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CHARACTERIZATIONS OF p-WAVELETS ON POSITIVE HALF LINE USING

THE WALSH-FOURIER TRANSFORM

ABDULLAH∗

Abstract. In this paper, we study the characterization of wavelets on positive half line by means

of two basic equations in the Fourier domain. We also give another characterization of wavelets.

1. Introduction

The characterization of wavelets of L2(R) was obtained by Gripenberg [7] in terms of two basic
equations involving the Fourier transform of the wavelets (see also [8]). This result was generalized
by Calogero [3] for wavelets associated with a general dilation matrix. Bownik [2] provided a new
approach to characterizing multiwavelets in L2(Rn). This characterization was obtained by using the
result about shift invariant systems and quasi-affine systems in [4] and [9].

Farkov [5] has given general construction of compactly supported orthogonal p-wavelets in L2(R+).
Farkov et al. [6] gave an algorithm for biorthogonal wavelets related to Walsh functions on positive
half line. On the other hand, Shah and Debnath [10] have constructed dyadic wavelet frames on the
positive half-line R+ using the Walsh-Fourier transform and have established a necessary condition
and a sufficient condition for the system {ψj,k(x) = 2j/2ψ(2jx 	 k) : j ∈ Z, k ∈ Z+} to be a frame
for L2(R+). Further, A constructive procedure for constructing tight wavelet frames on positive half-
line using extension principles was recently considered by Shah in [11], in which he has pointed out
a method for constructing affine frames in L2(R+). Moreover, the author has established sufficient
conditions for a finite number of functions to form a tight affine frames for L2(R+).

In the present paper, we study characterization of wavelet on positive half line by using the
results on affine and quasi-affine frames on positive half-line. The paper is structured as follows. In
Section 2, we introduce some notations and preliminaries related to the operations on positive half-line
R+ including the definition of the Walsh-Fourier transform. In section 3, some results on the affine
and quasi-affine systems on positive half-line is given and use them to provide a characterization of
wavelets.

2. Notations and preliminaries on Walsh-Fourier Analysis

Let p be a fixed natural number greater than 1. As usual, let R+ = [0,∞) and Z+ = {0, 1, ...}. Denote
by [x] the integer part of x. For x ∈ R+ and for any positive integer j, we set

xj = [pjx](mod p), x−j = [p1−jx](mod p), (2.1)

where xj , x−j ∈ {0, 1, ..., p− 1}.

Consider the addition defined on R+ as follows:

x⊕ y =
∑
j<0

ξjp
−j−1 +

∑
j>0

ξjp
−j (2.2)
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with
ξj = xj + yj(mod p), j ∈ Z\{0}, (2.3)

where ξj ∈ {0, 1, 2, ..., p − 1} and xj , yj are calculated by (2.1). Moreover, we write z = x 	 y if
z ⊕ y = x.

For x ∈ [0, 1), let r0(x) be given by

r0(x) =


1, x ∈

[
0,

1

p

)
,

εjp, x ∈
[
jp−1, (j + 1)p−1

)
, j = 1, 2, ..., p− 1,

(2.4)

where εp = exp
(

2πi
p

)
. The extension of the function r0 to R+ is defined by the equality r0(x + 1) =

r0(x), x ∈ R+. Then the generalized Walsh functions {ωm(x)}m∈Z+ are defined by

ω0(x) = 1, ωm(x) =

k∏
j=0

(
r0
(
pjx
))µj

,

where m =
∑k
j=0 µjp

j , µj ∈ {0, 1, 2, ..., p− 1}, µk 6= 0.

For x, ω ∈ R+, let

χ(x, ω) = exp

2πi

p

∞∑
j=1

(xjω−j + x−jωj)

 , (2.5)

where xj and ωj are calculated by (2.1).

We observe that

χ

(
x,

m

pn−1

)
= χ

(
x

pn−1
, m

)
= ωm

(
x

pn−1

)
∀x ∈ [0, pn−1), m ∈ Z+.

The Walsh-Fourier transform of a function f ∈ L1(R+) is defined by

f̃(ω) =

∫
R+

f(x)χ(x, ω)dx, (2.6)

where χ(x, ω) is given by (2.5).

