HARMONIC ANALYSIS ASSOCIATED WITH THE GENERALIZED q-BESSEL OPERATOR

AHMED ABOUELAZ, RADOUAN DAHER, EL MEHDI LOUALID*

Abstract. In this article, we give a new harmonic analysis associated with the generalized q-Bessel operator. We introduce the generalized q-Bessel transform, the generalized q-Bessel translation and the generalized q-Bessel convolution product.

1. Introduction

In this paper we consider a generalized q-Bessel operator $\Delta_{q,\alpha,n}$ defined by

(1)
$$\Delta_{q,\alpha,n}f(x) = \frac{1}{x^2} \left[q^{2n} f(q^{-1}x) - (1 + q^{2\alpha + 4n}) f(x) + q^{2\alpha + 2n} f(qx) \right]$$

where n = 0, 1, For n = 0, we regain the q-Bessel operator

(2)
$$\Delta_{q,\alpha}f(x) = \frac{1}{r^2} \left[f(q^{-1}x) - (1+q^{2\alpha})f(x) + q^{2\alpha}f(qx) \right]$$

Through this paper, we provide a new harmonic analysis corresponding to the generalized q-Bessel operator $\Delta_{d,\alpha,n}$.

The structure of the paper is as follows: In section 2, we set some notations and collect some basic results about q-harmonnic analysis. In section 3, we give some facts about harmonic analysis related to the generalized q-Bessel operator $\Delta_{q,\alpha,n}$, we define the generalized q-Bessel transform and we give some proprieties. In section 4, we define the generalized q-Bessel translation $T_{q,x,n}^{\alpha}$ and the generalized q-Bessel convolution product related to $T_{q,x,n}^{\alpha}$.

2. Element of q-harmonnic analysis

In this section, we recapitulate some facts about harmonic analysis related to the Bessel operator $\Delta_{d,\alpha,n}$. We cite here, as briefly as possible, some properties. For more details we refer to [5, 6, 1, 2]. Throught this paper, we assume that 0 < q < 1 and $\alpha > -1$. let $a \in \mathbb{C}$, the q-shifted factorial are defined by

$$(a;q)_0 = 1$$
, $(a;q)_n = \prod_{k=0}^{n-1} (1 - aq^k)$, $(a;q)_\infty = \prod_{k=0}^\infty (1 - aq^k)$

The q-derivative of a function f is given by

$$D_q f(x) = \frac{f(x) - f(qx)}{(1 - q)x} \quad if \quad x \neq 0$$

The q-Jackson integrals from 0 to a and from 0 to ∞ are defined by [3, 4]

$$\int_{0}^{a} f(x)d_{q}x = (1 - q)a \sum_{0}^{\infty} f(aq^{n})q^{n},$$

²⁰¹⁰ Mathematics Subject Classification. 05A30, 44A15.

 $Key\ words\ and\ phrases.$ Generalized q-Bessel operator; Generalized q-Bessel transform; Generalized q-Bessel translation; Genaralized q-Bessel translation.

$$\int_0^\infty f(x)d_qx = (1-q)a\sum_{n=-\infty}^\infty f(q^n)q^n.$$

We have

$$D_q \int_x^a H(t) d_q t = -H(x).$$

The q-analogue of the integration theorem by a change of variable can be stated as follows

$$\int_{a}^{b} H(\frac{\lambda}{r}) \lambda^{2\alpha+1} d_{q} \lambda = r^{2\alpha+2} \int_{\frac{a}{r}}^{\frac{b}{r}} H(t) t^{2\alpha+1} d_{q} t, \quad \forall r \in \mathbb{R}_{q}^{+}$$

The q-integration by parts formula is given by

$$\int_{a}^{b} g(x)D_{q}f(x)d_{q}x = [f(b)g(b) - f(a)g(a)] - \int_{a}^{b} f(qx)D_{q}g(x)d_{q}.$$

