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ANALYTIC SOLUTIONS OF SPECIAL FUNCTIONAL
EQUATIONS

OCTAYV OLTEANU

ABSTRACT. We recall some of our earlier results on the construction
of a mapping defined implicitly, without using the implicit function
theorem. All these considerations work in the real case, for functions
and operators. Then we consider the complex case, proving the
analyticity of the function defined implicitly, under certain hypothesis.
Some consequences are given. An approximating formula for the
analytic form of the solution is also given. Finally, one illustrates the
preceding results by an application to a concrete functional and
operatorial equation. Some related examples are given.

1 Introduction

The equation
g=g9g-f,

where ¢ is given, while f is the unknown function, always has the trivial
solution

f(x)=x, Vxe D,
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where D is the domain of definition for f.

When g is firstly decreasing and then increasing (or - g firstly
increases and then decreases), there exists exactly one decreasing nontrivial
solution f, with the qualities stated in theorem 2.1 from below. Such
functions - g appear as probability densities associated to some random
variables. These equations appeared firstly in [5]. For concrete functions g,
one obtains special qualities of the corresponding solutions f.

The present approach allows the construction of the solutions of such
functional and operatorial equations, without using the implicit function
theorem. In the operatorial case the solution F is a function of U e D = X,
where x is the commutative algebra of selfadjoint operators (2). We
essentially use the fact that x is also an order-complete vector lattice, with
respect to the natural order relation on the real vector space A (H) of all

selfadjoint operators acting on H.

This work continues theorems published in [4]-[7] and contains new
results too. The background is partially contained in [1], [2], [3], [8]. In Section
2 we recall some known results on the subject, especially related to the real
case. Section 3 contains the proof of the analyticity of the solution and some
related consequences. An approximating explicit formula is also given. In
Section 4, we apply the theoretical results to a concrete functional equation
and to the corresponding operatorial equation.

2. General known results

Theorem 2.1. (see also [4]-[7]). Let u,ve R, U<V, «a elu,v[ and let
g Ju,v[—> R be a continuous function. Assume that

(a) lim g(x)=1lm g(x) = w e R,
xdu xTv
(b) g is strictly decreasing on u, o[ and strictly increasing on [a,v][.
Then there exists f Ju,v[—> Ju,v[ such that
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g(x)=9(f(x)), Vxeluyv]|
and f has the following qualities:

(i) fis strictly decreasing on qu,v[ and we have
lim f(x)=v, Ilm f(x)=u;
xdu xTv
(ii) o is the unique fixed point of f;
(iii) wehave = f on ju,v[;

(iv) f is continuous on 1u ,v[;

(V)if gec"(Qu,v[\{a}), ne NU{x} n=1, then f e c"(Ju,v[\{a});
(vi) if g is derivable on ju,v[\{a}, S0 s f;

(vii) if g e c?Qu,vD), g”(a)=0 and there exists p, :=1lim f'(x)e R then

fec'quvDnNciqu.vied) and f'(a) = -1;
(viii) if gec®Qu.vD, g”(a)=0 and there exist p =1lm f'(x)e R and

X—a

p,i=lim f"(x)eR, then f ec’Qu,vpNnc’Qu,vi{a}) and

X—>a

9"(a)

g"(a)

(ix) if g is analytic at o, then t is derivable at « and f'(a)= -1;
(x)let g, =gl o[ 9r = 9 |y, then we have

f/'( ) 2
a)=p, = ——-
2 3

f(Xg) = (9, ©g)(Xo) =sup{ x e [a,v[;g,(X) < g, (X)} VX €lu, ]
and

f(xg) = (g, o0, ) (%) = inf{ x elu, @159, (X) < g, (xo)} ¥V Xq € [a,V[
The proof of this theorem is similar to that of Theorem 1.1. [5] (see Figure 1
5], p- 62).

We recall the geometric meaning of the construction of ¢ If
x elu, v\ {a}, consider the horizontal passing through the point (x,g(x)).
Thanks to the qualities of g, this straight line intersect once again the graph
of 4 at exactly one point
(x1:9(xq)) = (x0,9(x)) %y # x.
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We define
f(x)=x;.
Then we have
g(x)=g(x) = g(f(x)) xelu,viVia}, fla):=a.
When x runs over the interval 1y 43 f(x) runs over the interval [, [, in the

decreasing sense, from y to ,. When x runs over the interval [, y[ (in the
increasing sense), f(x) runs over the interval j, ,] in the decreasing sense,

from , toy.