If f ∈ L2(R+) and

Jaf(ω) =

∫ a

0

f(x)χ(x, ω)dx (a < 0), (2.7)

then f̃ is defined as limit of Jaf in L2(R+) as a→∞.

The properties of Walsh-Fourier transform are quite similar to the classical Fourier transform. It
is known that systems {χ(α, .)}∞α=0 and {χ(., α)}∞α=0 are orthonormal bases in L2(0, 1). Let us denote
by {ω} the fractional part of ω. For l ∈ Z+, we have χ(l, ω) = χ(l, {ω}).

If x, y, ω ∈ R+ and x⊕ y is p-adic irrational, then

χ(x⊕ y, ω) = χ(x, ω)χ(y, ω), χ(x	 y, ω) = χ(x, ω)χ(y, ω), (2.8)



CHARACTERIZATIONS OF p-WAVELETS 79

3. Characterization of p-Wavelets

Definition 3.1. Let Ψ = {ψ1, ψ2, ..., ψL} be a finite family of functions in L2(R+). The affine system
generated by Ψ is the collection

X(Ψ) = {ψlj,k : 1 ≤ l ≤ L, j ∈ Z, k ∈ Z+}

where ψlj,k(x) = pj/2ψl(pjx	 k). The quasi-affine system generated by Ψ is

X̃(Ψ) = {ψ̃lj,k : 1 ≤ l ≤ L, j ∈ Z, k ∈ Z+},
where

ψ̃lj,k(x) =

{
pj/2ψl(pjx	 k), j ≥ 0, k ∈ Z+

pjψl(pj(x	 k)), j < 0, k ∈ Z+.
(3.1)

We say that Ψ is a set of basic wavelets of L2(R+) if the affine system X(Ψ) forms an orthonormal
basis for L2(R+).

Definition 3.2. X ⊂ L2(R+) is a Bessel family if there exists b > 0 so that∑
η∈X
| < f, η > |2 ≤ b‖f‖2 for f ∈ L2(R+). (3.2)

If, in addition, there exists a constant a > 0, a ≤ b such that

a‖f‖2 ≤
∑
η∈X
| < f, η > |2 ≤ b‖f‖2 for all f ∈ L2(R+), (3.3)

then X is called a frame. The frame is tight if we can choose a and b such that a = b. The (quasi)
affine system X(Ψ) (resp. Xq(Ψ)) is a (quasi) affine frame if (3.3) holds for X = X(Ψ) (X = Xq(Ψ)).

In [9], Chui, Shi and Stöckler have obsereved the relationship between affine and quasi-affine
frame in Rn. In [1], we have extended their result to positive half line.

Theorem 3.3. Let Ψ be a finite subset of L2(R+). Then

(a) X(Ψ) is a Bessel family if and only if X̃(Ψ) is a Bessel family. Furthermore, their exact upper
bounds are equal.

(b) X(Ψ) is an affine frame if and only if X̃(Ψ) is a quasi-affine frame. Furthermore, their lower and
upper exact bounds are equal.

Definition 3.4. Given {ti : i ∈ N} ⊂ l2(Z+), define the operator H : l2(Z+)→ l2(N) by

H(v) = (< v, ti >)i∈N .

If H is bounded then G̃ = H ∗H : l2(Z+)→ l2(N) is called the dual Gramian of {ti : i ∈ N}.

Observe that G̃ is a non negative definite operator on l2(Z+). Also, note that for r, s ∈ Z+, we
have

< G̃er, es >=< Her, Hes >=
∑
i∈N

ti(r)ti(s),

where {ei : i ∈ Z+} is the standard basis of l2(Z+).

The following result characterizes when the system of translates of a given family of functions is
a frame in terms of the dual Gramian.

Theorem 3.5. Let {ϕi : i ∈ N} ⊂ L2(R+). Then for a.e. ξ ∈ [0, 1), let G̃(ξ) denote the dual Gramian
of {ti = (ϕ̂i(ξ ⊕ k))k∈Z+ : i ∈ N} ⊂ l2(Z+). The system of translates {Tkϕi : k ∈ Z+, i ∈ N} is a frame

for L2(R+) with constants a, b if and only if G̃(ξ) is bounded for a.e. ξ ∈ [0, 1/2) and
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A‖v‖2 ≤ 〈G̃(ξ)v, v〉 ≤ B‖v‖2 for v ∈ l2(Z+), a.e. ξ ∈ [0, 1/2),

that is, the spectrum of G̃(ξ) is contained in [a,b] for a.e. ξ ∈ [0, 1/2)

We first prove a lemma which gives necessary and sufficient conditions for the orthonormality of
an affine system.

