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FIXED POINT THEOREMS FOR o — y—QUASI CONTRACTIVE
MAPPINGS IN METRIC-LIKE SPACES

VILDAN OZTURK

ABSTRACT. In this paper, we give fixed point theorems for o — 1»—quasi
contractions and a — 1) — p—quasi contractions in complete metric-like spaces.

1. INTRODUCTION AND PRELIMINARIES

Fixed point theory became one of the most interesting area of research in the last
fifty years. Many authors studied contractive type mappings on a complete metric
space which are generalizations of Banach contraction principles. Recently, Samet
et al. [17] introduced the notion of o — ¢ contractive mappings and established
some fixed point theorems in complete metric spaces. Later some other authors
generalized « — 1) contractions ([5-7][9-14],[18]).

In last years, many generalizations of the concept of metric spaces are defined
and some fixed point theorems was proved in these spaces.In particular, in 1994,
Matthews introduced the notion of a partial metric space as a part of the study
of denotational semantics of dataflow networks and showed that the Banach con-
traction principle can be generalized to the partial metric context for applications
in program verification ([15]). Later on, many researchers studied fixed point
theorems in partial metric spaces ([1],[2],[8],[16],[20]). Recently, Amini-Harandi
generalized the partial metric spaces by introducing the metric-like spaces and
proved some fixed point theorems in such spaces ([3]). After authors gived some
fixed point theorems in metric-like spaces ([19]).

In this paper, we introduce the notion of o — ¢p—quasi contractive mappings in
complete metric-like spaces and in last parts we give o — ¢ — p—quasi contraction
in metric like spaces. Our results are generalisations of the many existing results
in the literature.

First we give some definitions and facts about metric-like spaces.

Definition 1. (/3/) A mapping 0 : X x X — RT | where X is a nonempty set,
is said to be metric-like on X if for any x,y,z € X, the following three conditions
hold true:
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=0 (ya ’I) ;

(03) o (x,2) <o (z,y)+0(y,2).

The pair (X, o) is called a metric-like space.Then a metric-like on X satisfies
all of the conditions of a metric except that o (z,x) may be positive for z € X.
Each metric-like 0 on X generates a topology 7, on X whose base is the family
of open o—balls

B, (z,e)={ye X: |o(z,y)—o(z,2)] <e}

for all z € X and € > 0.
Then the sequence {x,} in the metric-like space (X, o) converges to a point
x € X if and only if nhﬁn;o o(zn,z)=0(z,x).
Let (X,0) and (Y, 7) be metric-like spaces and let f: X — Y be a continuous
mapping. Then
lim z, =2 = nh_)ngo f(zn) = f(2).

n—oo

A sequence {z,},_, of elements of X is called o—Cauchy if lim o (2, 2m)
n,m—00

exists and is finite.The metric-like space (X, o) is called complete if for each
o—Cauchy sequence {z, },-, there is some 2 € X such that

nll)rl;oa (Tn,x) =0 (x,2) = n7£§m0 (Tn, Tm) -

Every partial metric space is a metric-like space. Below we give another example
of a metric-like space.

Example 1. (/3]) Let X ={0,1}, and let

| 2 ifr=y=0
o(z,y) = { 1, otherwise

Then (X,0) is a metric-like space, but since o (0,0) £ o (0,1), then (X,0) is not
a partial metric space.
2. F1xep PoOINT RESULTS FOR a — ¢ CONTRACTIVE MAPPINGS

Denote by ¥ the family of nondecreasing functions ¥ : [0,00) — [0,00) such
that lim,, . ¥" (t) =0 for all £ > 0.

Lemma 1. If vy € U, then the following are satisfied.

(a) Y (t) <tforallt>0
(b) ¢ (0) =0
(c) v is right continuous at ¢ = 0.
Remark 1. (a) If ¢ : [0,00) — [0,00) is nondecreasing such that > ¥™ (t) < 0o
n=1
for each t > 0, then ¢ € W.

(b) If ¢ : [0,00) — [0,00) is upper semicontinuous such that i () < ¢ for all
t > 0, then lim,, o, ¥" (¢t) =0 for all £ > 0.
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Definition 2. ([16/)LetT : X — X and o : X x X — [0,00). We say that T is
a-admissible if

z,ye X, a(x,y)>1=a(Tz,Ty) >1.

Definition 3. Let (X,0) be a complete metric-like space and T : X — X be a
giwen mapping. We say that T is an o — Y—quasi contractive mapping if there
exist a1 X x X — [0,00) and ¢ € ¥ such that

(1) a(z,y)o (Tz, Ty) < p(M(z,y))
for all x,y € X where

M(z,y) = max{o (v,y),0 (z,Tx),0(y, Ty),0 (x,Ty), 0 (y, Tx) 0 (z,2),0 (y,9)} -

Theorem 2. Let (X,0) be a complete metric-like space and T : X — X be an
a — Y—quasi contractive mapping. Assume that there exists xg € X such that
O (xzg,00) = {T"xp: n=0,1,2...} is bounded and

(i) o (Tiwo, T xo) > 1 for alli,j > 0 with i < j,
(ii) T is o—continuous or

lim,, o inf a (T™xg, ) > 1 for any cluster point = of {T"z¢} .
Then T has a fixed point.