Let 4 c0,o[ and denote by g the set of all continuous functions
g 10, 0[—]0,»[ g(a)=0, Which are decreasing on g9 ,] and increasing on
[a,o[, Such that

lim o, 9(x)=1lm . g(x)= .
For 4 h e g, an interesting problem is the following one: find necessary and
sufficient conditionson ¢  for the equality:
fg = fp,

where ¢, 1, are the corresponding functions attached to ¢, respectively to n

by Theorem 2.1. The following statement is giving the answer.

Theorem 2.2. (Theorem 1.4 [5]). Let g he G, 2 €]0,w[. Then g +h, 4g, g-h are
also elements of g and the following statements are equivalent

@ = 1y

-1 -1
(b) hr °og, = hl °g; .9, =9 |]0,a]‘ g, =40 |[a,cx:[’ geG;

(c) there exists ¢ :[0,0[— [0,[ such that ¢(0)=0, ¢ is continuous and increasing,
verifying the relation
h=¢pog.
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Next we consider the abstract operatorial version of Theorem 2.1. In the
sequel, x will be an order-complete vector lattice, and 1zom  (x) will be the

set of all vector space isomorphisms T : X — X which apply X, onto itself.
Theorem 2.3. Let x be an order-complete vector lattice, x _its positive cone,
a € X, D, aconvex subset such that
aeD c{xe X; x<a}
D, a convex subset such that
aeD, c{xeX;, xza}

Let g, :D, » X be a convex operator such that

09, (x)N (=lzom (X)) = ®, Vxe D, \{a}
Let g, : D, - x be aconvex operator such that

og,(x)N (lzom (X)) = ®, Vxe D, \{a}

We also assume that

9,(@)=9,(a) and R(g,) = R(g,),

where R(g) is the range of g, while ag(x) is the set of all subgradients of g at x .
Let
g:bD=D, UD, » X,

g(x)=9g,(x)vxeD,, g(x)=9g,(x)VxeD,.
Then there exists F : D — D such that
9(x) = g(F(x)). VvxeD
F is strictly decreasing in D and it has the following properties:

(i) o is the only fixed point of F;
(ii)there exists F * and F " = F on D;

(iii) we have
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F(xy) = gr_l(g.(xo)) =sup{ xe D, ;9,(x)<9,(xy)} VX4 €Dy,

F(xy) = gl_l(gr(xo)) =inf{ xe D,;;9,(x)<9,(Xy)}Vx,eD,.

The proof of this theorem is similar to that from [5].

3. On the analyticity of the solution. The complex case

Application of the complex form of the implicit function theorem for a
holomorphic function g, that is the extension of the real function g of
Theorem 2.1, might be difficult around «. Namely, considering the equation

H(z,w)=g(z)-g(w)=0,

we have

Note that around points from jy,v[\{«}, application of the implicit function
theorem leads to the analyticity of ¢ at such points. Therefore, we only have

to study the analyticity at 4.

Theorem 3.1. Let g be the extension of the function g from Theorem 2.1, such that
g is holomorphic in a complex neighborhood of 1y v[. Then there is a unique
holomorphic solution ¢ of the equation § — g . t, such that ¢ is the extension of

f from Theorem 2.1 to a complex neighborhood of 1y, vI.
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Proof. From the preceding remarks, we have to prove the analyticity of ; at
« . To this end, let us write the following expansions:

[ =2k ~ 2k +1 ]
2k, 9 (06) g (a)(Z—a)+O((Z—Ot))|,

| (2k)! " (2k +1)! |

|'~2k o ~2k+1a
(@), 9 ( )(f(z)_a)+o((f(z)—a))-
] (2k )1 (2k +1)! |

Here m, = 2k is the smallest natural number, which for the derivative of order

m of § at ;4 isnot vanishing. By Taylor formula, it must be an even number,
since ;, is a minimum point for g On the other hand, since - g. f,

elementary computations and the preceding expansions lead to
im , ,, f(z)=al(= f(a))
Further computations yield

1/2k

f@)-f) [ §"M@ieme)z-a) )

1-a @) @) k) (f @) (2)-a))

where ,, is holomorphicaround . It follows that f'(«) isa 2k -order root of
the unity. Using the fact that 1 applies intervals of the real line into the real
line and that it is decreasing, we deduce that /(4 )= f'(«)= 1. This

concludes the proof. O

In the sequel, for a complex neighborhood v of , we denote:
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V+={26V;Rez<a,lmz>0},V|7:{ZGV;Rez<a,Imz<O},

Vr+:{ZEV;Rez>a,Imz>O},Vr_:{ZEV;Rez>a,Imz<0}.