Lemma 3.6. Suppose Ψ = {ψ1, ψ2, ..., ψL} ⊂ L2(R+). The affine system X(Ψ) is orthonormal in
L2(R+) if and only if∑

k∈Z+

ψ̂l(ξ ⊕ k)ψ̂m(pj(ξ ⊕ k)) = δj,0δl,m for a.e. ξ ∈ R+, 1 ≤ l,m ≤ L, j ≥ 0. (3.4)

Proof. By a simple change of variables

〈ψlj,k, ψl
′

j′,k′〉 = δl,l′δj,j′δk,k′ , j, j
′ ∈ Z, k, k′ ∈ Z+, 1 ≤ l, l′ ≤ L

is equivalent to

〈ψlj,k, ψl
′

0,0〉 = δl,l′δj,0δk,0, j ≥ 0, k ∈ Z+, 1 ≤ l, l′ ≤ L.
Now, let 1 ≤ l, l′ ≤ L, j ≥ 0, k ∈ Z+. Then

δl,l′δj,0δk,0 = 〈ψ̂lj,k, ψ̂l
′

0,0〉

=

∫
R+

p−j/2ψ̂l(p−jξ)χ(k, p−jξ)ψ̂l′(ξ)dξ

=

∫
R+

pj/2ψ̂l(ξ)χ(k, ξ)ψ̂l′(pjξ)dξ

=
∑
n∈Z+

pj/2
∫
n+[0,1/2)

ψ̂l(ξ)ψ̂l′(pjξ)χ(k, ξ)dξ

= pj/2
∫
[0,1/2)

[ ∑
n∈Z+

ψ̂l(ξ ⊕ n)ψ̂l′(pj(ξ ⊕ n))

]
χ(k, ξ)dξ

= pj/2
∫
[0,1/2)

K(ξ)χ(k, ξ)dξ,

where K(ξ) =
[∑

n∈Z+ ψ̂l(ξ ⊕ n)ψ̂l′(pj(ξ ⊕ n))
]
. The interchange of summation and integration is

justified by∫
[0,1/2)

∑
n∈Z+

∣∣∣ψ̂l(ξ ⊕ n)ψ̂l′(pj(ξ ⊕ n))
∣∣∣ dξ =

∫
R+

∣∣∣ψ̂l(ξ)∣∣∣ ∣∣∣ψ̂l′(pjξ)∣∣∣ dξ
≤ p−j/2‖ψl‖2‖ψl

′
‖2 <∞.

The above computation shows that all Fourier coefficients of K(ξ) ∈ L1([0, 1/2)) are zero except for
the coefficient corresponding to k = 0 which is 1 if j = 0 and l = l′. Therefore, K(ξ) = δj,0δl,l′ for a.e.
ξ ∈ [0, 1/2).

Suppose we have Ψ = {ψ1, ..., ψL} ⊂ L2(R+). Define Dj as follows:
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Dj =

{
{0, 1, ..., pj − 1}, j ≥ 0,
0, j < 0.

Since the quasi affine system Xq(Ψ) is invariant under shifts by k ∈ Z+, we have

Xq(Ψ) = {Tkϕ : k ∈ Z+, ϕ ∈ A}, A = {ψ̃lj,d : j ∈ Z, d ∈ Dj , l = 1, ..., L}.

The dual Gramian G̃(ξ) of the quasi affine system Xq(Ψ) at ξ ∈ [0, 1/2) is defined as the dual Gramian
of {(ϕ̂(ξ ⊕ k))k∈Z+ : ϕ ∈ A} ⊂ l2(Z+).

For s ∈ Z+\pZ+, define the function

ts(ξ) =

L∑
l=1

∞∑
j=0

ψ̂l(pjξ)ψ̂l(pj(ξ ⊕ s)).

In the following lemma we compute the dual Gramian Ĝ(ξ) of the quasi-affine system Xq(Ψ) at
ξ ∈ [0, 1/2) in terms of the Fourier transforms of the functions in Ψ.

