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STRONG METRIZABILITY FOR CLOSED OPERATORS AND THE

SEMI-FREDHOLM OPERATORS BETWEEN TWO HILBERT SPACES

MOHAMMED BENHARRAT1 AND BEKKAI MESSIRDI2,∗

Abstract. To be able to refine the completion of C(H1, H2), the set of all closed densely
defined linear operators between two Hilbert spaces H1 and H2, we define in this paper

some new strictly stronger metrics than the gap metric g and we characterize the closure

with respect to theses metrics of the subset L(H1, H2) of bounded elements of C(H1, H2).
In addition, several operator norm inequalities concerning the equivalence of some metrics

on L(H1, H2) are presented. We also establish the semi-Fredholmness and Fredholmness of

unbounded operators in terms of bounded pure contractions.

1. Introduction

Let H, H1, H2 be a complex Hilbert spaces endowed with the appropriate scalar product
and the associated norm. The inner product in H1 × H2 is defined by < (x, y); (x′, y′) >=<
x;x′ > + < y; y′ >. For T linear operator from H1 to H2, the symbols D(T ) ⊂ H1, N(T ) ⊂ H1

and R(T ) ⊂ H2 will denote the domain, null space and the range space of T , respectively. The
set G(T ) = {(x, Tx) : x ∈ D(T )} ⊂ H1 × H2 is called the graph of T . The operator T is

closed if and only if G(T ) is a closed subset of H1 ×H2, and is densely defined if D(T ) = H1,

where D(T ) denote the closure of D(T ) in H1. The set of all closed and densely defined linear
operators from H1 to H2 will be denoted by C(H1, H2). Denote by L(H1, H2) the Banach space
of all bounded linear operators from H1 to H2. If H1 = H2, write C(H1, H2) = C(H1) and
L(H1, H2) = L(H1). If T ∈ C(H1, H2), the adjoint T ∗ of T exists, is unique and T ∗ ∈ C(H2, H1).
An operator A ∈ L(H1, H2) is a pure contraction if ‖Ax‖2 < ‖x‖1 for all nonzero x in H1. We
denote by L0(H1, H2) the set of all pure contractions.

In [9] W. E. Kaufman showed that if T ∈ C(H) then T is represented as T = Γ(A) =
A(I − A∗A)−1/2 using a unique pure contraction A defined in H, where I denote the identity
in H.

Since the publication of Kaufman [9] in 1978 and its follows papers, this Kaufman’s rep-
resentation is used to reformulate questions about unbounded operators in terms of bounded
ones:

• In [9] [11], Kaufman proved that the map Γ preserves many properties of operators:
self-adjontness, nonnegative conditions, normality and quasinormality. In [12] he also
defined by the use of Γ−1 a metric in the space of closed densely defined Hilbert space
which is stronger than the gap metric and sharing many of its properties. On the the
bounded operators it is equivalent to the metric generated by the usual operator-norm.
• In [5] Hirasawa showed that a pure contraction A is hyponormal if and only if Γ(A) is

formally hyponormal, and if A is quasinormal then Tn = An(I − A∗A)−n/2 is quasi-
normal for all integers n ≥ 2.
• In [2], Cordes and Labrousse proved that if a closed and densely defined operator T is

semi Fredholm then so is the bounded operator Γ−1(T ) = T (I + T ∗T )−1/2.
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• In [1], Benharrat and Messirdi prove that if a pure contraction A on a Hlibert space H
is semi Fredholm, then the closed densely defined linear operator λI − T = λI −A(I −
A∗A)−1/2 is semi Fredholm operator for all λ ∈ C such that |λ| < γ(A)

1+γ(A) .

Recently, J. J. Koliha in [14] extend Kaufman’s results to operators between two Hilbert
spaces and showed that the mapping Γ maps the set L0(H1, H2) one-to-one onto the set
C(H1, H2). More precisely, we have the following result.

Theorem 1.1. [14, Theorem 5.] Let L0(H1, H2) be the set of all pure contractions from H1

to H2, C(H1, H2) the set of all closed and densely defined linear operators from H1 to H2, and
G ∈ L+(H1) a positive bijection. The mapping ΓG defined by

ΓG(A) = AG1/2(G1/2(I −A∗A)G1/2)−1/2G1/2, A ∈ L0(H1, H2),

is a bijection of L0(H1, H2) onto C(H1, H2) with the inverse

Γ−1G (T ) = T (G+ T ∗T )−1/2, T ∈ C(H1, H2).

In this paper, by the use of the generalized Kaufman’s representation, we discuss some metrics
in the space C(H1, H2) endowed with the gap metric. More precisely, in Section 2, we define some
metrics on C(H1, H2) equivalent to the gap metric. In Section 3, we define on C(H1, H2) a metric
in term of Γ−1, strictly stronger than the gap metric and is equivalent to the metric associated
to the operator-norm in L(H1, H2). We characterize essentially the closure of L(H1, H2) in
C(H1, H2) for this metric. In section 4, we prove some operator norm inequalities for bounded
operators between two Hilbert spaces. In the last section, we establish some characterizations of
Fredholm unbounded operators in terms of bounded pure contractions by treating unbounded
operators between two Hilbert spaces rather than restricting the investigation to operators on
a single space.

2. A strong metric for closed operators between two Hilbert spaces

Recall that, if T ∈ C(H1, H2), then the operator RT = (I + T ∗T )−1 is self-adjoint positive
operator defined on all H1, and has a unique positive definite self-adjoint square root, which
we denoted by ST . The fundamental properties of RT and ST are, see [15]:

RT , ST ∈ L(H1, H2), ‖RT ‖ ≤ 1, ‖ST ‖ ≤ 1,

‖TRT ‖ ≤ 1, ‖TST ‖ ≤ 1,

and

(2.1) (TRT )∗ = T ∗RT∗ , (TST )∗ = T ∗ST∗ , T ∗ST∗TST = I −RT .