The third Jackson q-Bessel function J_{α} (also called Hahn-Exton q-Bessel functions) is defined by the power series [7]

$$J_{\alpha}(x;q) = \frac{(q^{\alpha+1};q)_{\infty}}{(q;q)_{\infty}} x^{\alpha} \sum_{n=0}^{\infty} (-1)^n \frac{q^{\frac{n(n+1)}{2}}}{(q^{\alpha+1};q)_n(q;q)_n} x^{2n},$$

and has the normalized form

$$j_{\alpha}(x;q) = \sum_{n=0}^{\infty} (-1)^n \frac{q^{\frac{n(n+1)}{2}}}{(q^{\alpha+1};q)_n(q;q)_n} x^{2n}.$$

It satisfies the following estimate [5]

$$|j_{\alpha}(q^n, q^2)| \le \frac{(-q^2; q^2)_{\infty}(-q^{2\alpha+2}; q^2)_{\infty}}{(q^{2\alpha+2}; q^2)_{\infty}} \begin{cases} 1 & \text{if } n \ge 0\\ q^{n^2 - (2\alpha+1)n} & \text{if } n < 0 \end{cases}$$

If $x \in \mathbb{C}^* \setminus \mathbb{R}$ then we have the following asymptotic expansion as $|x| \to \infty$

$$j_{\alpha}(x;q^2) \sim \frac{(x^2q^2;q^2)_{\infty}}{(q^{2\alpha+2};q^2)_{\infty}}$$

Also the normalized q-Bessel functions satisfies an orthogonality relation

$$c_{q,\alpha}^2 \int_0^\infty j_\alpha(xt,q^2) j_\alpha(yt,q^2) t^{2\alpha+1} d_q t = \delta_q(x,y)$$

where

$$\delta_q(x,y) = \begin{cases} 0, & \text{if } y \neq x; \\ \frac{1}{(1-q)x^{2(\alpha+1)}}, & \text{if } x = y. \end{cases}$$

(3)
$$c_{q,\alpha} = \frac{1}{1-q} \frac{(q^{2\alpha+2}; q^2)_{\infty}}{(q^2; q^2)_{\infty}}.$$

The function $x \mapsto j_{\alpha}(\lambda x, q^2)$ is a solution of the following q-differential equation

(4)
$$\Delta_{q,\alpha}f(x) = -\lambda^2 f(x),$$

where $\Delta_{q,\alpha}$ is the q-Bessel operator given by (2).

For $1 \leq p < \infty$ we denote by $\mathcal{L}_{q,\alpha}^p$ the set of all real functions on \mathbb{R}_q^+ for which

$$||f||_{q,p,\alpha} = \left(\int_0^\infty |f(x)|^p x^{2\alpha+1} d_q x\right)^{\frac{1}{p}} < \infty.$$

Proposition 2.1. Let $f, g \in \mathcal{L}^2_{q,\alpha}$ such that $\Delta_{q,\alpha} f, \Delta_{q,\alpha} g \in \mathcal{L}^2_{q,\alpha}$ then

(5)
$$\int_0^\infty \Delta_{q,\alpha} f(x) g(x) x^{2\alpha+1} d_q x = \int_0^\infty f(x) \Delta_{q,\alpha} g(x) x^{2\alpha+1} d_q x.$$

The q-Bessel Fourier transform $\mathcal{F}_{q,\alpha}$ was introduced and studies in [5, 6]

(6)
$$\mathcal{F}_{q,\alpha}f(x) = c_{q,\alpha} \int_0^\infty f(t)j_\alpha(xt,q^2)t^{2\alpha+1}d_qt,$$

The q-Bessel translation operator is defined as follows [5, 6]

(7)
$$T_{q,x}^{\alpha}f(y) = c_{q,\alpha} \int_0^{\infty} \mathcal{F}_{q,\alpha}(f)(t) j_{\alpha}(xt,q^2) j_{\alpha}(yt,q^2) t^{2\alpha+1} d_q t.$$