Lemma 3.7. Let Ψ = {ψ1, ψ2, ..., ψL} ⊆ L2(R+) and G̃ be the dual Gramian of Xq(Ψ) at ξ ∈ [0, 1/2).
Then

< G̃(ξ)ek, ek >=

L∑
l=1

∑
j∈Z
|ψ̂l(pj(ξ ⊕ k))|2 for k ∈ Z+ (3.7)

and

< G̃(ξ)ek, ek′ >= tp−m(k′	k)(p
−mξ ⊕ p−mξ) for k 6= k′ ∈ Z+, (3.8)

where m = max{j ≥ 0 : p−j(k′ 	 k) ∈ Z+}, and functions ts, s ∈ Z+\pZ+ are given by (3.6).

Proof. For k, k′ ∈ Z+, we have

< G̃(ξ)ek, ek′ >=
∑
ϕ∈A

ϕ̂(ξ ⊕ k)ϕ̂(ξ ⊕ k′)

=

L∑
l=1

∑
j<0

ψ̂l(p−j(ξ ⊕ k))ψ̂l(p−j(ξ ⊕ k′))

+

L∑
l=1

∑
j≥0

ψ̂l(p−j(ξ ⊕ k))ψ̂l(p−j(ξ ⊕ k′))

∑
d∈Dj

p−jχ(k, pjd)χ(k′, pjd)

 .
The expression in the bracket is equal to∑
d∈Dj

p−jχ(k, pjd)χ(k′, pjd) =
∑
d∈Dj

p−jχ((k 	 k′), pjd)

=

{
1 if k 	 k′ ∈ pjZ+

0 otherwise.

Therefore, if k = k′, then

< G̃(ξ)ek, ek >=

L∑
l=1

∑
j∈Z
|ψ̂l(pj(ξ ⊕ k))|2

If k 6= k′, let m = max{j ≥ 0 : k 	 k′ ∈ pjZ+}. Then
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< G̃(ξ)ek, ek′ >=

L∑
l=1

m∑
j=−∞

ψ̂l(p−j(ξ ⊕ k))ψ̂l(p−j(ξ ⊕ k′))

=

L∑
l=1

∞∑
j=−m

ψ̂l(pj(ξ ⊕ k))ψ̂l(pj(ξ ⊕ k′))

=

L∑
l=1

∑
j≥0

ψ̂l(pj−m(ξ ⊕ k))ψ̂l(pj−m(ξ ⊕ k′))

=

L∑
l=1

∑
j≥0

ψ̂l(pj(p−mξ ⊕ p−mk))ψ̂l(pj(p−mξ ⊕ p−mk ⊕ p−m(k′ 	 k)))

= tp−m(k′	k)(p
−mξ ⊕ p−mk)).

In the following theorem, we provide a characterization of wavelets in terms of two basic equations.

Theorem 3.8. Suppose Ψ = {ψ1, ψ2, ..., ψL} ⊂ L2(R+). The affine system X(Ψ) is a tight frame
with constant 1 for L2(R+), i.e.,

‖f‖22 =

L∑
l=1

∑
j∈Z

∑
k∈Z+

| < f, ψl,j,k > |2 for all f ∈ L2(R+)

if and only if

L∑
l=1

∑
j∈Z
|ψ̂l(pjξ)|2 = 1 for a. e. ξ ∈ R+, (3.9)

and

ts(ξ) = 0 for a. e. ξ ∈ R+ and for all s ∈ Z+\pZ+. (3.10)

In particular, Ψ is a set of basic wavelets of L2(R+) if and only if ‖ψl‖2 = 1 for l = 1, 2, ..., L and (3.9)
and (3.10)hold.

Proof. By Theorem 3.3, X(Ψ) is a tight frame with constant 1 if and only if Xq(Ψ) is a tight frame

with constant 1. By Theorem 3.5, this is equivalent to the spectrum G̃(ξ) consisting of single point

1 i.e. G̃(ξ) is identity on l2(Z+) for a.e. ξ ∈ [0, 1/2). By Lemma 3.7, this is equivalent to (3.9) and
(3.10). By Theorem 1.8, section 7.1 in [8], a tight frame X(Ψ) is an orthonormal basis if and only if
‖ψl‖2 = 1 for l = 1, 2, ..., L.