In the sequel L+(H1) denotes the set of all positive bijective operators in L(H1). Let G be an
element of L+(H1). By Theorem 1.1, for a given pure contraction A ∈ L0(H1, H2), there exists
a unique operator T ∈ C(H1, H2) such that the equation

(2.2) XGX = I −A∗A,

admits a unique solution given by

(2.3) X = (G+ T ∗T )−1/2 = G−1/2(G1/2(I −A∗A)G1/2)1/2G−1/2,

with T = ΓG(A). Further, the operator TG−1/2 has domain G1/2D(T ), which is clearly dense
in H1. Therefore RTG−1/2 is defined on all H1 and

(2.4) (G+ T ∗T )−1 = G−1/2RTG−1/2G−1/2.

Hence (G+ T ∗T )−1 ∈ L(H1).
Let PG(T ) denote the correspondence which assigns to each T ∈ C(H1, H2) the orthogonal

projection from H1 ×H2 onto the graph G(T ) of T .
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Lemma 2.1. Let T ∈ C(H1, H2) and G ∈ L+(H1). Then

(2.5) PG(TG−1/2) =

(
G1/2(G+ T ∗T )−1G1/2 G1/2(G+ T ∗T )−1T ∗

T (G+ T ∗T )−1G1/2 I − T (G+ T ∗T )−1T ∗

)
.

Proof. Let v ∈ D(G1/2T ∗) and X = (u, v) ∈ H1 ×H2 such that PG(TG−1/2)X = (x, TG−1/2x),

for x ∈ G1/2D(T ). Since G(TG−1/2)⊥ = V (G(G−1/2T ∗)) with the isomorphism V from H1×H2

to H2 ×H1 defined by V (x1, x2) = (−x2, x1), we get PG(TG−1/2)X from the decomposition

X = (u, v) = (x, TG−1/2x) + (−G1/2T ∗y, y), y ∈ D(G1/2T ∗), x ∈ G1/2D(T ),

where x and y are the solutions of the system:{
u = x−G1/2T ∗y
v = TG−1/2x+ y.

By solving this system we get{
x = G1/2(G+ T ∗T )−1G1/2u+G1/2(G+ T ∗T )−1T ∗v
y = T (G+ T ∗T )−1G1/2u+ (I − T (G+ T ∗T )−1T ∗)v.

�

By (2.4), we can rewrite (2.5) as follows

(2.6) PG(TG−1/2) =

(
RTG−1/2 RTG−1/2G−1/2T ∗

TG−1/2RTG−1/2 I − TG−1/2RTG−1/2G−1/2T ∗

)
.

If H1 = H2, we also have

(2.7) PG(TG−1/2) =

(
RTG−1/2 G−1/2T ∗RG−1/2T∗

TG−1/2RTG−1/2 I −RG−1/2T∗

)
.

In the case of G = IH1
Lemma 2.1 reduces to the following well-known statement, see [15].

Corollary 2.2. Let T ∈ C(H1, H2). Then the orthogonal projection PG(T ) in H1⊕H2 onto the
graph G(T ) of T , is given by

(2.8) PG(T ) =

(
RT T ∗RT∗

TRT I −RT∗

)
.

Definition 2.3. Let G ∈ L+(H1) and T, S ∈ C(H1, H2). The gap metric between T and S
associated to G is defined by

(2.9) gG(T, S) =
∥∥PG(TG−1/2) − PG(SG−1/2)

∥∥ .
Note that if G = IH1

, we have the usual gap metric (cf. [8, p. 201]) for T, S ∈ C(H1, H2),

(2.10) g(T, S) =
∥∥PG(T ) − PG(S)

∥∥ for all T, S ∈ C(H1, H2).

Thus, for an infinite sequence (Tn) of C(H1, H2), g(Tn, T )→ 0 if and only if each the following
conditions hold

(i) ‖RTn −RT ‖ → 0,
(ii) ‖TnRTn

− TRT ‖ → 0,
(iii)

∥∥RT∗n −RT∗∥∥→ 0,

(iv)
∥∥T ∗nRT∗n − T ∗RT∗∥∥→ 0.

Similarly, we can express the convergence with respect to the metric gG as follows :

Proposition 2.4. For an infinite sequence (Tn) of C(H1, H2), g(Tn, T ) → 0 in the sens of
Definition 2.3 if and only if each the following conditions hold

(i)
∥∥RTnG−1/2 −RTG−1/2

∥∥→ 0,

(ii)
∥∥TnG−1/2RTnG−1/2 − TG−1/2RTG−1/2

∥∥→ 0,

(iii)
∥∥TnG−1/2RTnG−1/2G−1/2T ∗n − TG−1/2RTG−1/2G−1/2T ∗

∥∥→ 0,

(iv)
∥∥RTnG−1/2G−1/2T ∗n −RTG−1/2G−1/2T ∗

∥∥→ 0.
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with G ∈ L+(H1).

By (2.9) and (2.10) we can deduce that

gG(T, S) = g(TG−1/2, SG−1/2).