Proposition 2.2. We have for all $x, y \in \mathbb{R}_a^+$

$$T_{q,x}^{\alpha}f(y) = T_{q,y}^{\alpha}f(x)$$

The q-translation operator is positive if

$$T_{q,x}^{\alpha} f \ge 0, \quad \forall f \ge 0, \quad \forall x \in \mathbb{R}_q^+.$$

The domaine of positivity of the q-translation operator is

$$Q_{\alpha} = \{q \in]0,1[, T_{q,x}^{\alpha} \text{ is positive for all } x \in \mathbb{R}_q^+\}.$$

In [1] it was proved that if $-1 < \alpha < \alpha'$ then $Q_{\alpha} \subset Q_{\alpha'}$. As a consequence:

- if $0 \le \alpha$ then $Q_{\alpha} =]0,1[$.
- if $-\frac{1}{2} \le \alpha < 0$ then $]0, q_0[\subset Q_{-\frac{1}{2}} \subset Q_{\alpha} \subsetneq]0, 1[, q_0 \simeq 0.43.$
- if $-1 \le \alpha < -\frac{1}{2}$ then $Q_{\alpha} \subset Q_{-\frac{1}{2}}$.

In the rest of this section we always assume that the q-translation operator is positive.

The q-convolution product of two functions is given by [5, 6]

(8)
$$f *_{q,\alpha} g(x) = c_{q,\alpha} \int_0^\infty T_{q,x}^{\alpha} f(y) g(y) y^{2\alpha + 1} d_q y.$$

The following Theorem summarize some result about q-Bessel Fourier transform [6]

Theorem 2.3. The q-Bessel Fourier transform satisfies

(1) For all functions $f \in \mathcal{L}^p_{q,\alpha}$,

$$\mathcal{F}_{q,\alpha}^2 f(x) = f(x), \quad \forall x \in \mathbb{R}_q^+.$$

(2) For all functions $f \in \mathcal{L}^2_{q,\alpha}$,

(9)
$$\| \mathcal{F}_{q,\alpha}^2 f \|_{q,\alpha,2} = \| f \|_{q,\alpha,2} .$$

(3) For all functions $f \in \mathcal{L}^p_{q,\alpha}$, where $p \geq 1$ then $\mathcal{F}_{q,\alpha}f \in \mathcal{L}^{\overline{p}}_{q,\alpha}$. If $1 \leq p \leq 2$ then

(10)
$$\|\mathcal{F}_{q,\alpha}f\|_{q,\alpha,\overline{p}} \leq B_{q,\alpha}^{\frac{2}{p}-1} \|f\|_{q,\alpha,p}.$$

where

(11)
$$B_{q,\alpha} = \frac{1}{1-q} \frac{(-q^2; q^2)_{\infty} (-q^{2\alpha+2}; q^2)_{\infty}}{(q^2; q^2)_{\infty}}$$

(4) Let $f \in \mathcal{L}^p_{q,\alpha}$ and $g \in \mathcal{L}^r_{q,\alpha}$ the $f *_q g \in \mathcal{L}^s_{q,\alpha}$ and

(12)
$$\mathcal{F}_{q,\alpha}(f *_{q,\alpha} g)(x) = \mathcal{F}_{q,\alpha}f(x) \times \mathcal{F}_{q,\alpha}f(x), \quad \forall x \in \mathbb{R}_q^+.$$

where $1 \leq p, r, s$ such that

$$\frac{1}{p} + \frac{1}{r} - 1 = \frac{1}{s}.$$

Proposition 2.4. [2] For all $x, y \in \mathbb{R}_q^+$, we have

(13)
$$T_{q,x}^{\alpha}j_{\alpha}(\lambda y, q^2) = j_{\alpha}(\lambda x, q^2)j_{\alpha}(\lambda y, q^2).$$