Corollary 3.1. There is a neighborhood v of , such that
f:v > f(V)

is a one to one mapping and we have
fof—id, Tl )= (v Tl )= (e Tl )= e T )= )y

Proof. The first two assertions follow by the local inversion theorem and
respectively from the analytic continuation principle (¢ is a holomorphic

extension of ¢ ). The last four relations are consequences of the fact that  is

conformal at x, = o, also using the qualities of ¢ (see the comments

following Theorem 2.1). The conclusions follow. O

Corollary 3.2. There is a complex neighborhood w of 1y v[ such that ¢ is

holomorphic on w .

Corollary 3.3. The function +(f(z2)-a) I8 univalent in the open disc

LI -«
z-a|<1 ifandonlyif t(z)= -2+ 24
Proof. For the only if part, assume that
1 1 F"(a)

+(f(z)-a)= —(z-a)+

Z-a 71—« 2

(z-a)®+ -

is univalent in the open disc |z _ a| < 1. Then by the area theorem 14.13 [8], we

should have
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0

2
Z n-|an| <1,

n=1

where a,, nx1 are the coefficients of the holomorphic part of the preceding

expansion. Since , L =-1, it follows that all the other a,, nx2 are vanishing,

so that:

f(z)-a=-z2+a, f(z2)= -2+ 2a.

Conversely, if this last relation is verified, then a straightforward
computation shows that the function

1

+(f(z)-a)

I -«

is univalent in the unit open disc centered at . This concludes the proof.
O

Remark 3.1. The function f(z)= -z + « is an extreme point of the convex set of

all holomorphic functions with real coefficients

v(z)=Y a,(z _a)”,z n.a? <1. It is also an extreme point of the convex
n=1 n=1
subset of all functions

o0 o0
h(z):z an(z—a)n,a12+z pn|an|mn <1, p,20,m, >1,Vnzx2,

n=1 n=2

where p  m_ are given numbers with the properties from above.
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Theorem 3.2. I a small neighborhood of , we have:

Dividingby ¢ (z)- z » 0 and neglecting the nonlinear remained terms in

f(z)- z, the conclusion follows.
|

Corollary 3.4. For g as above and any linear bounded operator y acting on a
Hilbert space v with spectrum () in a small neighborhood of , there is a

holomorphic function ¢ such that

for all such operators .

Proof. Part of the relations follows by analytic functional calculus. For the
third relation, one applies Corollary 3.1. For the last relation one uses
Theorem 3.2. O

4. Examples and applications
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We consider the functional equation
xPexp (=B -x)=(f(x)*exp (- 8- f(x)),x>0,a>0,8>0.
This equation is equivalent to the following one:
xep (—bx)= f(x)ep (- bf (x)), x> 0,b:=f/a>0. (1)

Theorem 4.1. There exists a unique decreasing solution ¢ 30 w[—10,[ Of the

equation (1) and this solution has the following properties:

(1) £(0+)=o, foo—)=04;
(ii) o =1/10 is the unique fixed point of .
(iif) f~1 = f 07 10,00 ;
(iv) the following constructive formulae for ¢ (x) hold
f(xg)=sup{xe[l/b,of; xexp (- bx )= xq -exp (- bxy)}, VX, €]0,1/b],
f(xg)=inf {x €]0,1/b]; xexp (—bx )= xq -exp (- bx )}, Vxq € [L/b,o[;
(v) ¢ is the restriction of a holomorphic function t on a complex neighborhood of
10,0, SUch that §:1/b)= -1, f o f =id, and ¢ has the qualities mentioned in
Corollary 3.1;

(vi) in a small neighborhood of 1, we have: F(z) ~ 74 2 1-m

b 2-bz
Proof. The function g(x)= —x.ex (- bx) decreases from ¢ to gt/b)=-e b7t

in the interval [0, b1 ] and increases from g (b—l) to o- in the interval
b~ !, «[. Hence, the conclusions (i)-(iv) follow from theorem 2.1. The function
g isthe restriction of a holomorphic function g, with

/b )=0.™M ()= (-1)"b" exp (-bz)n—bz)neN,n21zeC.
In particular, g "(b -1 ) £ 0, so that we can apply Corollary 3.1, that leads to the

conclusion (v) of the present statement. The assertion (vi) follows from

Theorem 3.2. This concludes the proof.
O
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Let 4 be the function from the proof of Theorem 4.1. Then there exists
appropriate intervals j,, y[, containing ,~! such that 4 is convex on
Ju,v[ g(u)= g(v). The convexity is required in theorem 2.3 in order to deduce

the existence of a subgradient, which allow the construction of the solution.
Next we apply theorem 2.3 to the operatorial equation corresponding to (1).
The case of arbitrary linear bounded operators follows from corollary 3.4, for
G(z)=—z-exp(-bz) Re 2z >0, =b +, f being the holomorphic extension of f

from theorem 4.1 to a complex neighborhood of g, »[ (see also theorem 3.1).