Let M,N be two closed linear subspaces of the Hilbert space H. Denote by PM and PN the
orthogonal projection onto M and N respectively. Set

δ(M,N) = ‖(I − PN )PM‖ ,
δ is a pseudo-distance, for its properties we can see also [2]. We define another metric on
C(H1, H2) as follows,

dG(T, S) =
∥∥(I − PG(TG−1/2))PG(SG−1/2)

∥∥+
∥∥∥(I − PG(S)G−1/2)PG(TG−1/2)

∥∥∥ ,
for all T, S ∈ C(H1, H2) with G ∈ L+(H1).

We notice that

gG(T, S) = max{δ(G(TG−1/2),G(SG−1/2)), δ(G(SG−1/2),G(TG−1/2))}
and

dG(T, S) = δ(G(TG−1/2),G(SG−1/2)) + δ(G(SG−1/2),G(TG−1/2)).

The following result is immediately obtained.

Corollary 2.5. If G ∈ L+(H1); then dG and gG are equivalent metrics on C(H1, H2), in
particular we have

gG(T, S) ≤ dG(T, S) ≤ 2gG(T, S).

Put P = (I − PG(TG−1/2))PG(SG−1/2), let us remark that

(2.11) P = UT
[

0 0
TG−1/2STG−1/2SSG−1/2 − S∗TG−1/2SG

−1/2SSG−1/2 0

]
US .

with

UT =

[
STG−1/2 TTG−1/2G−1/2T ∗

TG−1/2STG−1/2 S∗
TG−1/2

]
.

Then we can deduce that

Corollary 2.6. If G ∈ L+(H1), then for T, S ∈ C(H1, H2) we have

dG(T, S) =
∥∥∥TG−1/2STG−1/2SSG−1/2 − S∗TG−1/2SG

−1/2SSG−1/2

∥∥∥
+
∥∥∥SG−1/2SSG−1/2STG−1/2 − S∗SG−1/2TG

−1/2STG−1/2

∥∥∥ .
Furthermore, if T, S are bounded, then

dG(T, S) =
∥∥∥G−1/2S∗TG−1/2(T − S)SSG−1/2

∥∥∥+
∥∥∥G−1/2S∗SG−1/2(S − T )STG−1/2

∥∥∥ .
For an operator G ∈ L+(H1), we define a third metric on C(H1, H2) by

pG(T, S) =

[
‖RTG−1/2 −RSG−1/2‖2 +

∥∥∥TG−1/2RTG−1/2 − SG−1/2RSG−1/2

∥∥∥2]1/2 .
It easy to see that

pG(T, S) ≤ gG(T, S).

Hence

Theorem 2.7. The topology induced from the gap metric gG on C(H1, H2) is strictly stronger
than that induced from pG.

The following example exclude the possibility that the metrics pG and gG generate the same
topology even in the case of G = IH1

.
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Example 2.8. Let H1 and H2 two separable Hilbert spaces and {φn}, {ψn} an orthonormal
basis in H1, H2 respectively. Put for n ∈ N∗,

Tnφk =

{
kψk, if k < n
−kψk+1 if k ≥ n.

Then,

T ∗nψk =

 kφk, if k < n
0 if k = n
−kφk if k > n

and thus,

RTn
φk =


1

1+k2φk, if k < n

φn if k = n
1

1+(k−1)2φk if k > n

Define the operator T by Tφk = kψk, k ∈ N∗. Then, RT = RT∗ = RT∗n ,
∥∥RT∗ −RT∗n∥∥ = 0,

and

T ∗RT∗ − T ∗nRT∗nψk =


0 if k < n
n

1+n2φn if k = n
k

1+k2φk if k > n

Thus

‖TRT − TnRTn
‖ =

∥∥T ∗RT∗ − T ∗nRT∗n∥∥ ≤ 2√
1 + n2

→ 0.

On the other hand,

(RT −RTn)φk =


0 if k < n
( n
1+n2 − 1)φn if k = n

1−2k
(1+k2)(1+(k−1)2φk if k > n

Then

‖RT −RTn
‖ ≥ n2√

1 + n2
→ 1.

Finally, if we put Sn = T ∗n and S = T ∗, we get pG(S, Sn)→ 0 and gG(S, Sn)→ 1.

3. A new strong metric than the gap metric

Let G ∈ L+(H1) and T, S ∈ C(H1, H2). We define another metric in terms of Γ−1G , given in
Theorem 1.1, as follows,

qG(T, S) =
∥∥Γ−1G (T )− Γ−1G (S)

∥∥ .
Clearly C(H1, H2) is isometric to the subset L0(H1, H2) of the unit ball in L(H1, H2) under
the operator-norm, so that qG(T, S) ≤ 2 for all T, S ∈ C(H1, H2). The related convergence in
the space C(H1, H2), called quotient-convergence associated to G. The purpose of the following
theorem is to prove that the metric qG is stronger than dG.

Theorem 3.1. Let G ∈ L+(H1). The metric topology induced by qG is stronger than that
induced by the gap metric gG in C(H1, H2).

Proof. Let T ∈ C(H1, H2) and (Tn) an infinite sequence of C(H1, H2), such that qG(Tn, T )→ 0.
By Theorem 1.1 then we can write T = ΓG(A) (resp Tn = ΓG(An)) with a unique positive
contraction A ∈ L0(H1, H2) (resp. An ∈ L0(H1, H2) for all n). Thus,

(G+ T ∗T )−1/2G(G+ T ∗T )−1/2 = I −A∗A,
and

(G+ T ∗nTn)−1/2G(G+ T ∗nTn)−1/2 = I −A∗nAn.
Therefore, by (2.3) the orthogonal projections PG(TG−1/2) and PG(TnG

−1/2
n )

are easily computed

from (2.3), and we obtain respectively,

(3.1) PG(TG−1/2) =

(
UG−1U UG−1UG−1/2(ΓG(A))∗

AG−1/2U I −AG−1/2UG−1/2(ΓG(A))∗

)
,
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and

(3.2) PG(TnG−1/2) =

(
UnG

−1Un UnG
−1UnG

−1/2(ΓG(An))∗

AnG
−1/2Un I −AnG−1/2UnG−1/2(ΓG(An))∗

)
,

where U = (G1/2(I −A∗A)G1/2)1/2 and Un = (G1/2(I −A∗nAn)G1/2)1/2 for all n ∈ N.
Consequently, if An converges to A in L0(H1, H2), then Un converges to U and this assures

the convergence PG(TnG−1/2) −→ PG(TG−1/2) as n −→∞, hence gG(Tn, T )→ 0. �

In the following example, we show that is not possible that the metrics qG and gG generate
the same topology even for G = IH1

.

