4 - p)(1 - |z]*2),
for some x,z with |z| <1 and |z| < 1.

Lemma 2.3. [8] The power series for p given in (2.1) converges in A to a function
i P if and only if the Toeplitz determinants

2 1 Cs e
c_1 2 c1 R
(2.4) D,=| . . . ) o], n=1,2,3,...
C—n Contl Copy2 " 2

and c_y = ¢, are all nonnegative. They are strictly positive except for

2) = E:pk;zao(e”’“z)7 pr > 0, tg real
k=1

and ty, #t; for k # j in this case D, > 0 forn <m —1 and D,, =0 for n > m.

In the following theorem we determine the second hankel coefficient results for
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Theorem 2.4. Let f € MEYC(5,)) be given by (1.1). Then

(2.5)

oy [(14+2)3834+4(1-8)2(1+431) D (14+X1)3 @3
A(1 - 5% EESVEIEEEIVEFr 4} , Be [0’1 —\/ sa+sn e, }

|azas—a3| <

9(140)2(1- )2 @2 Be (1 [0 8 1>
2(14+3a)@4[(1+X)3P3—2(1—B)2(1+3X)D4]’ 8(14+3N) P4’ :

Proof. Since f € M%"(8,\), there exists two functions ¢(z) and ¥ (z) € P satis-
fying the conditions of Lemma 2.1 such that

a,b ,
(2.6) 1 -NELE oy @rrp@) = 8+ (- 8e(e)
and
Ia’b /

(2.7 (1= T (getgw) = 5+ (1 - Bute)
where
(2.8) H(2) =141z + 2 + 325 + ...
and
(2.9) Y(w) =1+ dyw + dow? + dsgw® + ...
. Equating the coefficients in (2.6) and (2.7)gives
(210) (1 + )\)CI)QCLQ = (]. — ﬂ)Cl
(2.11) (1 + 2/\)<I>3a3 = (1 — 6)62
and
(2.13) —(1 + /\)‘I)zag = (1 — ﬁ)dl
(2.14) (14 2))®3(2a3 — a3) = (1 — B)dy
(2.15) —(143X)®4(5a3 — 5agas + as) = (1 — B)ds
From (2.10) and (2.13) gives

o l=p  1-p
(216) as = (1 n )\)(IJQ C1 = (1 T /\)‘1)2 d1
which implies

Cc1 = —dl

Now from(2.11) and (2.14), we obtain
1-p)?2 , _(1-5) B
Gz el O aa s ong, @ @)

On the other hand, subtracting (2.15) from (2.12) and using (2.16), we get
(2.18)

(2.17) as =

1 5L+ 3N (1~ 8Py 5 5(143M)(1— 5)Ps

T o1 3N By TRV E 1+ N3,

asci + (]. — ﬂ)(c;; — dg) .
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Thus we establish that

(1=5)3ci(ca — da)
(14 N)2(1 + 2))P3D5

(cs —dg) — (1= B)*(ca — d2)?| .

(1-p)*
(1+N\)*®]
-8
T+ A)(1+3N)Bs®y
According to Lemma2.2 we have

2 =ct +a(d—c?), and 2dy=di+x(4—d}),

(2.19)  |agay —a3| = |- i + 3

3

hence we have
(2.20) co = do
and further
des =3 +2(4 -2
4dy = d} +2(4 — d}

cx—cy(4— c%)xQ +2(4— c%)(l — |ac\22)7
dix —dy(4 —d)z? +2(4 — d2)(1 — |z|*2)

—

1 1

(2.21) cg—ds = Ecif +ei(4—cx — 0 (4 — c2)a?
-1-8* 4 (1-5)° 4

2.22 —adi| =

(222) lazas = a3l = | Sig1 0 Y T T (0 5 308585 L

1-BPct(d—c)z _ (1-p)*ci(4 - cf)a?
(IT4+NA+30)PsPs 4(1+ A)(1+3N)DyDy
Letting ¢; = ¢, we may assume without restriction that ¢ € [0,2] since ¢ € P so
le1]| < 2.Thus,applying triangle inequality on (2.19),with p = |z| < 1, we obtain

(1-p)" -8
(1+N)*®d (14 X) (14 3X) 24D,

(-0 | Q-prea—cud
21+ N (L + 30 @aPs | A(1+ N)(L+ 30)Dys a
Differentiating F'(u), we get

Py - Q= BPEU-G) (6P -
AT+ N1+ 30)BaBs | 2(1+ V(1 + 3N Dybs
By using elementary calculus, one can show that F'(u) > 0 for g > 0 hence F is

an increasing function and thus ,the upper bound for F'(u) corresponds to p = 1,in
which case

3

(2.23) |agaq — a§| <

4
c+4

+

-9 - .
L+ A5 41+ A)(1+ 302y

1— 2.2 4 — 2
BB
1+ N (1 + 30 24P,
Assume that G(c) has a maximum value in an interior of ¢ € [0, 2], by elementary
calculations we find

220 F)=F0)= |

1

_ ] A4 6(1 — /B)QC
(14 XN)*05 (14 N)(1+3\)PsPo (1T4+X)(1+3X)DuP5°
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3(1+N)3 @3

PN s - . B B
Then G’ (c¢) = 0 implies the real critical point co; = 0 or cga = ATV —2(1-B)Z 1 T30 ®:

After some calculations we concluded following cases:

Case 1: When 8 € |0,1 — % } , we observe that cgs > 2, that is,
co2 is out of the interval (0, 2). Therefore the maximum value of G(c) occurs at
co1 = 0 or ¢ = ¢p2 which contradicts our assumption of having the maximum value
at the interior point of ¢ € [0,2]. Since G is an increasing function in the interval
[0, 2], maximum point of G must be on the boundary of ¢ € [0, 2], that is, ¢ = 2.

Thus, we have

max G(p) = G(2) = 4(1 — ?) {

0<c<2

(1+X)3 @3 .
Case 2: When g € (1— W, 1 |, we observe that cgs < 2, that is,

o2 is interior of the interval [0, 2]. Since G”(cp2) < 0, the maximum value of G(c)
occurs at ¢ = cpz. Thus, we have

(14 A\)32®3 +4(1 — B)2(1 + 3)\)<I>4}
(1+ X414 3\ 22D,

B B 3(14 )3 @3
Jpax, G(c) = Gleoz) = G (\/(1 F 303 — 2(1— B)2(1 + 30Dy )

9(1+N)*(1 - B)*@3
2(1 4 3a)@4[(1 + A\)303 —2(1 — B)2(1 + 3\)Dy]”

O

Concluding Remarks: Suitably specializing the parameter A one can state the
Hankel coefficients for various subclasses of./\/l%’b;c(ﬁ ,A). In fact, by choosing a = b
and ¢ = 1 we have &5 = 1; 3 = 1; P, = 1 hence we state the Hankel determinant
coefficients for the function f € Fx (8, A) studied in[7] as given below:

(2.26)

(A4+20)°+4(1-8)%(143X) (1+)3
A1 - ) EESVEIGEESY) } , Be [07 L—1\/sasn }

|azay — a3| <

9(14+2)*(1-8)° (1+X)3
2(130)[(1TN)° —2(1—B)Z(1 13N’ pe (1 - 8(1+3>\)’1> -

Also by choosing A = 1 one can easily derive Hankel determinant |agay — a?| for
the functions f € Hy studied by Srivastava et al.[22].
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