Proof. Let g € X be such that O (zg,00) = {T™x¢: n=0,1,2...} is bounded
and a (Tiajo,zjo) > 1 for all 4,5 > 0 with ¢ < j. Define the sequence {z,} in X
by xn1 = Tz, for alln € NU{0}.

If z,, = 2,41 for some n € N, then 2* = z,, is a fixed point of T.

Assume that z,, # x,1 for all n € NU {0} .

Now we shall show {z,,} is a c—Cauchy sequence.

Let 6 (z,) = diam ({Txp, Txny1,...}) for n = 0,1,2,.... Since § (x,) < 6 (z0)
and d (zg) < 00

We assert that for n =0,1,2, ...

(2) 6 (xn) < 9" (6 (z0)) -

For n = 0, (2) holds. Suppose that (2) holds for n = k. We will show that ( 2)
holds when n = k + 1. Let Tzp—1,Txs-1 € {Txk, TTk41,...} for any r,s > k + 1.
Then

g (Txr—la sz_l)
a(@p_1,05 1) 0 (Tor_1,Trs 1)

(M (2, 25))

o (z,xs)

IN A
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where
g (Ir—lvgjs—l) , O (IT'—17TIT—1) , 0 (Is—laTzs—l) )
M(mhxs) = maX O—(xrflaTwsfl) ,U(LES,1,T{ET,1),
U(xrflvx'rfl) ,0(1'571,‘%5,1)
o(Txr,Tas),0 (Txr, Tari1),0 (Tas, Txss1)

= max o (Txp, Txs11),0 (Tas, Tpri1),
o(Tzp,Ta,),0(Txs, Txy)

IN
[«
£}
=
~—

Then by (3),

0 (Tar—1,Txs—1) < (0 (z))
¥ (9" (6 (o))

= (6 (20))

Thus (2) is proved for n =0,1,2,....

Hence from (2) we have lim,, o0 0 (z5,) = 0. Thus {x,,} is a c—Cauchy sequence
in (X, o). By the completeness of X |, there exists z € X such that lim,,_,, z,, = z,
that is,

Q
N
3
&
V)
S~—
I

IN

(4) nh_{rgoo (Tn,2) =0(2,2) = nﬂlqirgooa (Tn, m) = 0.

If T is o —continuous,

nleréoa (Tx,,Tz) = nl;rr;o 0 (tnt+1,T2) =0 (2,Tz) =0.

This proves z is a fixed point.
If lim,, o0 inf & (T™xg, 2) > 1 for any cluster point x of {T"zy}, there exists
ng € N such that « (x,,z) > 1, for all n > ng. Thus,
o(xpse1,Tz) < o(Tx,,T2)
a(xn,2)o (Ta,, Tz)
¥ (M (zn, 2))

IAIA

(5)
where

M (a z)—max{ 0 (2n,2),0 (20, Ty) 0 (2,2 a(xmw,}

o(z,Txy),0(Tn,xn),0(2,2)

If o (2,Tz) > 0, using upper semicontinuity of 1,

o(2,Tz) = lim,yeosupo (Tpy1,12)
< limy oo sup (M (zy, 2))
< ¢Y(o(z,T%))
< o(z,Tz)

which is a contradiction. Thus, we obtain ¢ (Tz,z) = 0.So Tz = z. |
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Example 2. Let X = {0,1,2}. Define 0 : X x X — RY as follows:

s(0,0) = 0 o(1,1) = 3 0(2,2) = 1
c(0,1) = 0o(1,0)=7 0(0,2) =0(2,0)=3
c(1,2) = o(2,1)=4.

Then (X, 0) is a complete metric-like space. Define the mapping T : X — X by
T0=0,T1=2andT2=0
and a: X x X — [0,00) by
l .
a(x,y){ 4 /Lf (xﬂy)#(070)
1, (z,y) = (0,0)

Then T is an a— )-quasi contractive mapping with ¢ (t) = %

1+t°

Moreover, there exists o € X such that o (T"zo,T7xg) > 1, for all 4,5 > 0
with ¢ < j. So for g = 0, we have

a (T%0,770) =  (0,0) = 1.

Obviously (1) is satisfied for all z,y € X.

All hypotheses of Theorem 2 are satisfied. Consequently T' has a fixed point.
And x¢ = 0 is fixed point of T.

Taking in Theorem 2, a(z,y) = 1 for all z,y € X,we obtain immediately the
following corollaries.

Corollary 3. Let (X,0) be a complete metric-like space and T : X — X be a
given mapping. Suppose that there exists a function v € ¥ such that

o (T, Ty) < (M (z,y))
where
M(z,y) = max{o (z,y),0 (v,Tz),0 (y,Ty), 0 (x,Ty),0 (y,Tx),0 (v,2),0 (y,y)}
for all x,y € X. Then T has a unique fized point.