Example 3.2. Let H1 and H2 be two separable Hilbert spaces and {φn}, {ψn} an orthonormal
basis in H1, H2 respectively. Put for n ∈ N∗,

Tnφk =

{
kψk, if k < n
−kψk if k ≥ n.

Then,

T ∗nψk =

{
kφk, if k < n
−kφk if k ≥ n

and thus,

RTnφk =
1

1 + k2
φk, RT∗nψk =

1

1 + k2
ψk.

If we define the operator T by Tφk = kψk, k ∈ N∗. Then, T = Γ(A) where Aφk = k√
1+k2

ψk,

A ∈ L0(H1, H2), we see that the conditions (i)-(iv) of Proposition 2.4 holds. Thus gG(Tn, T )→
0. On the other hand, as n −→∞,

qG(Tn, T ) = ‖An −A‖ =
2n√

1 + n2
→ 2.

We have also the following result:

Corollary 3.3. The topology induced on C(H1, H2) by the metric qG is strictly stronger than
the topology induced by the metric dG.

Lemma 3.4. Let G ∈ L+(H1). An operator T ∈ C(H1, H2) is bounded if and only if
∥∥Γ−1G (T )

∥∥ <
1. In this case,

(3.3) ‖T‖ =

∥∥Γ−1G (T )
∥∥∥∥G1/2

∥∥2√
1−

∥∥Γ−1G (T )
∥∥2 .

Proof. Let T ∈ C(H1, H2) a bounded operator, then for all x ∈ H1, we have

‖x‖2 =
∥∥∥G1/2(G+ T ∗T )−1/2x

∥∥∥2 +
∥∥∥T (G+ T ∗T )−1/2x

∥∥∥2
≤
[
1 +

∥∥∥G−1/2∥∥∥2 ‖T‖2] ∥∥∥G1/2(G+ T ∗T )−1/2x
∥∥∥2 .

Thus, ∥∥∥G1/2(G+ T ∗T )−1/2x
∥∥∥2 ≥ 1

1 +
∥∥G−1/2∥∥2 ‖T‖2 ‖x‖2 .

Consequently∥∥∥T (G+ T ∗T )−1/2x
∥∥∥2 = ‖x‖2 −

∥∥∥G1/2(G+ T ∗T )−1/2x
∥∥∥2 ≤ ‖T‖2∥∥G1/2

∥∥2 + ‖T‖2
‖x‖2 .

Hence

(3.4)
∥∥∥T (G+ T ∗T )−1/2

∥∥∥ ≤ ‖T‖√∥∥G1/2
∥∥2 + ‖T‖2

< 1.
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Conversely, assume that
∥∥Γ−1G (T )

∥∥ < 1. Then I − (Γ−1G (T ))∗Γ−1G (T ) is invertible and for all
x ∈ H1, we have〈

G1/2(I − (Γ−1G (T ))∗Γ−1G (T ))G1/2x, x
〉

=
∥∥∥G1/2x

∥∥∥2 − ∥∥∥Γ−1G (T )G1/2x
∥∥∥2

≥
[
1−

∥∥Γ−1G (T )
∥∥2] ∥∥∥G1/2x

∥∥∥2 .
Hence ∥∥∥∥[G1/2(I − (Γ−1G (T ))∗Γ−1G (T ))G1/2

]−1/2∥∥∥∥ ≤ 1√
1−

∥∥Γ−1G (T )
∥∥2 .

Since T = Γ−1G (T )G1/2
[
G1/2(I − (Γ−1G (T ))∗Γ−1G (T ))G1/2

]−1/2
G1/2, we obtain

(3.5) ‖T‖ ≤
∥∥Γ−1G (T )

∥∥ ∥∥G1/2
∥∥2√

1−
∥∥Γ−1G (T )

∥∥2 .
This implies the boundedness of T . Furthermore, by (3.4) and (3.5) we obtain (3.3). �

Theorem 3.5. L(H1, H2) is dense open subset of C(H1, H2) endowed with the metric qG.

Proof. L(H1, H2) is an open subset of C(H1, H2) with respect to the metric qG follows im-
mediately from Lemma 3.4. Now suppose that T ∈ C(H1, H2), then Γ−1G (T ) is in the unit

closed ball of L(H1, H2), relative to the operator-norm. Hence { n
n+1Γ−1G (T )} is a sequence

{An} of operators such that for each n, ‖An‖ < 1 and
∥∥An − Γ−1G (T )

∥∥ −→ 0. For each n,
we put Tn = ΓG(An), by Theorem 1.1 each Tn is in L(H1, H2) and, clearly, qG(Tn, T ) =∥∥Γ−1G (Tn)− Γ−1G (T )

∥∥ −→ 0. This complete the proof. �

Definition 3.6. Let T1, T2 ∈ C(H1, H2). We put

ΣG(T1, T2) =

[
2qG(T1, T2)2 +

∥∥ST1G−1/2 − ST2G−1/2

∥∥2 +
∥∥∥SG−1/2T∗1

− SG−1/2T∗2

∥∥∥2]1/2 .
ΣG is a metric on C(H1, H2) and note that the sequence defined in the Example 2.8 converges

on C(H1, H2) for the metric qG but is not convergent for the metric ΣG.

