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ON QUASI-POWER INCREASING SEQUENCES AND THEIR SOME

APPLICATIONS

HÜSEYIN BOR∗

Abstract. In [6], we proved a main theorem dealing with | N̄, pn, θn |k summability factors using

a new general class of power increasing sequences instead of a quasi-σ-power increasing sequence. In
this paper, we prove that theorem under weaker conditions. This theorem also includes some new

results.

1. Introduction

A positive sequence X = (Xn) is said to be a quasi-f-power increasing sequence if there exists
a constant K = K(X, f) ≥ 1 such that KfnXn ≥ fmXm for all n ≥ m ≥ 1, where f = (fn) =
{nσ(log n)η, η ≥ 0, 0 < σ < 1} (see [13]). If we set η=0, then we get a quasi-σ-power increas-
ing sequence (see [10]). We write BVO = BV ∩ CO, where CO = { x = (xk) ∈ Ω : limk |xk| = 0 },
BV={ x = (xk) ∈ Ω :

∑
k |xk − xk+1| <∞ } and Ω being the space of all real-valued sequences. Let∑

an be a given infinite series with the sequence of partial sums (sn). We denote by uαn the nth Cesàro
mean of order α, with α > −1, of the sequence (sn), that is (see [7]),

uαn =
1

Aαn

n∑
v=0

Aα−1n−vsv(1)

where

(2) Aαn =
(α+ 1)(α+ 2)....(α+ n)

n!
= O(nα), Aα−n = 0 for n > 0.

A series
∑
an is said to be summable | C,α |k, k ≥ 1, if (see [8])

(3)

∞∑
n=1

nk−1 | uαn − uαn−1 |k<∞.

If we take α = 1, then we get the | C, 1 |k summability. Let (pn) be a sequence of positive real numbers
such that

(4) Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

(5) vn =
1

Pn

n∑
v=0

pvsv

defines the sequence (vn) of the Riesz mean or simply the (N̄ , pn) mean of the sequence (sn), generated
by the sequence of coefficients (pn) (see [9]). Let (θn) be any sequence of positive constants. The series∑
an is said to be summable | N̄ , pn, θn |k, k ≥ 1, if (see [12])

∞∑
n=1

θk−1n | vn − vn−1 |k <∞.(6)
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Hölder inequality; Minkowski inequality.

c©2016 Authors retain the copyrights of
their papers, and all open access articles are distributed under the terms of the Creative Commons Attribution License.

95
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If we take θn = Pn

pn
, then | N̄ , pn, θn |k summability reduces to | N̄ , pn |k summability (see [1]). Also,

if we take θn = Pn

pn
and pn = 1 for all values of n, then we get | C, 1 |k summability. Furthermore, if

we take θn = n, then | N̄ , pn, θn |k summability reduces to | R, pn |k summability (see [2]).
2. Known Results. The following theorems are known:

Theorem A ([4]). Let
(
θnpn
Pn

)
be a non-increasing sequence. Let (λn) ∈ BVO and let (Xn) be a

quasi- σ-power increasing sequence for some σ (0 < σ < 1) . Suppose also that there exist sequences
(βn) and (λn) such that

(7) | ∆λn |≤ βn,

(8) βn → 0 as n→∞,

(9)

∞∑
n=1

n | ∆βn | Xn <∞,

(10) | λn | Xn = O(1).

If
n∑
v=1

θk−1v

| sv |k

vk
= O(Xn) as n→∞,(11)

and (pn) is a sequence such that

(12) Pn = O(npn),

(13) Pn∆pn = O(pnpn+1),

then the series
∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn, θn |k, k ≥ 1.

Remark. We can take (λn) ∈ BV instead of (λn) ∈ BVO and it is sufficient to prove Theorem A.

Theorem B ([6]). Let
(
θnpn
Pn

)
be a non-increasing sequence. Let (λn) ∈ BV and let (Xn) be a

quasi-f-power increasing sequence for some σ (0 < σ < 1) and η ≥ 0. If the conditions (7)-(13) are
satisfied, then the series

∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn, θn |k, k ≥ 1.

It should be noted that if we take η=0, then we obtain Theorem A.
3. The Main result. The purpose of this paper is to prove Theorem B under weaker conditions.
Now, we shall prove the following general theorem.

