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EXISTENCE OF POSITIVE SOLUTIONS FOR A COUPLED SYSTEM

OF (p, q)-LAPLACIAN FRACTIONAL HIGHER ORDER BOUNDARY

VALUE PROBLEMS

K. R. PRASAD1, B. M. B. KRUSHNA2,∗ AND L. T. WESEN1,3

Abstract. In this paper, we establish the existence of at least three positive solutions

for a system of (p, q)-Laplacian fractional order two-point boundary value problems by
applying five functionals fixed point theorem under suitable conditions on a cone in a

Banach space.

1. Introduction

In the universe, many real world problems can be formulated as mathematical models
to analyze the situations and to predict future. Most of these models involve the rate of
change of the dependent variable which leads to formation of the differential equations.
One goal of differential equations is to understand the phenomena of nature by developing
mathematical models. Fractional calculus is an extension of classical calculus and deals with
the generalization of integration and differentiation to an arbitrary real order.

A class of differential equations governed by nonlinear differential operators appears fre-
quently and generated by great deal of interest in studying special types of problems. In this
theory, the most applicable operator is the classical p-Laplacian operator. These types of
problems arise in mathematical modeling of viscoelastic flows, turbulent filtration in porous
media, biophysics, plasma physics and chemical reaction design. For a detailed description
on applications of p-Laplacian operator, we refer [10].

The positivity of boundary value problems associated with ordinary differential equations
were studied by many authors [14, 1, 2] and extended to p-Laplacian boundary value prob-
lems [4, 22, 8]. Later these results are further extended to fractional order boundary value
problems [6, 5, 9, 21, 12, 19] by utilizing various fixed point theorems on cones.

Recently researchers are concentrating on the theory of fractional order boundary value
problems associated with p-Laplacian operator. Yang and Yan [22] studied the existence of
positive solutions for third order Sturm–Liouville boundary value problems with p-Laplacian
operator by applying the fixed point index method. Chai [7] obtained the existence and
multiplicity of positive solutions for a class of p-Laplacian fractional order boundary value
problems by means of the fixed point theorem. Prasad and Krushna [18, 20] derived sufficient
conditions for the existence of positive solutions to p-Laplacian fractional order boundary
value problems.
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Motivated by the papers mentioned above, in this paper, we are concerned with estab-
lishing the existence of positive solutions for a coupled system of (p, q)-Laplacian fractional
order differential equations

(1.1) Dβ1

0+

(
φp

(
Dα1

0+x(t)
))

= f1
(
t, x(t), y(t)

)
, t ∈ (0, 1),

(1.2) Dβ2

0+

(
φq

(
Dα2

0+y(t)
))

= f2
(
t, x(t), y(t)

)
, t ∈ (0, 1),

satisfying the boundary conditions

(1.3)
x(j)(0) = 0, j = 0, 1, · · ·, n− 2, x(n−2)(1) = 0,

φp

(
Dα1

0+x(0)
)

= 0, φp

(
Dα1

0+x(1)
)

= 0,


(1.4)

y(j)(0) = 0, j = 0, 1, · · ·, n− 2, y(n−2)(1) = 0,

φq

(
Dα2

0+y(0)
)

= 0, φq

(
Dα2

0+y(1)
)

= 0,


where αi ∈ (n− 1, n], n ≥ 3, βi ∈ (1, 2], φp(s) = |s|p−2s, φq(s) = |s|q−2s, p, q > 1, φ−1p = φq,

φ−1q = φp,
1

p
+

1

q
= 1, fi : [0, 1] ×R2 → R+

are continuous and Dαi

0+ , D
βi

0+ , for i = 1, 2 are

the standard Riemann–Liouville fractional order derivatives.
By a positive solution of the coupled system of fractional order boundary value problem

(1.1)-(1.4), we mean
(
x(t), y(t)

)
∈
(
Cα1+β1 [0, 1] × Cα2+β2 [0, 1]

)
satisfying the boundary

value problem (1.1)-(1.4) with x(t) ≥ 0, y(t) ≥ 0, for all t ∈ [0, 1] and (x, y) 6= (0, 0).
The rest of the paper is organized as follows. In Section 2, the solution of the boundary

value problems (1.1), (1.3) and (1.2), (1.4) are expressed in terms of Green functions and
the bounds for these Green functions are estimated. In Section 3, the existence of at least
three positive solutions for a coupled system of (p, q)-Laplacian fractional order boundary
value problem (1.1)-(1.4) are established, by using five functionals fixed point theorem. In
Section 4, as an application, the results are demonstrated with an example.

