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UNIVALENT BIHARMONIC MAPPINGS AND LINEARLY
CONNECTED DOMAINS

Z. ABDULHADI! AND L. EL HAJJ?*

ABSTRACT. A four times continuously differentiable complex-valued function
F = w + dv in a simply connected domain €2 is biharmonic if the laplacian
of F'is harmonic. Every biharmonic mapping F' in € has the representation
F = |2)2G + K, where G and K are harmonic in Q. This paper investigates
the relationship between the univalence of F' and of K using the concept of
linearly connected domains.

1. INTRODUCTION

A planar harmonic mapping in a simply connected domain 2 C C is a complex-
valued harmonic function f(z) defined on Q, where z = z+4y. The mapping f has
a canonical decomposition f = h + g, where h and g are analytic (holomorphic) in
Q (see [13, 14]). We say that f is locally univalent and sense preserving if and only
if its Jacobian Jy(z) is positive, where J¢(z) is given by

Jr (2) = f(2) = ()12 = [ (2)* = |9 (2) )

(See Lewy [11]).

Clunie and Sheil-Small made the following important observation : f is locally
univalent and orientation -preserving in D if and only if |¢'(2)] < |h/(2)| in €; or

equivalently if h’(z) # 0 and the dilatation w(z) = i:gg has the property |w(z)| < 1.

A four times continuously differentiable complex-valued function F' = u + iv in
a simply connected domain €2 is biharmonic if the laplacian of F' is harmonic. Note
that AF is harmonic in Q, if AF satisfies Laplace’s equation A(AF) = 0, where

o? 0? o?

A=t s T e T o

Every harmonic function is biharmonic but not necessarily the converse. More-
over, it is easy to see that every biharmonic mapping F' in 2 has the representation

(1.1) F=2’G+K,
where G and K are harmonic in 2 and they can be expressed as,
(1.2) G = g+,

K = kl + FQ;
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where g1, g2, k1 and ko are analytic in Q (for details see [2]). Note that the
composition F o ¢ of a harmonic function F' with analytic function ¢ is harmonic,
while this is not true when F' is biharmonic.

Biharmonic mappings arise in a lot of physical situations, particularly in fluid
dynamics and elasticity problems, and have many important applications in engi-
neering and biology. Most important applications of the theory of functions of a
complex variable were obtained in the plane theory of elasticity and in the approxi-
mate theory of plates subject to normal loading. That is, in cases when the solutions
are biharmonic functions or functions associated with them ( see [15, 16 ]). More-
over, biharmonic Mapping are closely related to the theory of Laguerre Minimal
Surfaces (for details see [5, 7, 8, 9, 17, 18]). Investigation of biharmonic mappings
in the context of geometric function theory started only recently (for details see| 1,
2, 3,4, 10]). For example, in [2], Abdulhadi, AbuMuhanna and Khuri analyze the
univalence of the solutions of the biharmonic equations. Throughout we consider
harmonic and biharmonic functions defined on the unit disk D = {z : |z| < 1}.

Definition 1. A domain Q C C is linearly connected if there exists a constant
M < oo such that any two points w1, ws € 0 are joined by a path v, v C Q, of
length £(y) < M|wy — wal.

Such a domain is necessarily a Jordan domain, and for piecewise smoothly bound-
ed domains, linear connectivity is equivalent to the boundary having no inward-
pointing cusps.

In [12], Chuaqui and Hermandez, considered the relationship between the har-
monic mapping f = h+ g and its analytic factor h on linearly connected domains.
They show that if A is an analytic univalent function, then every harmonic map-
ping f = h + g with dilatation |w| < ¢ is univalent if and only if k(D) is linearly
connected.

In this paper, we scrutinize the relationship between the univalence of the bi-
harmonic function F = |2|?G + K and the univalence of the harmonic function
K.

2. MAIN RESULTS

In our first results, we deduce the univalence of F'(z) from the univalence of K(z).
We first consider subclasses, where G, K are assumed to be analytic or antianalytic.

Theorem 1. Let F(z) = |2|>G(2) + K(2) be a biharmonic function in the unit disk
D, where G, K are analytic. If K is univalent and K(D) is a linearly connected
domain with constant M, and if

2061 +1¢ _ 1
K| M
then F(z) is univalent.
Proof. Let H(z) = |2]?G(z). We define ¢ = H o K~1. Given w ¢ K(D), we claim
w+ (w) is univalent. Assume w+ (w) is not univalent, then there exists wy # wo
such that

p(w2) — p(wr) = w1 — wa.