Corollary 4. Let (X,0) be a complete metric-like space and T : X — X be a
given mapping. Suppose that there exists a constant ¢ € (0,1) such that

o(Tz,Ty) < cM(z,y)
where
M(z,y) = max{o (2,y),0 (z,Tz),0(y, Ty),0 (z,Ty) 0 (y, Tz) 0 (x,2),0(y,y)}

forall x,y € X. Then T has a unique fized point.
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3. Fixep PoINT RESULTS FOR a — ¢ — p—QUAST CONTRACTIVE MAPPINGS

In this section we give a — 1) — p—quasi contraction in consideration of Amini-
Harandi [4].

Definition 4. Let (X,0) be a complete metric-like space and T : X — X be a
given mapping. We say that T is an o — Y — p—quasi contractive mapping if there
exist a1 X X X = [0,00) and ¢ € ¥ such that

(6) a(z,y)o (TP, TPy) < p(M(z,y))
for all x,y € X where

M(z,y) = max{a (Tiu,ij) cu,v €{x,y}, 0<i,j<pandi+j<2p }
Theorem 5. Let (X,0) be a complete metric-like space and let p € N. Suppose

that T : X — X be an o — 1 — p—quasi contractive map. Assume that there exists
xo € X such that O (zg,00) = {T"x0: n=0,1,2...} is bounded and

(i) there exists g € X such that o (T"zo, T72) > 1 for all i, € NU {0},
(ii) 7™ : X — X is o—continuous for some m € N.
Then T has a fixed point.
Proof. Let zg € X be such that O (z,00) = {x, Tz, ...} is bounded and « (Tixo7 zjo) >
1 for all 4, j € NU{0} . Define the sequence {z,,} in X by z,4+1 = Tz, for alln > 0.
Let n be a positive integer with n > p, and let i,5 € {p,p+1,...,n}. Since T is
an « — 1 — p—quasi contractive map, then
o(T'z,Tx) o (TPT" Pz, TPT7 Px)
o (Ti_px, Tj_px) o (T”Ti_px, Tij_px)
< ¢{max {U (TkTi_px,TlTj_px) c0<kl<pandk+1< 2p}}

(7) < Y(6[0(z,n)))

Hence by lemma 1 (a) ,

IA

o(T'z,T7z) < 6[0 (z,n)].
Thus for sufficiently large n € N there exist positive integers k,[ with k£ < p and
p <1l <n such that

o (TFz,T'z) = §[O (z,n)].
we show that {T"z} is a o—Cauchy sequence. Without loss of generality assume
that p < n < m.Then, from (7)

(
o(T"z, T"x) = o (TPT" Pz, T "TPT" Pg)
@ (T"_’”a;7 Tm_Px) o (TPT"_pm, Tm_"+pT"_px)
P (5 [O (T”_px,m — n—i—p)}) .

by (7), there exists positive integers k; and I3 with k1 <pandp <l <m-—-n-+p
such that

IA N

1) [O (T”_px, m—n —|—p)] =0 (T’“T"‘px7 TllT”_px) .
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Similarly we have
o (THT" Pz, ThT" Pz) = o (THTPT" 2Py, THT " Py)
P(d [O (T"*%x, m—n+ 2p)] ).

N

Thus,
o (T"z, T"x) <6 [0 (T Pz,m —n+p)]) < ) [O(T" Pz, m —n + 2p))).

Proceeding in this manner, we obtain
o(T"z, T™x) < w[%] (5 [O (T"[g]px, m—n+ [Z] p)]) < 1/)[%] (0[O0 (x,m+p)]).

Hence
o (T, T™z) < ¢l (5[0 (z,00))) .

By definition of v, lim, ., o (T™x, T™x) = 0. Hence we conclude that {T"x} is
a 0—Cauchy sequence. By the completeness of X, there is some u € X such that

lim o (T"z,u) = lim o (T"z,T™z) =0 (u,u) =0 for each z € X.
n— oo n— oo

Now we show that Tu = u. By the continuity of 7™,
lim o (T2, Tu) = o (u, Tu) = 0.

n—roo

Hence, u = Tu. [l

Example 3. Let X =[0,00) and o : X x X — [0,00) be defined

0, =1y
max {z,y}, otherwise

0(m7y)={

Then, (X,0) is a complete metric-like space. Let Q and Q’denote respectively
the set of rational numbers and irrational numbers. Let 7" : [0,00) — [0,00) and
a:X x X — [0,00) be defined by

V2, r€Q
T(2) = { \/§7 otherwise

1, zeQ
0, otherwise

aten) ={
Then T is an a— 1-2—contractive mapping with ¢ (¢) = 1%—1&
Then T2 (x) = /3 for each * € X. Moreover T is discontinuous and T? is

continuous. Then all conditions of Theorem 5 are satisfied. And = = /3 is fixed
point of T.
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