2. Green Functions and Bounds

In this section, the solution of the boundary value problems (1.1), (1.3) and (1.2), (1.4)
are expressed in terms of the equivalent integral equations involving Green functions and
the bounds for the Green functions are estimated, which are essential to establish the main
results.

Lemma 2.1. Let h1(t) ∈ C[0, 1]. Then the fractional order differential equation,

(2.1) Dα1

0+x(t) + h1(t) = 0, t ∈ (0, 1),

satisfying

(2.2) x(j)(0) = 0, j = 0, 1, · · ·, n− 2, x(n−2)(1) = 0,

has a unique solution,

x(t) =

∫ 1

0

G1(t, s)h1(s)ds,

where G1(t, s) is the Green’s function for the problem (2.1)-(2.2) and is given by

(2.3) G1(t, s) =

{
G11(t, s), 0 ≤ t ≤ s ≤ 1,
G12(t, s), 0 ≤ s ≤ t ≤ 1,
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G11(t, s) =
tα1−1(1− s)α1−n+1

Γ(α1)
,

G12(t, s) =
tα1−1(1− s)α1−n+1 − (t− s)α1−1

Γ(α1)
.

For details refer to [19].

Lemma 2.2. Let h2(t) ∈ C[0, 1]. Then the fractional order differential equation,

(2.4) Dβ1

0+

(
φp

(
Dα1

0+x(t)
))

= h2(t), t ∈ (0, 1),

satisfying

(2.5) φp

(
Dα1

0+x(0)
)

= 0, φp

(
Dα1

0+x(1)
)

= 0,

has a unique solution,

(2.6) x(t) =

∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)h2(τ)dτ
)
ds,

where

(2.7) H1(t, s) =


[
t(1− s)

]β1−1

Γ(β1)
, 0 ≤ t ≤ s ≤ 1,[

t(1− s)
]β1−1 − (t− s)β1−1

Γ(β1)
, 0 ≤ s ≤ t ≤ 1.

Proof. An equivalent integral equation for (2.4) is given by

φp

(
Dα1

0+x(t)
)

=
1

Γ(β1)

∫ t

0

(t− τ)β1−1h2(τ)dτ + k1t
β1−1 + k2t

β1−2.

From (2.5), one gets that k2 = 0 and k1 =
−1

Γ(β1)

∫ 1

0

(1− τ)β1−1h2(τ)dτ. Then,

φp

(
Dα1

0+x(t)
)

=
1

Γ(β1)

∫ t

0

(t− τ)β1−1h2(τ)dτ − tβ1−1

Γ(β1)

∫ 1

0

(1− τ)β1−1h2(τ)dτ

= −
∫ 1

0

H1(t, τ)h2(τ)dτ.

Therefore, Dα1

0+x(t) + φq

(∫ 1

0

H1(t, τ)h2(τ)dτ
)

= 0. Hence x(t) in (2.6) is the solution to

the fractional order boundary value problem (2.4), (1.3). �

Lemma 2.3. The Green’s function G1(t, s) given in (2.3) is nonnegative, for all (t, s) ∈
[0, 1]× [0, 1].

Proof. Consider the Green’s function G1(t, s) given by (2.3). Let 0 ≤ t ≤ s ≤ 1. Then, we
have

G11(t, s) =
1

Γ(α1)

[
tα1−1(1− s)α1−n+1

]
≥ 0.
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Let 0 ≤ s ≤ t ≤ 1. Then, we have

G12(t, s) =
1

Γ(α1)

[
tα1−1(1− s)α1−n+1 − (t− s)α1−1

]
≥ 1

Γ(α1)

[
tα1−1(1− s)α1−n+1 − (t− ts)α1−1

]
=
tα1−1

Γ(α1)

[(
1 + (n− 2)s+

1

2
(n2 − 3n+ 2)s2 + · · ·

)
− 1
]
(1− s)α1−1

≥0.

�

Lemma 2.4. For t ∈ I =
[
1
4 ,

3
4

]
, the Green’s function G1(t, s) given in (2.3) satisfies the

following inequalities

(P1) G1(t, s) ≤ G1(1, s), for all (t, s) ∈ [0, 1]× [0, 1],

(P2) G1(t, s) ≥
(1

4

)α1−1
G1(1, s), for all (t, s) ∈ I × [0, 1].