Theorem. Let
(
θnpn
Pn

)
be a non-increasing sequence. Let (Xn) be a quasi-f-power increasing sequence

for some σ (0 < σ < 1) and η ≥ 0. If the conditions (7)-(10), (12)-(13), and

n∑
v=1

θk−1v

| sv |k

vkXv
k−1 = O(Xn) as n→∞(14)

are satisfied, then the series
∑∞
n=1 an

Pnλn

npn
is summable | N̄ , pn, θn |k, k ≥ 1.

Remark. It should be noted that condition (14) is reduced to the condition (11), when k=1. When
k > 1, the condition (14) is weaker than the condition (11), but the converse is not true. As in [14]
we can show that if (11) is satisfied, then we get that

n∑
v=1

θk−1v

| sv |k

vkXv
k−1 = O(

1

Xk−1
1

)

n∑
v=1

θk−1v

| sv |k

vk
= O(Xn).

If (14) is satisfied, then for k > 1 we obtain that

n∑
v=1

θk−1v

| sv |k

vk
=

n∑
v=1

θk−1v Xk−1
v

| sv |k

vkXv
k−1 = O(Xk−1

n )

n∑
v=1

θk−1v

| sv |k

vkXv
k−1 = O(Xk

n) 6= O(Xn).

Also, it should be noted that the condition ”(λn) ∈ BV ” has been removed.
We require the following lemmas for the proof of the theorem.
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Lemma 1 ([5]). Under the conditions on (Xn), (βn) and (λn) as expressed in the statement of the
theorem, we have the following;

(15) nXnβn = O(1),

(16)

∞∑
n=1

βnXn <∞.

Lemma 2 ([11]). If the conditions (12) and (13) are satisfied, then we have that

∆

(
Pn
npn

)
= O

(
1

n

)
.(17)

4. Proof of the theorem. Let (Tn) be the sequence of (N̄ , pn) mean of the series
∑∞
n=1

anPnλn

npn
.

Then, by definition, we have

Tn =
1

Pn

n∑
v=1

pv

v∑
r=1

arPrλr
rpr

=
1

Pn

n∑
v=1

(Pn − Pv−1)
avPvλv
vpv

.

Then, for n ≥ 1 we obtain that

Tn − Tn−1 =
pn

PnPn−1

n∑
v=1

Pv−1Pvavλv
vpv

.

Using Abel’s transformation, we get

Tn − Tn−1 =
pn

PnPn−1

n−1∑
v=1

sv∆

(
Pv−1Pvλv

vpv

)
+
λnsn
n

=
snλn
n

+
pn

PnPn−1

n−1∑
v=1

sv
Pv+1Pv∆λv
(v + 1)pv+1

+
pn

PnPn−1

n−1∑
v=1

Pvsvλv∆

(
Pv
vpv

)
− pn
PnPn−1

n−1∑
v=1

svPvλv
1

v

= Tn,1 + Tn,2 + Tn,3 + Tn,4.

To prove the theorem, by Minkowski’s inequality, it is sufficient to show that
∞∑
n=1

θk−1n | Tn,r |k<∞, for r = 1, 2, 3, 4.(18)

Firstly, by using Abel’s transformation, we have that
m∑
n=1

θk−1n | Tn,1 |k =

m∑
n=1

θk−1n n−k | λn |k−1| λn || sn |k

= O(1)

m∑
n=1

| λn |
(

1

Xn

)k−1
θk−1n n−k | sn |k

= O(1)

m−1∑
n=1

∆ | λn |
n∑
v=1

θk−1v

| sv |k

Xv
k−1vk

+ O(1) | λm |
m∑
n=1

θk−1n

| sn |k

Xn
k−1nk

= O(1)

m−1∑
n=1

| ∆λn | Xn +O(1) | λm | Xm

= O(1)

m−1∑
n=1

βnXn +O(1) | λm | Xm = O(1) as m→∞
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by virtue of the hypotheses of the theorem and Lemma 1. Now, using (12) and applying Hölder’s
inequality, we have that

m+1∑
n=2

θk−1n | Tn,2 |k = O(1)

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

P kn−1
|
n−1∑
v=1

Pvsv∆λv |k

= O(1)