Proposition 2.5. [2] For any function $f \in \mathcal{L}^2_{q,\alpha}$ we have

(14)
$$\mathcal{F}_{q,\alpha}(T_{q,x}^{\alpha}f)(\lambda) = j_{\alpha}(\lambda x, q^2)\mathcal{F}_{q,\alpha}(f)(\lambda), \quad \forall \lambda, x \in \mathbb{R}_q^+.$$

3. Generalized Q-Bessel transform

Let

• \mathcal{M} the map defined by

(15)
$$\mathcal{M}f(x) = x^{2n}f(x).$$

• $\mathcal{L}_{q,\alpha,n}^p$ the class of measurable functions f on \mathbb{R}_q^+ for which

$$||f||_{q,\alpha,p,n} = ||\mathcal{M}^{-1}f||_{q,\alpha+2n,p} < \infty.$$

 $\forall x \in \mathbb{R}_q^+$, put

(16)
$$\Psi_{\alpha,n}(\lambda x, q^2) = x^{2n} j_{\alpha+2n}(\lambda x, q^2).$$

Proposition 3.1. (i): The map \mathcal{M} is a topological isomorphism from $\mathcal{L}^p_{q,\alpha}$ onto $\mathcal{L}^p_{q,\alpha,n}$ (ii): We have

(17)
$$\Delta_{q,\alpha,n} \circ \mathcal{M} = \mathcal{M} \circ \Delta_{q,\alpha+2n}.$$

(iii): $\Psi_{\alpha,n}(\lambda,q^2)$ satisfies the differential equation

(18)
$$\Delta_{q,\alpha,n}\Psi_{\alpha,n}(\lambda,q^2) = -\lambda^2\Psi_{\alpha,n}(\lambda,q^2)$$

Proof. Assertion (i) is easily checked.

(ii) easy combination of (1), (2) and (16).

Using (4) and (18), we have

$$\Delta_{q,\alpha,n}\Psi_{\alpha,n}(\lambda.,q^{2}) = \mathcal{M} \circ \Delta_{q,\alpha+2n} \circ \mathcal{M}^{-1}\Psi_{\alpha,n}(\lambda.,q^{2}),
= \mathcal{M} \circ \Delta_{q,\alpha+2n}j_{\alpha+2n}(\lambda.,q^{2}),
= -\lambda^{2}\mathcal{M}j_{\alpha+2n}(\lambda.,q^{2}),
= -\lambda^{2}\Psi_{\alpha,n}(\lambda.,q^{2})$$

which prove (iii). ■

Definition 3.2. The generalized q-Bessel transform of a function $f \in \mathcal{L}^1_{q,\alpha,n}$ is defined by

(19)
$$\mathcal{F}_{q,\alpha,n}(f)(x) = c_{q,\alpha+2n} \int_0^\infty f(t) \Psi_{\alpha,n}(\lambda t, q^2) t^{2\alpha+1} d_q t$$

where $c_{q,\alpha+2n}$ is given by (3).

Proposition 3.3. (i): For all $f \in \mathcal{L}^1_{q,\alpha,n}$ we have

(20)
$$\mathcal{F}_{q,\alpha,n}(f)(\lambda) = \mathcal{F}_{q,\alpha+2n} \circ \mathcal{M}^{-1}f(\lambda).$$

(ii): For all $f \in \mathcal{L}^1_{q,\alpha,n}$

(21)
$$\mathcal{F}_{q,\alpha,n}(\Delta_{q,\alpha,n}f)(\lambda) = -\lambda^2 \mathcal{F}_{q,\alpha,n}(f)(\lambda).$$

Proof. Let $f \in \mathcal{L}^1_{q,\alpha,n}$. From (6), (17) and (20), we have

$$\mathcal{F}_{q,\alpha,n}(f)(\lambda) = c_{q,\alpha+2n} \int_0^\infty f(t) \Psi_{\alpha,n}(\lambda t, q^2) t^{2\alpha+1} d_q t,$$

$$= c_{q,\alpha+2n} \int_0^\infty f(t) x^{2n} j_{\alpha+2n}(\lambda t, q^2) t^{2\alpha+1} d_q t,$$

$$= c_{q,\alpha+2n} \int_0^\infty \mathcal{M}^{-1} f(t) j_{\alpha+2n}(\lambda t, q^2) t^{2\alpha+4n+1} d_q t,$$

$$= \mathcal{F}_{q,\alpha+2n} \circ \mathcal{M}^{-1} f(\lambda).$$

which prove (i).