Proof. Consider the Green’s function G1(t, s) given by (2.3). Let 0 ≤ t ≤ s ≤ 1. Then, we
have

∂G11(t, s)

∂t
=

1

Γ(α1)

[
(α1 − 1)tα1−2(1− s)α1−n+1

]
≥ 0.

Therefore, G11(t, s) is increasing in t, which implies G11(t, s) ≤ G11(1, s).
Let 0 ≤ s ≤ t ≤ 1. Then, we have

∂G12(t, s)

∂t

=
1

Γ(α1)

[
(α1 − 1)tα1−2(1− s)α1−n+1 − (α1 − 1)(t− s)α1−2

]
≥ 1

Γ(α1)

[
(α1 − 1)tα1−2(1− s)α1−n+1 − (α1 − 1)(t− ts)α1−2

]
≥ tα1−2

Γ(α1 − 1)

[
1−

(
1− (n− 3)s+

1

2
(n2 − 7n+ 12)s2 + · · ·

)]
(1− s)α1−n+1

≥ 0.

Therefore, G12(t, s) is increasing in t, which implies G12(t, s) ≤ G12(1, s).
Let 0 ≤ t ≤ s ≤ 1 and t ∈ I. Then

G11(t, s) =
1

Γ(α1)

[
tα1−1(1− s)α1−n+1

]
≥tα1−1 1

Γ(α1)

[
(1− s)α1−n+1 − (1− s)α1−1

]
=tα1−1G11(1, s) ≥

(1

4

)α1−1
G11(1, s).
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Let 0 ≤ s ≤ t ≤ 1 and t ∈ I. Then

G12(t, s) =
1

Γ(α1)

[
tα1−1(1− s)α1−n+1 − (t− s)α1−1

]
≥ 1

Γ(α1)

[
tα1−1(1− s)α1−n+1 − (t− ts)α1−1

]
=tα1−1G12(1, s) ≥

(1

4

)α1−1
G12(1, s).

�

Lemma 2.5. For t, s ∈ [0, 1], the Green’s function H1(t, s) given in (2.7) satisfies the
following inequalities

(Q1) H1(t, s) ≥ 0,

(Q2) H1(t, s) ≤ H1(s, s).

For details refer to [20].

Lemma 2.6. Let ξ1 ∈ ( 1
4 ,

3
4 ). Then the Green’s function H1(t, s) holds the inequality,

(2.8) min
t∈I

H1(t, s) ≥ ϑ∗1(s)H1(s, s), for 0 < s < 1,

where

ϑ∗1(s) =


[ 34 (1− s)]β1−1 − ( 3

4 − s)
β1−1

[s(1− s)]β1−1
, s ∈ (0, ξ1],

1

(4s)β1−1
, s ∈ [ξ1, 1).

For details refer to [20].

Lemma 2.7. Let g1(t) ∈ C[0, 1], then the fractional order differential equation,

(2.9) Dα2

0+y(t) + g1(t) = 0, t ∈ (0, 1),

satisfying

(2.10) y(j)(0) = 0, j = 0, 1, · · ·, n− 2, y(n−2)(1) = 0,

has a unique solution,

y(t) =

∫ 1

0

G2(t, s)g1(s)ds,

where G2(t, s) is the Green’s function for the problem (2.9)-(2.10) and is given by

(2.11) G2(t, s) =

{
G21(t, s), 0 ≤ t ≤ s ≤ 1,
G22(t, s), 0 ≤ s ≤ t ≤ 1,

G21(t, s) =
tα2−1(1− s)α2−n+1

Γ(α2)
,

G22(t, s) =
tα2−1(1− s)α2−n+1 − (t− s)α2−1

Γ(α2)
.

For details refer to [19].
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Lemma 2.8. Let g2(t) ∈ C[0, 1]. Then the fractional order differential equation,

(2.12) Dβ2

0+

(
φq

(
Dα2

0+y(t)
))

= g2(t), t ∈ (0, 1),

satisfying

(2.13) φq

(
Dα2

0+y(0)
)

= 0, φq

(
Dα2

0+y(1)
)

= 0,

has a unique solution,

y(t) =

∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)g2(τ)dτ
)
ds,

where

(2.14) H2(t, s) =


[
t(1− s)

]β2−1

Γ(β2)
, 0 ≤ t ≤ s ≤ 1,[

t(1− s)
]β2−1 − (t− s)β2−1

Γ(β2)
, 0 ≤ s ≤ t ≤ 1.