Theorem 3.7. The topology induced on C(H1, H2) by the metric ΣG is strictly stronger than
the topology induced from the metric qG.

By Theorem 3.7 and Theorem 3.3 we obtain the following results.

Corollary 3.8. The topology induced on C(H1, H2) by the metric ΣG is strictly stronger than
the topology induced from the gap metric gG.

Theorem 3.9. L(H1, H2) is dense open subset of C(H1, H2) endowed with the metric ΣG.

For the proof of this theorem we need the following lemma

Lemma 3.10. If T ∈ C(H1, H2) and B ∈ L(H1, H2) such that

ΣG(T,B) <
1√

1 +
∥∥BG−1/2∥∥2 ,

then T ∈ L(H1, H2).

Proof. Let x ∈ G1/2D(T ), then for all y ∈ H2,〈
TG−1/2x, y

〉
−
〈
x,G−1/2B∗y

〉
=
〈

(x, TG−1/2x), (−G−1/2B∗y, y)
〉

=
〈
PG(TG−1/2)(x, TG

−1/2x), (I − PG(BG−1/2))(−G−1/2B∗y, y)
〉
,
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by using Schwarz inequality,

(3.6)
∣∣∣〈(T −B)G−1/2x, y

〉∣∣∣ ≤ gG(T,B)
∥∥∥(x, TG−1/2x)

∥∥∥ ∥∥∥(−G−1/2B∗y, y)
∥∥∥ .

Setting y = (T −B)G−1/2x in (3.6) it follows that∥∥∥(T −B)G−1/2x
∥∥∥ ≤ ΣG(T,B)

√
‖x‖2 +

∥∥TG−1/2x∥∥2√1 +
∥∥BG−1/2∥∥2.

Let us put ΣG(T,B)

√
1 +

∥∥BG−1/2∥∥2 = 1− ε, ε > 0. Thus,∥∥∥TG−1/2x∥∥∥ ≤ ∥∥∥BG−1/2x∥∥∥+ (1− ε)[‖x‖+
∥∥∥TG−1/2x∥∥∥],

finally ∥∥∥TG−1/2x∥∥∥ ≤ 1

ε
[
∥∥∥G1/2

∥∥∥+
∥∥∥BG−1/2∥∥∥]

∥∥∥G−1/2x∥∥∥ ,
what shows that T is bounded from H1 to H2. �

Proof of Theorem 3.9. From Lemma 3.10 L(H1, H2) is an open subset of C(H1, H2). Now, we
show the density. Let T ∈ C(H1, H2), then there exists an unique pure contraction A such that
A = Γ−1G (T ). We put Tn = n

n+1A as in the proof of Theorem 3.5. Then Tn ∈ L(H1, H2) and

qG(Tn, T ) −→ 0. On the other hand, let RGT = (G+ T ∗T )−1 and SGT = (G+ T ∗T )−1/2, then∥∥RGTn
−RGT

∥∥ =
∥∥SGTn

T ∗nTnS
G
Tn
− SGT T ∗TSGT

∥∥
=
∥∥SGTn

T ∗nTnS
G
Tn

+ SGTn
T ∗nTS

G
T − SGTn

T ∗nTS
G
T − SGT T ∗TSGT

∥∥
≤
∥∥SGTn

T ∗n
∥∥∥∥TnSGTn

− TSGT
∥∥+

∥∥SGTn
T ∗n − SGT T ∗

∥∥∥∥TSGT ∥∥
≤
[∥∥SGTn

T ∗n
∥∥+

∥∥TSGT ∥∥]qG(Tn, T ).

Thus, limn→+∞
∥∥RGTn

−RGT
∥∥ = 0, hence limn→+∞

∥∥SGTn
− SGT

∥∥ = 0. By (2.4), we observe that

STG−1/2 = (G1/2RGTG
1/2)1/2, then we conclude that

lim
n→+∞

∥∥STnG−1/2 − STG−1/2

∥∥ =
∥∥∥SG−1/2T∗n

− SG−1/2T∗

∥∥∥ = 0.

Thus ΣG(Tn, T ) −→ 0, this shows the density of L(H1, H2) in C(H1, H2). �

4. Some equivalent metrics for bounded operators between two Hilbert spaces

In this section we present several operator norm inequalities to compare the metric qG, the
gap metric gG, and the usual operator norm metric. More presicily, we show that these three
metrics are equivalent in L(H1, H2). Our results extend those obtained in [12] and [13] to the
bounded operators between two Hilbert spaces.