Let $f \in \mathcal{L}^1_{q,\alpha,n}$. From (5), (19) and (20), we have

$$\begin{split} \mathcal{F}_{q,\alpha,n}(\Delta_{q,\alpha,n}f)(\lambda) &= c_{q,\alpha+2n} \int_0^\infty \Delta_{q,\alpha,n}f(t)\Psi_{\alpha,n}(\lambda t,q^2)t^{2\alpha+1}d_qt, \\ &= c_{q,\alpha+2n} \int_0^\infty f(t)\Delta_{q,\alpha,n}\Psi_{\alpha,n}(\lambda t,q^2)t^{2\alpha+1}d_qt, \\ &= c_{q,\alpha+2n} \int_0^\infty (-\lambda^2)f(t)\Psi_{\alpha,n}(\lambda t,q^2)t^{2\alpha+1}d_qt, \\ &= -\lambda^2 \mathcal{F}_{q,\alpha,n}(f)(\lambda). \end{split}$$

Theorem 3.4. (1) For $f \in \mathcal{L}^p_{q,\alpha,n}$, we have

(22)
$$\|\mathcal{F}_{q,\alpha,n}f\|_{q,\alpha,n,\infty} \le B_{q,\alpha+2n}\|f\|_{q,\alpha,n,1}.$$

where $B_{q,\alpha+2n}$ is given by (11)

(2) Let $f \in \mathcal{L}^1_{q,\alpha,n}$, then

(23)
$$\|\mathcal{F}_{q,\alpha,n}f\|_{q,\alpha,n,2} = \|f\|_{q,\alpha,n,2}.$$

Proof. Let $f \in \mathcal{L}^1_{q,\alpha,n}$, from (10), (11) and (21) we have

$$\|\mathcal{F}_{q,\alpha,n}f\|_{q,\alpha,n,\infty} = \|\mathcal{F}_{q,\alpha+2n} \circ \mathcal{M}^{-1}f\|_{q,\alpha+2n,\infty},$$

$$\leq B_{q,\alpha+2n}\|\mathcal{M}^{-1}f\|_{q,\alpha+2n,1},$$

$$\leq B_{q,\alpha+2n}\|f\|_{q,\alpha,n,1}.$$

which prove 1).

Let $f \in \mathcal{L}^1_{q,\alpha,n}$. Using (9) and (21), we have

$$\|\mathcal{F}_{q,\alpha,n}f\|_{q,\alpha,n,2} = \|\mathcal{F}_{q,\alpha+2n} \circ \mathcal{M}^{-1}f\|_{q,\alpha+2n,2},$$

=
$$\|\mathcal{M}^{-1}f\|_{q,\alpha+2n,2},$$

=
$$\|f\|_{q,\alpha,n,2}.$$

4. Generalized convolution product associated with $\Delta_{q,\alpha,n}$

Definition 4.1. The generalized q-Bessel translation operators $T_{q,x,n}^{\alpha}$ associated with $\Delta_{q,\alpha,n}$ are defined by

(24)
$$T_{q,x,n}^{\alpha} = x^{2n} \mathcal{M} \circ T_{q,x}^{\alpha+2n} \circ \mathcal{M}^{-1}$$

where $T_{q,x}^{\alpha+2n}$ is given by (7).

