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DUNKL LIPSCHITZ FUNCTIONS FOR THE GENERALIZED

FOURIER-DUNKL TRANSFORM IN THE SPACE L2
α,n

R. DAHER, S. EL OUADIH∗ AND M. EL HAMMA

Abstract. In this paper, using a generalized translation operator, we prove

the estimates for the generalized Fourier-Dunkl transform in the space L2
α,n

on certain classes of functions.

1. Introduction and Preliminaries

In [5], E. C. Titchmarsh’s characterizes the set of functions in L2(R) satisfying
the Cauchy-Lipschitz condition by means of an asymptotic estimate growth of the
norm of their Fourier transform, namely we have
Theorem 1.1 Let δ ∈ (0, 1) and assume that f ∈ L2(R). Then the following are
equivalents
(i) ‖f(t+ h)− f(t)‖ = O(hδ), as h→ 0,

(ii)

∫
|λ|≥r

|f̂(λ)|2dλ = O(r−2δ) as r →∞,

where f̂ stands for the Fourier transform of f .

In this paper, we consider a first-order singular differential-difference operator Λ on
R which generalizes the Dunkl operator Λα, We prove an analog of Theorem 1.1 in
the generalized Fourier-Dunkl transform associated to Λ in L2

α,n . For this purpose,
we use a generalized translation operator. We point out that similar results have
been established in the context of non compact rank one Riemannian symetric s-
paces [4].
In this section, we develop some results from harmonic analysis related to the
differential-difference operator Λ. Further details can be found in [1] and [6]. In all
what follows assume where α > −1/2 and n a non-negative integer.
Consider the first-order singular differential-difference operator on R

Λf(x) = f ′(x) +

(
α+

1

2

)
f(x)− f(−x)

x
− 2n

f(−x)

x
.

For n = 0, we regain the differential-difference operator

Λαf(x) = f ′(x) +

(
α+

1

2

)
f(x)− f(−x)

x
,
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which is referred to as the Dunkl operator of index α+ 1/2 associated with the re-
flection group Z2 on R. Such operators have been introduced by Dunkl (see [3], [7])
in connection with a generalization of the classical theory of spherical harmonics.
Let M be the map defined by

Mf(x) = x2nf(x), n = 0, 1, ...

Let Lpα,n, 1 ≤ p <∞, be the class of measurable functions f on R for which

‖f‖p,α,n = ‖M−1f‖p,α+2n <∞,

where

‖f‖p,α =

(∫
R
|f(x)|p|x|2α+1dx

)1/p

.

If p = 2, then we have L2
α,n = L2(R, |x|2α+1).

The one-dimensional Dunkl kernel is defined by

eα(z) = jα(iz) +
z

2(α+ 1)
jα+1(iz), z ∈ C,(1)

where

jα(z) = Γ(α+ 1)

∞∑
m=0

(−1)m(z/2)2m

m!Γ(m+ α+ 1)
, z ∈ C,(2)

is the normalized spherical Bessel function of index α. It is well-known that the
functions eα(λ.), λ ∈ C, are solutions of the differential-difference equation

Λαu = λu, u(0) = 1.

Lemma 1.2 For x ∈ R the following inequalities are fulfilled
i) |jα(x)| ≤ 1,
ii) |1− jα(x)| ≤ |x|,
iii) |1 − jα(x)| ≥ c with |x| ≥ 1, where c > 0 is a certain constant which depends
only on α.
Proof. Similarly as the proof of Lemma 2.9 in [2].
For λ ∈ C, and x ∈ R, put

ϕλ(x) = x2neα+2n(iλx),

where eα+2n is the Dunkl kernel of index α+ 2n given by (1).
Proposition 1.3
i) ϕλ satisfies the differential equation

Λϕλ = iλϕλ.

ii) For all λ ∈ C, and x ∈ R

|ϕλ(x)| ≤ |x|2ne|Imλ||x|.

The generalized Fourier-Dunkl transform we call the integral transform

FΛf(λ) =

∫
R
f(x)ϕ−λ(x)|x|2α+1dx, λ ∈ R, f ∈ L1

α,n.
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Let f ∈ L1
α,n such that FΛ(f) ∈ L1

α+2n = L1(R, |x|2α+4n+1dx). Then the inverse
generalized Fourier-Dunkl transform is given by the formula

f(x) =

∫
R
FΛf(λ)ϕλ(x)dµα+2n(λ),

where

dµα+2n(λ) = aα+2n|λ|2α+4n+1dλ, aα =
1

22α+2(Γ(α+ 1))2
.

Proposition 1.4
i) For every f ∈ L2

α,n,

FΛ(Λf)(λ) = iλFΛ(f)(λ).

ii) For every f ∈ L1
α,n ∩ L2

α,n we have the Plancherel formula∫
R
|f(x)|2|x|2α+1dx =

∫
R
|FΛf(λ)|2dµα+2n(λ).

iii) The generalized Fourier-Dunkl transform FΛ extends uniquely to an isometric
isomorphism from L2

α,n onto L2(R, µα+2n).

The generalized translation operators τx, x ∈ R, tied to Λ are defined by

τxf(y) =
(xy)2n

2

∫ 1

−1

f(
√
x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(
1 +

x− y√
x2 + y2 − 2xyt

)
A(t)dt

+
(xy)2n

2

∫ 1

−1

f(−
√
x2 + y2 − 2xyt)

(x2 + y2 − 2xyt)n

(
1− x− y√

x2 + y2 − 2xyt

)
A(t)dt,

where

A(t) =
Γ(α+ 2n+ 1)√
πΓ(α+ 2n+ 1/2)

(1 + t)(1− t2)α+2n−1/2.