Let v be a path in K (D) joining wy,ws such that () < M|ws — wy|.



BIHARMONIC MAPPINGS 3

Then
lp(w2) — @(w1)] <

/ Ypdw + cpwdw‘ .
~
But

_ H = 2,
o = H(K V) + HA(RT), = 2 2 20T

K’ K’ ’
— Hz G
o= HA(K Vg + Hx(E V) = =2 = =,
K K
where z = K~1(w) € D.
Therefore,
2G| + |G| 1
_ < | supZ T2 g iy _
o) — pton) < [ supt 2 ] < ) < s

which is a contradiction. Hence F'(z) is univalent. d

Remark 1. In the above proof , if K(D) is convex we may take M = 1, and thus
2elal g

The special case M = 1 when K is convex, is an important special case and we
will state it separately as a corollary.

F will be univalent as long as

Corollary 1. Let F(z) = |2|>?G(z) + K(2) be a biharmonic function in the unit
disk D, where G, K are analytic. If K is univalent and convex with
206 + 16| _ |
K| ’
then F(z) is univalent.

As a consequence of Theorem 1, we have the following corollary :

Corollary 2. Let F(z) = |2|?G(2) + K (z) be a biharmonic function in the unit disk
D, where G, K are antianalytic. If K is univalent and K(D) is a linearly connected
domain with constant M, and
2|G| + |G| <L
|K=| M’

then F(z) is univalent.

Our next result is the general case, where G , K are harmonic in the unit disk
D:

Theorem 2. Let F(z) = |2|>G(2) + K(2) be a biharmonic function in the unit disk
D, where G,K are harmonic. If K is univalent and K (D) is a linearly connected
domain with constant M, and if
21G[ + |gh|(A A |wal) _ L
LANETIY)) M

k/
then F(z) is univalent. In the above wi,wq denotes the dilations wx = k—?,

1
4

wag K
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Proof. Let H(z) = |2|?G(z). We define
o=HoK™ !
Given w ¢ K(D), we claim w + ¢(w) is univalent.
Assume w + ¢(w) is not univalent, then there exists w; # wq such that

p(w2) — p(wr) = w1 — wo.

Let v be a path in K (D) joining w1, wa such that {(y) < M|ws — w;|.Then

lp(wa) — p(wr)] <

[ utu+ %dw\ < [ Upul + il ldul.
Yy Yy
But

Pw = Hz(K_l)w + Hz (K1)

¢ =H.(K ")+ Hz(K V).
Differentiating K ~!(K(z2)) = z, we show that

(Kfl) _ H (K*l)f_ _‘Ig
w b) w M
|k1[? — [k[? |k1[? — [ka[?
It follows
Pw = HZ(K_I)w + Hz(K™1)y
i K
= (zG 2y —— M G 2oy ™2
Yw = HZ(Kil)EJFH?(Kil)w
= (zG+ M%ﬁ)% + (2G + |Z|29§)%~
k1 — [k k1> = [k
Therefore,
2[2||G| (1K1 +1ks)) | 212195 lIk5] + lgal[K4])
[Pl + lom| < +
b b LAREAR |k1|? — [kg[?
2[2||G| + |2[* (g1 ] + lga])
k1l — [R5
_ 22[IG] + 12Pgi| (1 + |wel)
k11(1 = wk]) ’

where z = K~ (w) € D. Then we have

2|G| + g1l + [wel) 1
ws) — e(wy)| < | su dw| < —I1 < |lwg —w

which is a contradiction. Hence F(z) is univalent. O
Corollary 3. Let F(z) = |2|?G(z) + K(2) be a biharmonic function in the unit
disk D, where G, K are harmonic. If K is univalent and convex with
2|G +1g1l(1 + |wel)
R4 (1 = |wk])

<1

)

then F(z) is univalent.
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The following Corollary follows immediately from Theorem 2, for the case when
G is analytic.