Lemma 4.1. If T1, T2 ∈ L(H1, H2), then

‖T1 − T2‖ ≤
1

2

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥ qG(T1, T2)

+
1

2

∥∥(RGT1
)−1
∥∥∥∥(RGT2

)−1
∥∥ ∥∥Γ−1G (T1) + Γ−1G (T2)

∥∥2 qG(T1, T2).
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Proof. Let T1, T2 ∈ L(H1, H2), we have

‖T1 − T2‖ =
∥∥Γ−1G (T1)(SGT1

)−1 − Γ−1G (T2)(SGT2
)−1
∥∥

≤ 1

2
qG(T1, T2)

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥+

1

2

∥∥T1SGT1
+ T2S

G
T2

∥∥∥∥(SGT1
)−1 − (SGT2

)−1
∥∥

≤ 1

2
qG(T1, T2)

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥+

1

4

∥∥T1SGT1
+ T2S

G
T2

∥∥∥∥(RGT1
)−1 − (RGT2

)−1
∥∥

≤ 1

2
qG(T1, T2)

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥

+
1

4

∥∥(RGT1
)−1
∥∥∥∥(RGT2

)−1
∥∥ ∥∥T1SGT1

+ T2S
G
T2

∥∥∥∥RGT1
−RGT2

∥∥ .
Since ∥∥RGT1

−RGT2

∥∥ =
∥∥(Γ−1G (T1))∗Γ−1G (T1)− (Γ−1G (T2))∗Γ−1G (T2)

∥∥
≤ qG(T1, T2)

∥∥Γ−1G (T1) + Γ−1G (T2)
∥∥ ,(4.1)

it follows the desired inequality. �

Lemma 4.2. If T1, T2 ∈ L(H1, H2), then

qG(T1, T2) ≤ (1 +
1

4
‖T1 + T2‖2) ‖T1 − T2‖ .

Proof. Let T1, T2 ∈ L(H1, H2), we have

qG(T1, T2) =
∥∥Γ−1G (T1)− Γ−1G (T2)

∥∥
=

∥∥∥∥1

2
(T1 − T2)(SGT1

+ SGT2
) +

1

2
(T1 + T2)(SGT1

− SGT2
)

∥∥∥∥
≤ ‖T1 − T2‖+

1

2
‖T1 + T2‖

∥∥SGT1
− SGT2

∥∥
≤ ‖T1 − T2‖+

1

2
‖T1 + T2‖

∥∥(SGT1
)−1 − (SGT2

)−1
∥∥

≤ ‖T1 − T2‖+
1

4
‖T1 + T2‖

∥∥(RGT1
)−1 − (RGT2

)−1
∥∥

= ‖T1 − T2‖+
1

4
‖T1 + T2‖ ‖T ∗1 T1 − T ∗2 T2‖

≤ ‖T1 − T2‖ (1 +
1

4
‖T1 + T2‖2).

�

Combining Lemma 4.1 and Lemma 4.2, we obtain the following result:

Theorem 4.3. Let G ∈ L+(H1). The restriction of the metric qG to L(H1, H2) is equivalent
to the operator-norm.

Note that this theorem is extended to the unbounded operators between two Hilbert spaces,
the result was shown by W. E. Kaufman in [12, Theorem 2] in the case of unbounded operators
defined on a single Hilbert space and when G = IH1 .

Lemma 4.4. If T1, T2 ∈ L(H1, H2), then

qG(T1, T2) ≤ 1

2

[∥∥(SGT1
)−1 + (SGT2

)−1
∥∥+

1

2
‖G+ T ∗1 T1‖ ‖G+ T ∗2 T2‖

]
gG(T1, T2).
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Proof. Let T1, T2 ∈ L(H1, H2), we have

qG(T1, T2) =
∥∥T1RGT1

(SGT1
)−1 − T2RGT2

(SGT2
)−1
∥∥

≤ 1

2

∥∥T1RGT1
− T2RGT2

∥∥∥∥(SGT1
)−1 + (SGT2

)−1
∥∥

+
1

2

∥∥T1RGT1
+ T2R

G
T2

∥∥∥∥(SGT1
)−1 − (SGT2

)−1
∥∥

≤ 1

2
gG(T1, T2)

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥+

1

2

∥∥(SGT1
)−1 − (SGT2

)−1
∥∥

≤ 1

2
gG(T1, T2)

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥+

1

4

∥∥(RGT1
)−1 − (RGT2

)−1
∥∥

≤ 1

2
gG(T1, T2)

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥+

1

4

∥∥(RGT1
)−1
∥∥∥∥(RGT2

)−1
∥∥∥∥(RGT1

)− (RGT2

∥∥
≤ 1

2
gG(T1, T2)

∥∥(SGT1
)−1 + (SGT2

)−1
∥∥+

1

4

∥∥(RGT1
)−1
∥∥∥∥(RGT2

)−1
∥∥gG(T1, T2).

�

Lemma 4.5. If T1, T2 ∈ L(H1, H2), then

g2G(T1, T2) ≤
[
(
∥∥∥G1/2

∥∥∥4 + 1)
∥∥Γ−1G (T1) + Γ−1G (T2)

∥∥2 +
∥∥∥G1/2

∥∥∥2] q2G(T1, T2)

+ 2
∥∥∥G1/2

∥∥∥2 ∥∥Γ−1G (T1) + Γ−1G (T2)
∥∥3/2 q3/2G (T1, T2)

+
1

2

∥∥∥G1/2
∥∥∥2 ∥∥Γ−1G (T1) + Γ−1G (T2)

∥∥3 qG(T1, T2).

Proof. By using the representation (2.5), we get

g2
G(T1, T2) ≤

∥∥∥G1/2
∥∥∥4 ∥∥RGT1

−RGT2

∥∥2 + 2
∥∥∥G1/2

∥∥∥2 ∥∥TG1 RGT1
− T2RGT2

∥∥2
+
∥∥T1RGT1

T ∗1 − T2RGT2
T ∗2
∥∥2 .