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

P kn−1

{
n−1∑
v=1

Pv
pv
| sv | pv | ∆λv |

}k

= O(1)

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

Pn−1

n−1∑
v=1

(
Pv
pv

)k
| sv |k pv (βv)

k

×

(
1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)

m∑
v=1

(
Pv
pv

)k
| sv |k pv (βv)

k
m+1∑
n=v+1

(
θnpn
Pn

)k−1
pn

PnPn−1

= O(1)

m∑
v=1

(
Pv
pv

)k
| sv |k pv (βv)

k

(
θvpv
Pv

)k−1 m+1∑
n=v+1

pn
PnPn−1

= O(1)

m∑
v=1

(
Pv
pv

)k
| sv |k (βv)

k

(
pv
Pv

)
θk−1v

(
pv
Pv

)k−1
= O(1)

m∑
v=1

(vβv)
k−1vβv

1

vk
θk−1v | sv |k

= O(1)

m∑
v=1

(
1

Xv

)k−1
vβv

1

vk
θk−1v | sv |k

= O(1)

m−1∑
v=1

∆(vβv)

v∑
r=1

θk−1r

| sr |k

rkXr
k−1 +O(1)mβm

m∑
v=1

θk−1v

| sv |k

vkXv
k−1

= O(1)

m−1∑
v=1

| ∆(vβv) | Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

| (v + 1)∆βv − βv | Xv +O(1)mβmXm

= O(1)

m−1∑
v=1

v | ∆βv | Xv +O(1)

m−1∑
v=1

βvXv +O(1)mβmXm = O(1)

as m→∞, in view of the hypotheses of the theorem and Lemma 1. Again, as in Tn,1, we have that

m+1∑
n=2

θk−1n | Tn,3 |k = O(1)

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

P kn−1

{
n−1∑
v=1

Pv | sv || λv |
1

v

}k

= O(1)

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

Pn−1

n−1∑
v=1

(
Pv
pv

)k
v−kpv | sv |k| λv |k

×

{
1

Pn−1

n−1∑
v=1

pv

}k−1
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= O(1)

m∑
v=1

(
Pv
pv

)k
v−k | sv |k pv | λv |k

m+1∑
n=v+1

(
θnpn
Pn

)k−1
pn

PnPn−1

= O(1)

m∑
v=1

(
Pv
pv

)k−1
v−kθk−1v

(
pv
Pv

)k−1
| λv |k−1| λv || sv |k

= O(1)

m∑
v=1

| λv |
(

1

Xv

)k−1
θk−1v v−k | sv |k

= O(1)

m∑
v=1

| λv | θk−1v

| sv |k

vkXv
k−1 = O(1) as m→∞,

in view of the hypotheses of the theorem, Lemma 1 and Lemma 2. Finally, using Hölder’s inequality,
as in Tn,1 we have that

m+1∑
n=2

θk−1n | Tn,4 |k =

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

P kn−1
|
n−1∑
v=1

sv
Pv
v
λv |k

= O(1)

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

P kn−1
|
n−1∑
v=1

sv
Pv
vpv

pvλ |k

= O(1)

m+1∑
n=2

θk−1n

(
pn
Pn

)k
1

Pn−1

n−1∑
v=1

| sv |k
(
Pv
pv

)k
v−kpv | λv |k

×

(
1

Pn−1

n−1∑
v=1

pv

)k−1

= O(1)

m∑
v=1

(
Pv
pv

)k
v−k | sv |k pv | λv |k

1

Pv

(
θvpv
Pv

)k−1
= O(1)

m∑
v=1

(
Pv
pv

)k−1
v−k

(
pv
Pv

)k−1
θk−1v | λv |k−1| λv || sv |k

= O(1)

m∑
v=1

| λv | θk−1v

| sv |k

vkXv
k−1 = O(1) as m→∞.

This completes the proof of the theorem. If we set η ≥ 0, then we obtain Theorem B under weaker
conditions. If we take pn = 1 for all values of n, then we have a new result for | C, 1, θn |k summability.
Furthermore, if we take θn = n, then we have another new result for | R, pn |k summability. Finally,
if we take pn = 1 for all values of n and θn = n, then we get a new result dealing with | C, 1 |k
summability factors.
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