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SOME REMARKS CONCERNING THE JACOBI-DUNKL
TRANSFORM IN THE SPACE LP(R, A, 5(t)dt)

R. DAHER, S. EL OUADIH* AND A. BELKHADIR

ABSTRACT. In this paper, using a generalized Jacobi-Dunkl translation oper-
ator, we obtain a generalization of Titchmarsh’s theorem for the Dunkl trans-
form for functions satisfying the (¢, p)-Lipschitz Jacobi-Dunkl condition in the
space LP(R, Ay g(t)dt),a > 8 > _71,04 #* _71

1. INTRODUCTION AND PRELIMINARIES

Titchmarsh’s [8,Theorem 85] characterized the set of functions in L?(R) satisfy-
ing the Cauchy-Lipschitz condition by means of an asymptotic estimate growth of
the norm of their Fourier transform, namely we have

Theorem 1.1. [8] Let a € (0,1) and assume that f € L?(R). Then the fol-
lowing are equivalents
(@) [lf(t+h)=f@O)]=0(%), as h—0
(b) / IF)PdA=0(r~2%) as  r — oo,

[Al>r
where fstand for the Fourier transform of f.
In this paper, we prove a generalization of Theorem 1.1 for the Jacobi-Dunkl trans-
form for functions satisfying the (¢, p)-Lipschitz Jacobi-Dunkl condition in the space
LP(R, A, g(t)dt),1 < p < 2. For this purpose, we use the generalized Jacobi-Dunkl
translation operator.
In this section, we recapitulate from [1,2,3,5,6] some results related to the harmonic
analysis associated with Jacobi-Dunkl operator A, g.
The Jacobi-Dunkl function with parameters (o, 8),a > 8 > _71,04 #* _71, defined
by the formula:

ol (z) — 5 dhep?(x) if A e C\{0}

1 itA=0

Vo e R, 93P (x) =

with A2 = p? +p?, p=a+ B+ 1 and goﬁ"ﬁ is the Jacobi function given by:

i) = F (P51 a1, ).
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F is the Gausse hypergeometric function (see [1,7]).
w‘;’ﬁ is the unique C'*°-solution on R of the differentiel-difference equation

Ao =iXd AeC

U =1
where A, g is the Jacobi-Dunkl operator given by:
Aol (@) = dLC{l(m) + [(2a + 1) cothz + (26 + 1) tanh 2] x w]
x

The operator A, g is a particular case of the operator D given by
du(x)  A'(z) (U)—U(-x)
D =
Ui ar A(x) X 2 ’

where A(z) = |z|?*T1B(z), and B a function of class C* on R, even and positive.
The operator A, g corresponds to the function

A(z) = Ay 5(x) = 2°(sinh |2])2* T (cosh |z]) 2P FL.

Using the relation

w4

d _
=i

%“D” sinh(2x)<pﬁ+1’6+1(a:),

the function ¢§”@ can be written in the form above (see [2])

Vr € R, z/;i’ﬁ(x) = @ﬁ’ﬁ(x) +1 sinh(2x)<pz‘+1’ﬁ+1(x).

4(a+1)

Denote Lj, 5(R) = Li, 5(R, Aq 5(t)dt), 1 < p < 2, the space of measurable functions
f on R such that

1/p
Fllpas = ( / If(t)lpAa,g(t)dt) S

Using the eigenfunctions wi"ﬁ of the operator A, g called the Jacobi-Dunkl kernels,
we define the Jacobi-Dunkl transform by

fa,gf(/\):/Rf(t) “B(1) A g(t)dt, AER,

and the inversion formula by

£(t) = / Fas fON0L (0)do (N,

where N
do(A) = Tp )y (A)dA.
*) 87/ A2 = p2|Cu 5 (v/A2 = p2)] R\]—p,p[(A)
Here,
207 (a + DI(i .
Caple) = (ot DL , peEC\(iN)

L(3(p+im)T(5(a = B+1+ip))
and Ig\j_, [ is the characteristic function of R\] — p, p[.
The Jacobi-Dunkl transform is a unitary isomorphism from L; P (R) onto L3(R, do())),
ie.