Proposition 1.5 Let x ∈ R and f ∈ L2
α,n. Then τxf ∈ L2

α,n and

‖τxf‖2,α,n ≤ 2x2n‖f‖2,α,n.

Furthermore,

FΛ(τxf)(λ) = x2neα+2n(iλx)FΛ(f)(λ).(3)

2. Main Results

In this section we give the main result of this paper. We need first to define
(ψ, δ, β)-generalized Dunkl Lipschitz class.
Definition 2.1. Let δ > 1 and β > 0. A function f ∈ L2

α,n is said to be in the
(ψ, δ, β)-generalized Dunkl Lipschitz class, denoted by DLip(ψ, δ, β), if

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖2,α,n = O(hδ+2nψ(hβ)) as h→ 0,

where
(a) ψ is a continuous increasing function on [0,∞),
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(b) ψ(0) = 0 , ψ(ts) = ψ(t)ψ(s) for all t, s ∈ [0,∞),
(c) and ∫ 1/h

0

s1−2δψ(s−2β)ds = O(h2δ−2ψ(h2β)), h→ 0.

Theorem 2.2. Let f ∈ L2
α,n. Then the following are equivalents

(a) f ∈ DLip(ψ, δ, β)

(b)

∫
|λ|≥r

|FΛf(λ)|2dµα+2n(λ) = O(r−2δψ(r−2β)), as r →∞.

Proof. (a)⇒ (b). Let f ∈ DLip(ψ, δ, β). Then we have

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖2,α,n = O(hδ+2nψ(hβ)) as h→ 0.

From formulas (1), (2) and (3), we have the generalized Fourier-Dunkl transform
of τhf(x) + τ−hf(x)− 2h2nf(x) is 2h2n(jα+2n(λh)− 1)FΛf(λ).
By Plancherel equality, we obtain

‖τhf(x)+τ−hf(x)−2h2nf(x)‖22,α,n = 4h4n

∫ +∞

−∞
|jα+2n(λh)−1|2|FΛf(λ)|2dµα+2n(λ).

If |λ| ∈ [ 1
h ,

2
h ], then |λh| ≥ 1 and (iii) of Lemma 1.2 implies that

1 ≤ 1

c2
|jα+2n(λh)− 1|2.

Then∫
1
h≤|λ|≤

2
h

|FΛf(λ)|2dµα+2n(λ) ≤ 1

c2

∫
1
h≤|λ|≤

2
h

|jα+2n(λh)− 1|2|FΛf(λ)|2dµα+2n(λ)

≤ 1

c2

∫ +∞

−∞
|jα+2n(λh)− 1|2|FΛf(λ)|2dµα+2n(λ)

≤ h−4n

4c2
‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n

= O(h2δψ(h2β)).

We obtain ∫
r≤|λ|≤2r

|FΛf(λ)|2dµα+2n(λ) ≤ Cr−2δψ(r−2β), r →∞,

where C is a positive constant. Now,∫
|λ|≥r

|FΛf(λ)|2dµα+2n(λ) =

∞∑
i=0

∫
2ir≤|λ|≤2i+1r

|FΛf(λ)|2dµα+2n(λ)

≤ Cr−2δψ(r−2β)

∞∑
i=0

(2−2δψ(2−2β))i

≤ CCδ,βr
−2δψ(r−2β),

where Cδ,β = (1− 2−2δψ(2−2β)))−1 since 2−2δψ(2−2β) < 1.
Consequently∫

|λ|≥r
|FΛf(λ)|2dµα+2n(λ) = O(r−2δψ(r−2β)), as r →∞.
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(b)⇒ (a). Suppose now that∫
|λ|≥r

|FΛf(λ)|2dµα+2n(λ) = O(r−2δψ(r−2β)), as r →∞.

and write

‖τhf(x) + τ−hf(x)− 2h2nf(x)‖22,α,n = 4h4n(I1 + I2),

where

I1 =

∫
|λ|< 1

h

|jα+2n(λh)− 1|2|FΛf(λ)|2dµα+2n(λ),

and

I2 =

∫
|λ|≥ 1

h

|jα+2n(λh)− 1|2|FΛf(λ)|2dµα+2n(λ).

Firstly, we use the formulas |jα+2n(λh)| ≤ 1 and

I2 ≤ 4

∫
|λ|≥ 1

h

|FΛf(λ)|2dµα+2n(λ) = O(h2δψ(h2β)), as h→ 0.

Set

φ(x) =

∫ +∞

x

|FΛf(λ)|2dµα+2n(λ).

Integrating by parts we obtain∫ x

0

λ2|FΛf(λ)|2dµα+2n(λ) =

∫ x

0

−λ2φ′(λ)dλ = −x2φ(x) + 2

∫ x

0

λφ(λ)dλ

≤ C1

∫ x

0

λ1−2δψ(λ−2β)dλ = O(x2−2δψ(x−2β)),

where C1 is a positive constant.
We use the formula (ii) of Lemma 1.2∫ +∞

−∞
|jα+2n(λh)− 1|2|FΛf(λ)|2dµα+2n(λ) = O

(
h2

∫
|λ|< 1

h

λ2|FΛf(λ)|2dµα+2n(λ)

)
+ O(h2δψ(h2β))

= O(h2h−2+2δψ(h2β)) +O(h2δψ(h2β))

= O(h2δψ(h2β)),

and this ends the proof.�
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