The generalized q-Bessel translation operator is positive if

$$T_{q,x,n}^{\alpha} f \ge 0, \quad \forall f \ge 0, \quad \forall x \in \mathbb{R}_q^+.$$

The domaine of positivity of the generalized q-Bessel translation operator is

$$Q_{\alpha,n} = \{q \in]0,1[, \quad T_{q,x,n}^{\alpha} \quad is \ positive \ for \ all \ x \in \mathbb{R}_q^+\}.$$

In the rest of this paper we always assume that the generalized q-Bessel translation operator is positive.

Proposition 4.2. (i): Let $f \in \mathcal{L}^1_{q,\alpha,n}$, we have

(25)
$$T_{q,x,n}^{\alpha}f(y) = T_{q,y,n}^{\alpha}f(x)$$

and

$$T_{q,x,n}^{\alpha}f(0) = f(x).$$

(ii): $\forall x, y \in \mathbb{R}_q^+$, we have

(26)
$$T_{q,x,n}^{\alpha}\Psi_{\alpha,n}(\lambda y, q^2) = \Psi_{\alpha,n}(\lambda x, q^2)\Psi_{\alpha,n}(\lambda y, q^2)$$

(iii): For any function $f \in \mathcal{L}^2_{a,\alpha,n}$, we have

(27)
$$\mathcal{F}_{q,\alpha,n}(T^{\alpha}_{q,x,n}f)(\lambda) = \Psi_{\alpha,n}(\lambda x, q^2)\mathcal{F}_{q,\alpha,n}(f)(\lambda).$$

Proof. Let $f \in \mathcal{L}^1_{q,\alpha,n}$, from Porosition 2.2 and (25), we have

$$\begin{array}{lcl} T^{\alpha}_{q,x,n}f(y) & = & x^{2n}\mathcal{M}\circ T^{\alpha+2n}_{q,x}\circ \mathcal{M}^{-1}f(y),\\ & = & x^{2n}y^{2n}T^{\alpha+2n}_{q,y}\circ \mathcal{M}^{-1}f(x),\\ & = & y^{2n}\mathcal{M}\circ T^{\alpha+2n}_{q,y}\circ \mathcal{M}^{-1}f(x),\\ & = & T^{\alpha}_{q,y,n}f(x). \end{array}$$

which prove (i).

Let $x, y \in \mathbb{R}_q^+$. From (13) and (25), we have

$$\begin{array}{lcl} T^{\alpha}_{q,x,n} \Psi_{\alpha,n}(\lambda y,q^2) & = & x^{2n} \mathcal{M} \circ T^{\alpha+2n}_{q,x} \circ \mathcal{M}^{-1}(y^{2n} j_{\alpha+2n}(\lambda y,q^2)), \\ & = & x^{2n} y^{2n} T^{\alpha+2n}_{q,x} j_{\alpha+2n}(\lambda y,q^2)), \\ & = & x^{2n} j_{\alpha+2n}(\lambda x,q^2) y^{2n} j_{\alpha+2n}(\lambda y,q^2)), \\ & = & \Psi_{\alpha,n}(\lambda x,q^2) \Psi_{\alpha,n}(\lambda y,q^2). \end{array}$$

which prove (ii).

Let $f \in \mathcal{L}^2_{q,\alpha,n}$. From (14), (17), (21) and (25), we have

$$\mathcal{F}_{q,\alpha,n}(T^{\alpha}_{q,x,n}f)(\lambda) = \mathcal{F}_{q,\alpha,n}(x^{2n}\mathcal{M} \circ T^{\alpha+2n}_{q,x} \circ \mathcal{M}^{-1}f)(\lambda),$$

$$= x^{2n}\mathcal{F}_{q,\alpha+2n}(T^{\alpha+2n}_{q,x} \circ \mathcal{M}^{-1}f)(\lambda),$$

$$= x^{2n}j_{\alpha+2n}(\lambda x, q^2)\mathcal{F}_{q,\alpha+2n}(\mathcal{M}^{-1}f)(\lambda),$$

$$= \Psi_{\alpha,n}(\lambda x, q^2)\mathcal{F}_{q,\alpha,n}(f)(\lambda).$$

which prove (iii). ■

Definition 4.3. The generalized q-convolution product of both function $f, g \in \mathcal{L}^1_{q,\alpha,n}$ is defined by

(28)
$$f *_{q,\alpha,n} g(x) = c_{q,\alpha+2n} \int_0^\infty T_{q,x,n}^\alpha f(y)g(y)y^{2\alpha+1}d_q y.$$

where $c_{q,\alpha+2n}$ is given by (3).