Theorem 3.9. Suppose Ψ = {ψ1, ψ2, ..., ψL} ⊆ L2(R+). Then the following are equivalent:
(i) X(Ψ) is a tight frame with constant 1.
(ii) Ψ satisfies (3.9)
(iii) Ψ satisfies

L∑
l=1

∫
R+

|ψ̂l(ξ)|2 dξ
|ξ|

=

∫
D

dξ

|ξ|
(3.11)

where D ⊂ R+ is such that {pjD : j ∈ Z} is a partition of R+.

Proof. It is obvious from Theorem 3.8 that (i) ⇒ (ii). To show (ii) implies (iii), assume that (3.9)
holds, then
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L∑
l=1

∫
R+

|ψ̂l(ξ)|2 dξ
|ξ|

=

L∑
l=1

∑
j∈Z

∫
pjD

|ψ̂l(ξ)|2 dξ
|ξ|

=

L∑
l=1

∫
D

∑
j∈Z
|ψ̂l(pjξ)|2 dξ

|ξ|

=

∫
D

dξ

|ξ|
To prove (iii) ⇒ (i), we assume that (3.11) holds. Since X(Ψ) is a Bessel family with costant 1, then

Xq(Ψ) is also a Bessel family with constant 1 by Theorem 3.3 (a). Let G̃(ξ) be the dual Gramian

of Xq(Ψ) at ξ ∈
[
0, 12
)
. By Theorem 3.5, we have ‖G̃(ξ)‖ ≤ 1 for a.e. ξ ∈

[
0, 12
)
. In particular,

‖G̃(ξ)ek‖ ≤ 1. Hence,

1 ≥ ‖G̃(ξ)ek‖2 =
∑
k′∈Z+

| < G̃(ξ)ek, ek′ > |2

= | < G̃(ξ)ek, ek > |2 +
∑

k′∈Z+,k 6=k′
| < G̃(ξ)ek, ek′ > |2. (3.12)

By lemma 3.7, we have

L∑
l=1

∑
j∈Z

∣∣∣ψ̂l(pj(ξ ⊕ k))
∣∣∣2 ≤ 1 for k ∈ Z+, a.e.ξ ∈ [0, 1/2).

Hence, ∫
D

dξ

|ξ|
=

L∑
l=1

∫
R+

|ψ̂l(ξ)|2 dξ
|ξ|

=

∫
D

 L∑
l=1

∑
j∈Z

∣∣∣ψ̂l(pjξ)∣∣∣2
 dξ

|ξ|
≤
∫
D

dξ

|ξ|
,

we have
∑L
l=1

∑
j∈Z

∣∣∣ψ̂l(pjξ)∣∣∣2 = 1 for a.e. ξ ∈ D and hence for a.e. ξ ∈ R+, i.e., equation (3.9) holds.

By Lemma 3.7 and (3.9), | < G̃(ξ)ek, ek > |2 = 1 for all k ∈ Z+. Hence by (3.12), it follows that

< G̃(ξ)ek, ek′ >= 0 for k 6= k′ so that G̃(ξ) is the identity operator on l2(Z+). Hence, by Theorem
3.5, Xq(Ψ) is a tight frame with constant 1. So is X(Ψ) by Theorem 3.3.

Theorem 3.10. Suppose Ψ = {ψ1, ψ2, ..., ψL} ⊆ L2(R+). Then the following are equivalent:
(a) Ψ is a set of basic wavelets of L2(R+).
(b) Ψ satisfies (3.4) and (3.9).
(c) Ψ satisfies (3.4) and (3.11).

Proof. It follows from Theorem 3.9 and Lemma 3.7 that (a) ⇒ (b) ⇒ (c). We now prove that (c)
implies (a). Assume that Ψ satisfies (3.4) and (3.11). The equation (3.4) implies that X(Ψ) is an
orthonormal system, hence it is a Bessel family with constant 1. By Theorem 3.9 and (3.11), X(Ψ) is
a tight frame with constant 1. Since each ψl has L2 norm 1, it follows that X(Ψ) is an orthonormal
basis for L2(K). That is, Ψ is a set of basic wavelets of L2(K).
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