(1) 112,08 = [1Fa.p (Pl L2 2.do(2)-
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Plancherel’s theorem (1) and the Marcinkiewics interpolation theorem (see [8]) we
get for f € LY, 5(R) with 1 < p <2 and ¢ such that %+ % =1,

(2) | Fa8(F)llLe@don)) < Kl fllpa.s;

where K is a positive constant (see [6]).
The operator of Jacobi-Dunkl translation is defined by

T, f(y) = / f(2)dveP(2), Yy eR

where l/;j‘f(z), x,y € R are the signed measures given by

Ko p(x,y,2)Aap(z)dz if z,y € R

o, _
ey (@) =19 s, ify=0
Oy ifx=0
Here, 6, is the Dirac measure at . And,
Kapl@p,2) = Mas(sinh(el)sinb(ll) sinb(2) L1, x [ pola9,2)
0
X (gg(x,y,z))i_ﬁ_lsinw 0do
Loy = [=lel=lyl, =ll=l = [yllT U [llx] = |yl [=] + [yl]
po(x,y,2) = 1-— Uz,y,z + Ug,%y + Ug,y,w
cosh(z)+cosh(y)—cosh(z) cos(0) .
0 sinh(wy) sinh(y) ’lf Y 7é 0
VzeR,0€[0,7],0,, .=
0 ifzy =0
go(x,y,2) = 1 — cosh?(z) — cosh®(y) — cosh?(2) + 2 cosh(z) cosh(y) cosh(z) cos
t ift>0
t+ =
0 ift<0
and,
272 (a+1) .
Vra-preen e h
Mo,p =

0 ifa=p

In [2], we have

3) Fap(Tif)) = w37 (h) Fas(H)N)-
For a > _71, we introduce the Bessel normalized function of the first kind defined
by

= (1))

ji0(2) =T 1 —_— e C.
Jal2) (o );n!F(n+a+1) :
Moreover, we see that

llg%) 22 70,

by consequence, there exists C; > 0 and 7 > 0 satisfying
(4) |2l <1 = Jjalz) = 1| = Cil2f.
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Lemma 1.1. Let a > 8 > _71,@ * _71 Then for |v| < p, there exists a positive
constant Cy such that

1= el (O] 2 Cafl = ja(ut)]
Proof. (See[4],Lemma 9).

2. MAIN RESULT

In this section we give the main result of this paper. We need first to define
(¢, p)-Lipschitz Jacobi-Dunkl class.
Denote N by
Ny =Ty, +T_5, — 21

where [ is the unit operator in the space L;, 45(R).
Definition 2.1. A function f € L% ;(R) is said to be in (¢, p)-Lipschitz Jacobi-
Dunkl class, denoted by Lip(¢,p, a, 3), if
INLfllp.a.s = O(@(h)), as h—0,
where ¢(t) is a continuous increasing function on [0,00), ¢(0) = 0 and ¢(ts) =

d(t)o(s) for all ¢, s € [0, 00).

Lemma 2.2. For f € L} ;(R), then

< / 29) a8 () — 1|Q|fa,af<A>qda<A>> " < KNSl

where % + % =1.
Proof. We us formula (3), we conclude that

Fas(Na )N = (657 (h) + 637 (=h) = 2)Fa s(H) (),
Since

P (h) = 5P (h) +i sinh(2h)pf A (R),

4(a+1)

RO (=h) = P (=)~ sinh(2h)igj T (=),

A
4(a+1)

and gafj’ﬁ is even (see [2]), then

Fas(Nuf)A) = 20057 (h) = D Fas(F)(N).

By formula (2), we have the result.
Theorem 2.3. Let f(z) belong to Lip(¢, p, «, 3). Then
[ s (3) = 00, a5 7= oe.

where % + % =1.
Proof. Assume that f € Lip(¢,p, «, 3), then we have

Nk fllp,a,s = O(0(h)), as h—O0.
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From Lemma 2.2, we have
[ 1) = 11 s f o (3) < S IN 1
By (4) and Lemma 1.1, we get

[ Mt W Ea (Do) 2 CI8 [ fhPIF ().

<A<

Take h < %, then we have p2h? > C3 = Cs(n).
So,

/ L= ()| Fas(F)(V)|?do(A) = 030303/ [ Fos () (M)]do ().
F<IN<E

2R SIA<H

There exists then a positives constants C' and K; such that

[ 1Fs0e0) < € [ - g s )
R SIA<E R

< Ki1¢%(h) = K19(h?).
Forall0 < h < %. Then we have

[ FaslDftdo(N) < Kalr), 7> s,
r<|A[<2r

where Ky = K1¢(n7279).
Furthermore, we obtain

/W Fas (NN [dor(N)

</r§|)\|§2r - /2TSA|§4T * /4r§|>\§8r o ) |fa”8(f)(A)|qda()\)

< Kop(rm) 4+ Kap((2r)77) + Kag((4r) ") + - - -
< Kap(rm?) + Kap(27)p(r™0) + Kap((279)*)p(r™0) + - --
< Ke(rm ) (14 ¢(279) +o((271)%) + ).

We have ¢(279) < 1, then

/W Fas (NOdo(N) < Ks(r7),

where K3 = Ko(1 — ¢(279))7L.
Finally, we get

/W Fus(HV1do(N) = O(6(—1), as - oo

Thus, the proof is finished.
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