Proposition 4.4. For $f, g \in \mathcal{L}^1_{q,\alpha,n}$

(29)
$$f *_{q,\alpha,n} g = \mathcal{M} \left[(\mathcal{M}^{-1} f) *_{q,\alpha+2n} (\mathcal{M}^{-1} f) \right].$$

Proof. Let $f, g \in \mathcal{L}^1_{q,\alpha,n}$. From (8), (25) and (29), we have

$$\begin{split} f *_{q,\alpha,n} g(x) &= c_{q,\alpha+2n} \int_0^\infty T_{q,x,n}^\alpha f(y) g(y) y^{2\alpha+1} d_q y, \\ &= c_{q,\alpha+2n} x^{2n} \int_0^\infty T_{q,x}^{\alpha+2n} \mathcal{M}^{-1} f(y) g(y) y^{2\alpha+2n+1} d_q y, \\ &= c_{q,\alpha+2n} x^{2n} \int_0^\infty T_{q,x}^{\alpha+2n} \mathcal{M}^{-1} f(y) \mathcal{M}^{-1} g(y) y^{2\alpha+4n+1} d_q y, \\ &= x^{2n} \left[(\mathcal{M}^{-1} f) *_{q,\alpha+2n} (\mathcal{M}^{-1} g) \right] (x), \\ &= \mathcal{M} \left[(\mathcal{M}^{-1} f) *_{q,\alpha+2n} (\mathcal{M}^{-1} g) \right] (x). \end{split}$$

Proposition 4.5. For $f, g \in \mathcal{L}^1_{q,\alpha,n}$, then $f *_{q,\alpha,n} g \in \mathcal{L}^1_{q,\alpha,n}$ and

(30)
$$\mathcal{F}_{q,\alpha,n}(f *_{q,n} g)(\lambda) = \mathcal{F}_{q,\alpha,n}(f)(\lambda)\mathcal{F}_{q,\alpha,n}(g)(\lambda).$$

Proof. Let $f, g \in \mathcal{L}^1_{q,\alpha,n}$, we have

$$||f *_{q,n} g||_{q,\alpha,n,1} = ||\mathcal{M}^{-1}(f *_{q,n} g)||_{q,\alpha+2n,1},$$

$$\leq ||\mathcal{M}^{-1}f||_{q,\alpha+2n,1}||\mathcal{M}^{-1}g||_{q,\alpha+2n,1},$$

$$= ||f||_{q,\alpha,n,1}||g||_{q,\alpha,n,1}.$$

On the other hand, from (12), (21) and (30), we have

$$\begin{split} \mathcal{F}_{q,\alpha,n}(f*_{q,\alpha,n}g)(\lambda) &=& \mathcal{F}_{q,\alpha,n}\left(\mathcal{M}\left[\left(\mathcal{M}^{-1}f\right)*_{q,\alpha+2n}\left(\mathcal{M}^{-1}f\right)\right]\right)(\lambda), \\ &=& \mathcal{F}_{q,\alpha+2n}\circ\mathcal{M}^{-1}\left(\mathcal{M}\left[\left(\mathcal{M}^{-1}f\right)*_{q,\alpha+2n}\left(\mathcal{M}^{-1}f\right)\right]\right)(\lambda), \\ &=& \mathcal{F}_{q,\alpha+2n}\left(\mathcal{M}^{-1}f\right)(\lambda)\times\mathcal{F}_{q,\alpha+2n}\left(\mathcal{M}^{-1}g\right)(\lambda), \\ &=& \mathcal{F}_{q,\alpha,n}(f)(\lambda)\mathcal{F}_{q,\alpha,n}(g)(\lambda). \end{split}$$