We have∥∥T1RGT1
− T2RGT2

∥∥ ≤ 1

2
qG(T1, T2)

∥∥SGT1
+ SGT2

∥∥+
1

2

∥∥Γ−1G (T1) + Γ−1G (T2)
∥∥∥∥SGT1

− SGT2

∥∥
≤ qG(T1, T2) +

1

2

∥∥Γ−1G (T1) + Γ−1G (T2)
∥∥∥∥SGT1

− SGT2

∥∥
≤ qG(T1, T2) +

1

2

∥∥Γ−1G (T1) + Γ−1G (T2)
∥∥∥∥RGT1

−RGT2

∥∥1/2
≤ qG(T1, T2) +

1

2

∥∥Γ−1G (T1) + Γ−1G (T2)
∥∥3/2 q

1/2
G (T1, T2).

In view of these estimations and the fact that, by (4.1), both
∥∥T1RGT1

T ∗1 − T2RGT2
T ∗2
∥∥ and∥∥RGT1

−RGT2

∥∥ are majorized by qG(T1, T2)
∥∥Γ−1G (T1) + Γ−1G (T2)

∥∥ we get the required inequality.
�

Combining Lemma 4.4 and Lemma 4.5 we obtain:

Theorem 4.6. In L(H1, H2) the metric qG is equivalent to the gap metric gG.

Combining Theorem 4.3, Theorem 4.6 and Corollary 2.5 we deduce:

Corollary 4.7. The metrics qG, gG, pG and the operator-norm metric are equivalent on
L(H1, H2).
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5. Pure contractions and semi-Fredholm operators

In this section, by the use of the generalized Kaufman’s representation, we present some
results concerning the characterization of unbounded semi Fredholm operators in terms of
bounded ones. We begin by introduce now some important classes of operators in Fredholm
theory. In the sequel, for every T ∈ C(H1, H2), let α(T ) and β(T ) be the nullity and the
deficiency of T defined as α(T ) := dimN(T ), and β(T ) := codimR(T ). If the range R(T ) of T is
closed and α(T ) <∞ (resp. β(T ) <∞), then T is called an upper (resp. a lower) semi-Fredholm
operator. If T is either upper or lower semi-Fredholm, then T is called a semi-Fredholm operator,
and the index of T is defined by ind(T ) := α(T ) − β(T ). If both α(T ) and β(T ) are finite,
then T is a called a Fredholm operator. In the following, A denotes a pure contraction from
H1 to H2, and T the closed and densely-defined operator ΓG(A) = AG1/2B−1G1/2 from H1 to
H2, with B = (G1/2(I − A∗A)G1/2)1/2 such that G−1/2BG−1/2 is the unique solution of the
equation (2.2) with G ∈ GL+(H1). Note that since A is a pure contraction, B is a positive and
injective element of L(H1).

Recall that the reduced minimum modulus of a non-zero operator T is defined by

γ(T ) = inf
x∈N(T )⊥

‖Tx‖
‖x‖

If T = 0 then we take γ(T ) =∞. Note that (see [8]):

γ(T ) > 0⇔ R(T ) is closed.

Lemma 5.1 ([8]). (1) If δ(M,N) < 1 then dimM ≤ dimN .
(2) δ(M,N) = δ(N⊥,M⊥).

The main results of this section is:

Theorem 5.2. Let A ∈ L0(H1, H2). If A is upper semi-Fredholm operator then λC − ΓG(A)

is upper semi-Fredholm operator for all C ∈ L(H1, H2) and |λ| < γ(A)
1+γ(A)

‖G1/2‖
‖C‖ .

Proof. Let A ∈ L0(H1, H2), C ∈ L(H1, H2) and B denote the positive member (G1/2(I −
A∗A)G1/2)1/2 of L0(H). Since A is a pure contraction, B is one-to-one with dense range in H1,
and the fact that λC − ΓG(A) = (λCG−1/2BG−1/2 −A)G1/2B−1G1/2, it follows that to prove
λC − ΓG(A) is upper semi-Fredholm operator it suffices to prove that (λCG−1/2BG−1/2 − A)
is upper semi-Fredholm one.

For each nonzero x in H1, ‖x‖2 − ‖Ax‖2 =
∥∥BG−1/2x∥∥2; thus∥∥∥BG−1/2x∥∥∥ ≤ ‖x‖+ ‖Ax‖ .

Hence ∥∥∥CG−1/2BG−1/2x∥∥∥ ≤ ∥∥∥G−1/2∥∥∥∥∥∥BG−1/2x∥∥∥
≤ ‖C‖

∥∥∥G−1/2∥∥∥ (‖x‖+ ‖Ax‖).(5.1)

Let λ in C. We prove that if |λ| < ‖G1/2‖γ(A)

‖C‖(1+γ(A)) then 0 < γ(λCG−1/2BG−1/2 − A) <

∞ and hence R(λCG−1/2BG−1/2 − A) is closed. First if we use (5.1) with λx instead of x

and by [7, Theorem 1a], we obtain that γ(λCG−1/2BG−1/2 − A) > 0 for |λ| < ‖G1/2‖γ(A)

‖C‖(1+γ(A)) .

Now to prove that γ(λCG−1/2BG−1/2 − A) < ∞, we proceed by contraposition. In fact
γ(λCG−1/2BG−1/2 −A) =∞ implies that (λCG−1/2BG−1/2 −A)x = 0 for all x ∈ H1. Hence

‖Ax‖ = |λ|
∥∥∥CG−1/2BG−1/2x∥∥∥ ≤ ‖C‖ |λ|∥∥∥G−1/2∥∥∥ (‖x‖+ ‖Ax‖),

and so

(5.2) γ(A) ‖x‖ ≤ ‖Ax‖ ≤
|λ| ‖C‖

∥∥G−1/2∥∥
1− |λ| ‖C‖

∥∥G−1/2∥∥ ‖x‖
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for x ∈ N(A)⊥ with x 6= 0. It follows that |λ| ≥ ‖G
1/2‖γ(A)

‖C‖(1+γ(A)) . We next prove that

(5.3) δ(N(λCG−1/2BG−1/2 −A), N(A)) ≤
|λ| ‖C‖

∥∥G−1/2∥∥
(1− |λ| ‖C‖

∥∥G−1/2∥∥)γ(A)
.