Proof. Proof is similar to Lemma 2.2. �

Lemma 2.9. The Green’s function G2(t, s) given in (2.11) is nonnegative, for all (t, s) ∈
[0, 1]× [0, 1].

Proof. Proof is similar to Lemma 2.3. �

Lemma 2.10. For I =
[
1
4 ,

3
4

]
, the Green’s function G2(t, s) given in (2.11) satisfies the

following inequalities

(C1) G2(t, s) ≤ G2(1, s), for all (t, s) ∈ [0, 1]× [0, 1],

(C2) G2(t, s) ≥
(1

4

)α2−1
G2(1, s), for all (t, s) ∈ I × [0, 1].

Proof. Proof is similar to Lemma 2.4. �

Lemma 2.11. For t, s ∈ [0, 1], the Green’s function H2(t, s) given in (2.14) satisfies the
following inequalities

(D1) H2(t, s) ≥ 0,

(D2) H2(t, s) ≤ H2(s, s).

For details refer to [20].

Lemma 2.12. Let ξ2 ∈ ( 1
4 ,

3
4 ). Then the Green’s function H2(t, s) holds the inequality,

(2.15) min
t∈I

H2(t, s) ≥ ϑ∗2(s)H2(s, s), for 0 < s < 1,

where

(2.16) ϑ∗2(s) =


[ 34 (1− s)]β2−1 − ( 3

4 − s)
β2−1

[s(1− s)]β2−1
, s ∈ (0, ξ2],

1

(4s)β2−1
, s ∈ [ξ2, 1).

For details refer to [20].
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3. Existence of Positive Solutions

In this section, we establish sufficient conditions for the existence of at least three positive
solutions for a system of (p, q)-Laplacian fractional order boundary value problem (1.1)-(1.4),
by using five functionals fixed point theorem.

Let γ, β, θ be nonnegative continuous convex functionals on P and α,ψ be nonnegative
continuous concave functionals on P , then for nonnegative numbers h′, a′, b′, d′ and c′, convex
sets are defined.

P (γ, c′) =
{
y ∈ P : γ(y) < c′

}
,

P (γ, α, a′, c′) =
{
y ∈ P : a′ ≤ α(y); γ(y) ≤ c′

}
,

Q(γ, β, d′, c′) =
{
y ∈ P : β(y) ≤ d′; γ(y) ≤ c′

}
,

P (γ, θ, α, a′, b′, c′) =
{
y ∈ P : a′ ≤ α(y); θ(y) ≤ b′; γ(y) ≤ c′

}
,

Q(γ, β, ψ, h′, d′, c′) =
{
y ∈ P : h′ ≤ ψ(y);β(y) ≤ d′; γ(y) ≤ c′

}
.

In establishing the positive solutions for a coupled system of (p, q)-Laplacian fractional
order boundary value problem (1.1)-(1.4), the following so called Five Functionals Fixed
Point Theorem is fundamental.

Theorem 3.1. [3] Let P be a cone in the real Banach space B. Suppose α and ψ are
nonnegative continuous concave functionals on P and γ, β, θ are nonnegative continuous
convex functionals on P, such that for some positive numbers c′ and e′, α(y) ≤ β(y) and

‖ y ‖≤ e′γ(y), for all y ∈ P (γ, c′). Suppose further that T : P (γ, c′)→ P (γ, c′) is completely
continuous and there exist constants h′, d′, a′ and b′ ≥ 0 with 0 < d′ < a′ such that each of
the following is satisfied.

(B1)
{
y ∈ P (γ, θ, α, a′, b′, c′) : α(y) > a′

}
6= ∅ and

α(Ty) > a′ for y ∈ P (γ, θ, α, a′, b′, c′),

(B2)
{
y ∈ Q(γ, β, ψ, h′, d′, c′) : β(y) > d′

}
6= ∅ and

β(Ty) > d′ for y ∈ Q(γ, β, ψ, h′, d′, c′),

(B3) α(Ty) > a′ provided y ∈ P (γ, α, a′, c′) with θ(Ty) > b′,

(B4) β(Ty) < d′ provided y ∈ Q(γ, β, ψ, h′, d′, c′) with ψ(Ty) < h′.