Proposition 4.6. Let $f \in \mathcal{L}^1_{q,\alpha,n}$, we have

(31)
$$T_{q,x,n}^{\alpha} f(y) = \int_{0}^{\infty} f(z) D_{\alpha,n}(x,y,z) z^{2\alpha+1} d_{q} z,$$

where $D_{\alpha,n}(x,y,z) = c_{q,\alpha+2n}^2 \int_0^\infty \Psi_{\alpha,n}(xt,q^2) \Psi_{\alpha,n}(yt,q^2) \Psi_{\alpha,n}(zt,q^2) t^{2\alpha+4n+1} d_{qt}$

Proof. Let $f \in \mathcal{L}^1_{q,\alpha,n}$, from (7), (19) and (24) we have

$$\begin{split} T^{\alpha}_{q,x,n}f(y) &= x^{2n} \left(\mathcal{M} \circ T^{\alpha+2n}_{q,x} \circ \mathcal{M}^{-1} \right)(f)(y), \\ &= x^{2n} y^{2n} T^{\alpha+2n}_{q,x} \circ \mathcal{M}^{-1} f(y), \\ &= x^{2n} y^{2n} c_{q,\alpha+2n} \int_0^\infty \mathcal{F}_{q,\alpha+2n} \circ \mathcal{M}^{-1} f(t) j_{\alpha+2n}(xt,q^2) j_{\alpha+2n}(yt,q^2) t^{2\alpha+4n+1} d_q t, \\ &= c_{q,\alpha+2n} \int_0^\infty \mathcal{F}_{q,\alpha,n}(f)(t) \Psi_{\alpha,n}(xt,q^2) \Psi_{\alpha,n}(yt,q^2) t^{2\alpha+4n+1} d_q t, \\ &= \int_0^\infty f(z) \left[c_{q,\alpha+2n}^2 \int_0^\infty \Psi_{\alpha,n}(xt,q^2) \Psi_{\alpha,n}(yt,q^2) \Psi_{\alpha,n}(zt,q^2) t^{2\alpha+4n+1} d_q t \right] z^{2\alpha+1} d_q z, \\ &= \int_0^\infty f(z) D_{\alpha,n}(x,y,z) z^{2\alpha+1} d_q z. \end{split}$$

References

- A. Fitouhi and L. Dhaouadi, Positivity of the generalized Translation Associated with the q-Hankel Transform, Constructive Approximation, 34(2011), 435-472.
- [2] Ahmed Fitouhi and M. Moncef Hamza, The q- j_{α} Bessel Function, Journal of Approximation Theory 115(2002), 144-166.
- [3] F.H. Jackson, On a q-Defnite Integrals, Quarterly Journal of Pure and Application Mathematics, 41(1910), 193-203.
- [4] G.Gasper and M.Rahman, Basic hypergeometric series, Encycopedia of mathematics and its applications, Volume 35, Cambridge university press (1990).
- [5] L.Dhaouadi, A.Fitouhi and J.El Kamel, Inequalities in q-Fourier Analysis, journal of Inequalities in Pure and Applied Mathematics, 7(2006), Article ID 171.
- [6] L.Dhaoudi, On the q-Bessel Fourier transform, Bulletin of Mathematical Analysis and Applications, 5(2013), 42-60.
- [7] R. F. Swarttouw, The Hahn-Exton q-Bessel functions, Ph. D. Thesis, Delft Technical University (1992).

Department of Mathematics, Faculty of Sciences Aïn Chock,, University of Hassan II, Casablanca, Morocco

^{*}Corresponding author: mehdi.loualid@gmail.com