Now we consider the case of the associated operator equation in a
commutative algebra of selfadjoint operators x - x (aA), A< A(H) being a

fixed selfadjoint operator acting of the Hilbert space 1. We define;

X;={UeA(H)UA =AU}, X = X(A)={V e X;;VU =UV ,VU e X,}, @)

X, =1{/eX;(Vh,hy>0VheH}

It is known [2] that x is an order complete Banach lattice and a commutative

algebra. We denote:

D, = eX:o(V)c[ul/b[}U {b‘ll},

D, ={VeX;o()c[1/bv]jU {b’ll}, D=D,UD,,
where (v ) is the spectrum of v

Theorem 4.2. There exists a decreasing mapping r : p -, p, such that
Uep (-bU )=F(U)ep (-bF (U)),U € D.

This mapping has the following properties:

(i) b~*1 is the unique fixed pointof ¢

(ii) g isinvertibleand ! - F on p.
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(iii) ¢ applies p, onto p_ and p_ onto p;

(iv) the following constructive formulae for ¢ hold:

FUg)=sup{U eD,;Uexp(-bU )=Ugexp(-bU )}, YU, e D,
FUg)=inf {U eD;;Uexp(-bU )=Ugexp(-bU,)}, VU, e D,;
(v) for y < a, with the spectrum in a small neighborhood of ,~* we have:

B =bU )21 —bu )t

Proof. We have to verify the conditions from the statement of theorem 2.3. To
prove the convexity of g(u )= -u ep (- bu ) on the convex subsets p,, b, , we

FU)~U +(2b~

use the convexity of the scalar function ¢ on 3y [ and the positivity of the
spectral measures attached to the elements y LU, e Dy, respectively

UjeD,, j=12 The fact that y  u, are commuting operators is essential.

One can use Fubini’s theorem. Namely, for ¢ ¢ [0,1] we have

g(@-tuy+t,)= jjg((l_t)xl+txz)dE1dE2S
o(Uy)xa(Uy)
(1-t) Hg(x1)dEldE2+t J.J-g(xz)dEldE2 =
c(Ug)xo(Uy) oUg)xo(Uy)
(1-t)gUy)+tg(U,)
Now the convexity on the subsets p, b, is proved. On the other hand, for
U e D, \{b‘1|}, we have:
g{(U )= ep (~bU )bU — 1)< 0
as a product of two commuting selfadjoint operators, the first one being
positive and the second one being negative. In the same way, one shows that

g/ (U)>0,vU D, \{b71}
It remains to prove that the ranges of the ranges of the two operators g, ,g,

coincide, and also the assertions (iii) and (v) of the present statement. Let
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9,(U;)er(g) U, =F(U,) where ¢ is associated to { by means of
functional calculus. Using the qualities of ; we obtain:

cU,)=0c(FU,;))=f(c(U;))ct/b,v]=> U, eD,.

From the equality g, ()=g,(f(t) teul/b]s oU,) by integration with

respect to the spectral measure attached to y,, one obtains

giUs)= [oide, = [or(fE)de, =9, (fUL)=9,U,)eR(g,)

o(Uq) o(Uq)

Similarly, one proves that r(qg ) r(g,) Now all the conclusion (except (v)),

follow by application of theorem 2.3. The assertion (v) is a consequence of (vi),

theorem 4.1. This concludes the proof.
O

We next give some examples for which the exact analytic expression of the
solution ¢ canbe determined explicitly.

Theorem 4.3. The nontrivial solution of the equation
e_x(l— e * ): e f(x)(l— e f(x)), x>0,
is given by
f(x)= —In(l—e_x), x > 0.

Its holomorphic extension is £ (z) = —n (1 _e? ) Re 750,
Proof. One can prove easily that the function

g(x)= —e_x(l— e_x), x €]0, o]
verifies the conditions of theorem 2.1, where , - h 2. To find the analytic

expressionof f we rewrite our functional equation as
- f(x) -x __=21f(x) -2x (e—f(x)_e—xxe—f(x)+e—x)

e - € =€ —€ =

Dividing by
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- f(x)

e —e 20, x=%h2,
and doing some straightforward computations, one obtains the result. This

concludes the proof.
O

Example 4.1. The unique nontrivial solution ¢ of the equation

2

5()- 37 @)L <1 86)- [ ]

isgivenby () - _
z-1
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