Then T has at least three fixed points y1, y2, y3 ∈ P (γ, c′) such that β(y1) < d′, a′ < α(y2)
and d′ < β(y3) with α(y3) < a′.

Consider the Banach space B = E × E, where E =
{
x : x ∈ C[0, 1]

}
equipped with the

norm ‖(x, y)‖ = ‖x‖0 + ‖y‖0, for (x, y) ∈ B and the norm is defined as

‖x‖0 = max
t∈[0,1]

|x(t)|.

Define a cone P ⊂ B by

P =
{

(x, y) ∈ B : x(t) ≥ 0, y(t) ≥ 0, t ∈ [0, 1] and

min
t∈I

[
x(t) + y(t)

]
≥ η‖(x, y)‖

}
,

where

(3.1) η = min

{(1

4

)α1−1
,
(1

4

)α2−1
}
.
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Define the nonnegative continuous concave functionals α,ψ and the nonnegative contin-
uous convex functionals β, θ, γ on P by

α(x, y) = min
t∈I

{
|x|+ |y|

}
, ψ(x, y) = min

t∈I1

{
|x|+ |y|

}
,

γ(x, y) = max
t∈[0,1]

{
|x|+ |y|

}
, β(x, y) = max

t∈I1

{
|x|+ |y|

}
, θ(x, y) = max

t∈I

{
|x|+ |y|

}
,

where I1 =
[
1
3 ,

2
3

]
. For any (x, y) ∈ P ,

(3.2) α(x, y) = min
t∈I

{
|x|+ |y|

}
≤ max

t∈I1

{
|x|+ |y|

}
= β(x, y),

(3.3) ‖(x, y)‖ ≤ 1

η
min
t∈I

{
|x|+ |y|

}
≤ 1

η
max
t∈[0,1]

{
|x|+ |y|

}
=

1

η
γ(x, y).

Let

(3.4) ϑ∗(s) = min
{
ϑ∗1(s), ϑ∗2(s)

}
.

Define

L = min

{
1∫ 1

0
G1(1, s)φq

( ∫ 1

0
H1(τ, τ)dτ

)
ds
,

1∫ 1

0
G2(1, s)φp

( ∫ 1

0
H2(τ, τ)dτ

)
ds

}
, and

M = max

{
1∫

s∈I ηG1(1, s)φq

( ∫
τ∈I ϑ

∗(τ)H1(τ, τ)dτ
)
ds
,

1∫
s∈I ηG2(1, s)φp

( ∫
τ∈I ϑ

∗(τ)H2(τ, τ)dτ
)
ds

}
.

Theorem 3.2. Suppose there exist 0 < a′ < b′ <
b′

η
< c′ such that f1, f2 satisfies the

following conditions:

(A1)

{
f1
(
t, x(t), y(t)

)
< φp

(a′L
2

)
and f2

(
t, x(t), y(t)

)
< φq

(a′L
2

)
,

t ∈ [0, 1] and x, y ∈
[
ηa′, a′

]
,

(A2)


f1
(
t, x(t), y(t)

)
> φp

(b′M
2

)
and f2

(
t, x(t), y(t)

)
> φq

(b′M
2

)
,

t ∈ I and x, y ∈
[
b′,
b′

η

]
,

(A3)

 f1
(
t, x(t), y(t)

)
< φp

(c′L
2

)
and f2

(
t, x(t), y(t)

)
< φq

(c′L
2

)
,

t ∈ [0, 1] and x, y ∈
[
0, c′

]
.

Then the (p, q)-Laplacian fractional order boundary value problem (1.1)-(1.4) has at least
three positive solutions, (x1, x2), (y1, y2) and (z1, z2) such that β(x1, x2) < a′, b′ < α(y1, y2) and a′ <
β(z1, z2) with α(z1, z2) < b′.
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Proof. Let T1, T2 : P → E and T : P → B be the operators defined by
T1(x, y)(t) =

∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds,

T2(x, y)(t) =

∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds,

and

T (x, y)(t) =
(
T1(x, y)(t), T2(x, y)(t)

)
, for (x, y) ∈ B.

It is obvious that a fixed point of T is the solution of the fractional order boundary value
problem (1.1)-(1.4). Three fixed points of T are sought. First, it is shown that T : P → P .
Let (x, y) ∈ P . Clearly, T1

(
x, y
)
(t) ≥ 0 and T2

(
x, y
)
(t) ≥ 0, for t ∈ [0, 1]. Also for (x, y) ∈ P,

‖T1(x, y)‖0 ≤
∫ 1

0

G1(1, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds,

‖T2(x, y)‖0 ≤
∫ 1

0

G2(1, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds,

and

min
t∈I

T1(x, y)(t) = min
t∈I

∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds

≥ η
∫ 1

0

G1(1, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds

≥ η‖T1(x, y)‖0.