Corollary 4. Let F(z) = |2|>?G(z) + K(2) be a biharmonic function in the unit
disk D, where G is analytic, K is harmonic. If K is univalent and K(D)is a
linearly connected domain with constant M, and if

2AGI+1G_ 1

k(1 = |wk]) M

ks

then F(2) is univalent. In the above wy denotes the dilation wx = PR
1

In each of the previous results, it follows under the same conditions that F(D)

will also be linearly connected. We will prove it for the general case and the proof

is along the same lines for the special cases.

Proposition 1. Let F(2) = |2|>G(2) + K(z) be a biharmonic function in the unit
disk D, where G ,K are harmonic. If K is univalent and K(D) is a linearly
connected domain with constant M, and if
2|G| - 1L+ lwgl) _
R4 = Jwrl)

where C' < 57, then F(D) is linearly connected.

Proof. Given w € Q = K(D), we let U(w) = w + ¢(w), where ¢ = H o K71,
and H = |z|?>G. Since K is univalent, we may look at R = F(D), as the image of
Q = K(D) under the mapping ¥, and we show ¥(Q2) is linearly connected. Let
61 = ¥(w1),52 = ¥(ws), wi,we € Q. Since K (D) is a linearly connected domain,
then there exists a curve v C  satisfying I(y) < M|wg — w1 ].

Let ' = U(7). In the proof of Theorem 2, we have showed that

2|G1 +1g1l(1 + |wel)
R (1 = |wrel)

|| + lpm| < <C,

it follows
ol + Y] <1+ [@,| + g <1+ C.
Hence we have,

Z(r):/rdgg/(|\1/w|+|%|)dw< (1+O)(y) < (14 C)M|ws — wi .

But,
[c1—c2| = |wr — w2+ p(wi) = p(w2)| = [wr — wa| = [p(w1) — @(ws2)]
> fun = wal = [ (pul + liwl) du
¥
> |wy —wz| — Cl(y) > (1 — CM)|wy — ws.
Then we get,
(1+C)M
I(T) < ——LF ¢y —
) < Sl — <l
and so R is linearly connected with constant (igg\y ([

In our next result, we deduce the univalence of K from the univalence of F'.
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Theorem 3. Let F(z) = |2|2G(2) + K(z) be a biharmonic function in the unit disk
D. Suppose F is univalent and F(D) is a linearly connected domain with constant
M and satisfies
2|G| + |G| + |G+ <L
||F= = [l M’

then K(z) is univalent.

Proof. Let H(z) = |2|?G(z). Aiming for a contradiction assume K (2) is not univa-
lent, then there exists z1 # 2o , such that K(z1) = K(22). Hence we get

F(z1) — F(22) = H(z1) — H(22).
Given w = F(z)e F(D), the above equation is equivalent to
wy — wz = p(wz) — p(w),
where
p=HoF '
Let v be a path in F(D) joining w, we such that I(y) < M|wy — wy|.
Then

o) = plun)| < | [ i+ o3a0] < [ (oul+ loa) ldul,
v v

But
Pw = HZ(Fil)w + HE(F_l)w

Pw = Hz(Fil)E+ Hz(Ffl)E.
Differentiating F~!(F(z)) = z, we get the following two equations

(FYoF + (F YHgF. =1

(FYFs+ (F HYgFz=0.

Solving the above system we get

F, -F
F—l w = 727 K—l = 27
(F =50 (K )m=
where Jp denotes the jacobian J; = |F,|* — | Fx|2.
It follows,
— F, F
O =H(F Yy + Ho(F1),, = H, =% — H-—~
Jr Jr
—_— o F,
o = H.(F )+ Hz(F 1)z = —H.— + Hz—.
Jr Jr
Therefore,
Hz F2+HZFZ+HZ FE+HEFZ
ol lon] < VIR HSIF 4 |HLVFel 4 Bl P
|JF|
(H T D (E] + P
|JF|
|H| + |H=|

|| F:| = [ F=l|
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2|G| + |G| + |G|
B |[F=] — | FY ]|

Hence

2|G| + |G| + |G|

1
[p(w) — plw) < [ sup ] < ~1(7) < Jws — wil,
P T IR M

which is a contradiction. Thus K(z) is univalent. d

Corollary 5. Let F(z) = |2|>G(z2) + K(z) be a biharmonic function in the unit
disk D, where G ,K are harmonic. If K is univalent and convex with

2G| + g1l + lwel) _
/ bl
R4 (1 = |wk])

then K(z) is univalent.
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