Let x ∈ H1,

γ(A)
∥∥(I − PN(A))PN(λCG−1/2BG−1/2−A)x

∥∥ ≤ ∥∥APN(λCG−1/2BG−1/2−A)x
∥∥ .

Since PN(λCG−1/2BG−1/2−A)x ∈ N(λCG−1/2BG−1/2 −A) by the same calculation given before
we have

γ(A)
∥∥(I − PN(A))PN(λCG−1/2BG−1/2−A)x

∥∥ ≤ |λ| ‖C‖
∥∥G−1/2∥∥

(1− |λ| ‖C‖
∥∥G−1/2∥∥)

‖x‖ .

Recalling the definition of δ(N,M), this proves (5.3). The right side of (5.3) is smaller than

one if |λ| < ‖G
1/2‖γ(A)

‖C‖(1+γ(A)) , thus Lemma 5.1 shows that

(5.4) α(λCG−1/2BG−1/2 −A) ≤ α(A) for |λ| <
∥∥G1/2

∥∥ γ(A)

‖C‖ (1 + γ(A))
.

We then conclude that λCG−1/2BG−1/2−A is upper semi-Fredholm operator for |λ| < ‖G
1/2‖γ(A)

‖C‖(1+γ(A)) .

This complete the proof of the theorem. �

Theorem 5.3. Let A ∈ L0(H1, H2) is a lower semi-Fredholm operator. Then λC − ΓG(A) is

a lower semi-Fredholm operator for all C ∈ L(H1, H2) and λ such that |λ| < ‖G
1/2‖γ(A)

‖C‖(1+γ(A)) .

Proof. Since R(A) is closed, by the first part of the proof of Theorem 5.2, R(λCG−1/2BG−1/2−
A) is closed and R(λCG−1/2BG−1/2 − A) = N(λG−1/2B∗G−1/2C∗ − A∗)⊥ for all |λ| <
‖G1/2‖γ(A)

‖C‖(1+γ(A)) . From (5.3) we deduce that

δ(R(λCG−1/2BG−1/2 −A)⊥, R(A)⊥) = δ(N(λG−1/2B∗G−1/2C∗ −A∗), N(A∗))

≤
|λ| ‖C‖

∥∥G−1/2∥∥
(1− |λ| ‖C‖

∥∥G−1/2∥∥)γ(A)
,

because γ(A) = γ(A∗). Now by Lemma 5.1 we have

β(λCG−1/2BG−1/2 −A) ≤ β(A) for |λ| <
∥∥G1/2

∥∥ γ(A)

‖C‖ (1 + γ(A)
.

Consequently, λCG−1/2BG−1/2 − A is lower semi-Fredholm one for all |λ| < ‖G1/2‖γ(A)

‖C‖(1+γ(A)) and

hence λC − ΓG(A) is lower semi-Fredholm operator for all λ such that |λ| < ‖G
1/2‖γ(A)

‖C‖(1+γ(A)) . �

Corollary 5.4. If A ∈ L0(H1, H2) is a semi-Fredholm operator (resp. Fredholm operator),
then λC −ΓG(A) is a semi-Fredholm operator (resp. Fredholm operator) for all C ∈ L(H1, H2)

and λ such that |λ| < ‖G
1/2‖γ(A)

‖C‖(1+γ(A)) .

We proceed as in the proof of [2, Lemma 5.2, p. 708], by taking in count that the operator
T is defined between two Hilbert spaces, we can easily check the following result.

Proposition 5.5. If T ∈ C(H1, H2) is a semi-Fredholm operator (resp. Fredholm operator),
then A = T (G + T ∗T )−1/2 is a semi-Fredholm operator (resp. Fredholm operator) from H1 to
H2, and N(A) = N(T ), N(A∗) = N(T ∗).
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Proof. It is easy to see that N(T ) = {x ∈ H1 : (G + T ∗T )−1Gx = x}. Since G ∈ GL+(H1),
(G+T ∗T )−1 is bounded self-adjoint and (G+T ∗T )−1G leaves N(T ) as well as N(T )⊥ invariant,
so this two subspaces are invariant by (G+ T ∗T )−1 and its square root. Accordingly N(T ) =
N(A). It is also clear that y ∈ N(A∗) if and only if

〈
T (G+ T ∗T )−1/2x, y

〉
= 0 for all x ∈ H1

i.e.
〈
T (G+ T ∗T )−1z, y

〉
= 0 for all z ∈ H1 i.e if y ∈ N((T (G + T ∗T )−1)∗) = N(T ∗). Thus

N((T (G+ T ∗T )−1/2)∗) = N(T ∗). �

By Proposition 5.5 and Corollary 5.4 we obtain the following results

Theorem 5.6. Let A ∈ L0(H1, H2) . Then A is a semi-Fredholm operator (resp. Fredholm
operator) if and only if ΓG(A) is a semi-Fredholm operator (resp. Fredholm operator). In this
case ind(A) = ind(ΓG(A)).

Remark 5.7. Theorems 5.2, 5.3 and 5.6 generalize [1, Theorem 1], [1, Theorem 2] and [1,
Theorem 3] respectively, by taking H1 = H2 = H and G = C = I.
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