Similarly, min
t∈I

T2
(
x, y
)
(t) ≥ η‖T2

(
x, y
)
‖0. Therefore,

min
t∈I

{
T1(x, y)(t) + T2(x, y)(t)

}
≥ η‖T1(x, y)‖0 + η‖T2(x, y)‖0

= η
(
‖T1(x, y)‖0 + ‖T2(x, y)‖0

)
= η

∥∥∥(T1(x, y), T2(x, y)
)∥∥∥

= η‖T (x, y)‖.

Hence T (x, y) ∈ P and so T : P → P . Moreover the operator T is completely continuous.

From (3.2) and (3.3), for each (x, y) ∈ P, α(x, y) ≤ β(x, y) and ‖(x, y)‖ ≤ 1

η
γ(x, y). It is

shown that T : P (γ, c′) → P (γ, c′). Let (x, y) ∈ P (γ, c′). Then 0 ≤ |x| + |y| ≤ c′. The
condition (A3) is used to obtain

γ
(
T (x, y)(t)

)
= max
t∈[0,1]

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≤
∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)φp

(c′L
2

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)φq

(c′L
2

)
dτ
)
ds
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<
c′L
2

∫ 1

0

G1(1, s)φq

(∫ 1

0

H1(τ, τ)dτ
)
ds+

c′L
2

∫ 1

0

G2(1, s)φp

(∫ 1

0

H2(τ, τ)dτ
)
ds

<
c′

2
+
c′

2
= c′.

Therefore T : P (γ, c′)→ P (γ, c′). Now the conditions (B1) and (B2) of Theorem 3.1 are to
be verified. It is obvious that

b′
(
η + 1

)
2η

∈
{

(x, y) ∈ P
(
γ, θ, α, b′,

b′

η
, c′
)

: α(x, y) > b′
}
6= ∅ and

ηa′ + a′

2
∈
{

(x, y) ∈ Q
(
γ, β, ψ, ηa′, a′, c′

)
: β(x, y) < a′

}
6= ∅.

Next, let (x, y) ∈ P
(
γ, θ, α, b′,

b′

η
, c′
)

or (x, y) ∈ Q
(
γ, β, ψ, ηa′, a′, c′

)
. Then, b′ ≤

{
|x(t)|+

|y(t)|
}
≤ b′

η
and ηa′ ≤

{
|x(t)|+ |y(t)|

}
≤ a′. Now the condition (A2) is applied to get

α
(
T (x, y)(t)

)
= min

t∈I

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ))dτ

)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≥ η

[ ∫ 1

0

G1(1, s)φq

(∫ 1

0

ϑ∗(τ)H1(τ, τ)φp

(b′M
2

)
dτ
)
ds+∫ 1

0

G2(1, s)φp

(∫ 1

0

ϑ∗(τ)H2(τ, τ)φq

(b′M
2

)
dτ
)
ds

]
>
b′M

2

∫
s∈I

ηG1(1, s)φq

(∫
τ∈I

ϑ∗(τ)H1(τ, τ)dτ
)
ds+

b′M
2

∫
s∈I

ηG2(1, s)φp

(∫
τ∈I

ϑ∗(τ)H2(τ, τ)dτ
)
ds

≥ b′

2
+
b′

2
= b′.

Clearly the condition (A1) leads to

β
(
T (x, y)(t)

)
= max

t∈I1

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≤
∫ 1

0

G1(1, s)φq

(∫ 1

0

H1(s, τ)φp

(a′L
2

)
dτ
)
ds+∫ 1

0

G2(1, s)φp

(∫ 1

0

H2(s, τ)φq

(a′L
2

)
dτ
)
ds
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<
a′L
2

∫ 1

0

G1(1, s)φq

(∫ 1

0

H1(τ, τ)dτ
)
ds+

a′L
2

∫ 1

0

G2(1, s)φp

(∫ 1

0

H2(τ, τ)dτ
)
ds

≤ a′

2
+
a′

2
= a′.

To see that (B3) is satisfied, let (x, y) ∈ P
(
γ, α, b′, c′

)
with θ

(
T (x, y)(t)

)
>
b′

η
. Then

α
(
T (x, y)(t)

)
= min

t∈I

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≥ η

[ ∫ 1

0

G1(1, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(1, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≥ η max

t∈[0,1]

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≥ ηmax

t∈I

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φq

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
= ηθ

(
T (x, y)(t)

)
> b′.

Finally it is shown that (B4) holds. Let (x, y) ∈ Q
(
γ, β, a′, c′

)
with ψ

(
T (x, y)

)
< ηa′. Then

we have

β
(
T (x, y)(t)

)
= max

t∈I1

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
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≤ max
t∈[0,1]

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≤ 1

η
min
t∈I

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
≤ 1

η
min
t∈I1

[ ∫ 1

0

G1(t, s)φq

(∫ 1

0

H1(s, τ)f1
(
τ, x(τ), y(τ)

)
dτ
)
ds+∫ 1

0

G2(t, s)φp

(∫ 1

0

H2(s, τ)f2
(
τ, x(τ), y(τ)

)
dτ
)
ds

]
=

1

η
ψ
(
T (x, y)(t)

)
< a′.

It is been proved that all the conditions of Theorem 3.1 are satisfied. Therefore the system
of (p, q)-Laplacian fractional order boundary value problem (1.1)-(1.4) has at least three
positive solutions (x1, x2), (y1, y2) and (z1, z2) such that β(x1, x2) < a′, b′ < α(y1, y2) and
a′ < β(z1, z2) with α(z1, z2) < b′. This completes the proof. �

4. Example

In this section, as an application, the results are demonstrated with an example.

Consider the system of (p, q)-Laplacian fractional order differential equations

(4.1) D1.8
0+

(
φp

(
D3.8

0+ x(t)
))

= f1(t, x, y), t ∈ (0, 1),

(4.2) D1.7
0+

(
φq

(
D3.9

0+ y(t)
))

= f2(t, x, y), t ∈ (0, 1),

satisfying the boundary conditions

(4.3)
x(0) = x′(0) = x′′(0) = 0 and x′′(1) = 0,

φp

(
D3.8

0+ x(0)
)

= φp

(
D3.8

0+ x(1)
)

= 0,

}

(4.4)
y(0) = y′(0) = y′′(0) = 0 and y′′(1) = 0,

φq

(
D3.9

0+ y(0)
)

= φq

(
D3.9

0+ y(1)
)

= 0,

}
where

f1(t, x, y) =


e2t

57
+
cos(x+ y)

9
+

11(x+ y)3

9
, 0 ≤ x+ y ≤ 4,

cos(x+ y)

9
+
e2t

57
+

5632

9
, x+ y > 4,

f2(t, x, y) =


sin(x+ y)

9
+

11(x+ y)3

9
+
e2t

56
, 0 ≤ x+ y ≤ 4,

e2t

56
+
sin(x+ y)

9
+

5632

9
, x+ y > 4.
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Clearly fi, for i = 1, 2 are continuous and increasing on [0,∞). Let p = 2. By direct
calculations, one can determine η = 0.0205, L = 27.9632 and M = 314.5214. Choosing

a′ = 0.5, b′ = 4 and c′ = 200, then 0 < a′ < b′ <
b′

η
< c′ and f1, f2 satisfies

(a)

{
f1
(
t, x, y

)
< 0.5091 = φp

(a′L
2

)
and f2

(
t, x, y

)
< 0.5091 = φq

(a′L
2

)
,

t ∈ [0, 1] and x, y ∈
[
ηa′, a′

]
= [0.0103, 0.05],

(b)


f1
(
t, x, y

)
> 1356 = φp

(b′M
2

)
and f2

(
t, x, y

)
> 1356 = φq

(b′M
2

)
,

t ∈ I = [0.25, 0.75] and x, y ∈
[
b′,
b′

η

]
= [4, 195.12],

(c)

 f1
(
t, x, y

)
< 2796.32 = φp

(c′L
2

)
and f2

(
t, x, y

)
< 2796.32 = φq

(c′L
2

)
,

t ∈ [0, 1] and x, y ∈
[
0, c′

]
= [0, 200].

Then all the conditions of Theorem 3.2 are satisfied. Thus by Theorem 3.2, the (p, q)-
Laplacian fractional order boundary value problem (4.1)-(4.4) has at least three positive
solutions.
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