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EXPONENTIAL DECAY AND NUMERICAL SOLUTION FOR A

TIMOSHENKO SYSTEM WITH DELAY TERM IN THE

INTERNAL FEEDBACK

C. A. RAPOSO1,∗, J. A. D. CHUQUIPOMA1, J. A. J. AVILA1, M. L. SANTOS2

Abstract. In this work we study the asymptotic behavior as t → ∞ of the
solution for the Timoshenko system with delay term in the feedback. We use

the semigroup theory for to prove the well-posedness of the system and for to
establish the exponential stability. As far we know, there exist few results for
problems with delay, where the asymptotic behavior is based on the Gearhart-
Herbst-Pruss-Huang theorem to dissipative system. See [4],[5],[6]. Finally, we

present numerical results of the solution of the system.

1. Introduction

In this paper we consider the following Timoshenko system

ρ1φtt(x, t)−K(φx + ψ)x(x, t) + µ1φt(x, t) + µ2φt(x, t− τ) = 0,(1)

ρ2ψtt(x, t)− bψxx(x, t) +K(φx + ψ)(x, t) + µ3ψt(x, t) + µ4ψt(x, t− τ)

= 0,(2)

where φ is the transverse displacement of the beam, ψ is the rotation angle of the
filament of the beam, (x, t) ∈ (0, L) × (0,∞), τ > 0 represents the time delay
and ρ1, ρ2, b,K, µi, i = 1, 2, 3, 4, are positive constants. This beam, of length L is
subjected to the following boundary conditions

φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = 0, t > 0,(3)

and initial conditions (φ0, φ1, ψ0, ψ1, f0, g0) belongs to a suitable functional space,
defined for all x ∈ (0, L) by

φ(x, 0) = φ0(x), φt(x, 0) = φ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),(4)

and for (x, t) ∈ (0, L)× [0, τ ], that implies past history with t− τ ≤ 0, by

φt(x, t− τ) = f0(x, t− τ), ψt(x, t− τ) = g0(x, t− τ).(5)

Note that f0(x, 0) = φ1(x) and g0(x, 0) = ψ1(x).
In the study of the asymptotic behavior, we use the result due to Gearhart. See
[4, 5, 6].
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Theorem 1.1. Let S(t) = eA t be a C0−Semigroup of contractions on a Hilbert
space. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ iβ, β ∈ R(6)

and

lim
|β|→∞

||(iβI −A)−1|| <∞(7)

hold.

Certainly, this approach is very different from other works in the literature, espe-
cially for problems with delay, where the exponential decay is made by the method
of energy, see, for example [8, 9, 10], and references therein. The method of energy,
in general, imposes a additional condition on the wave speeds, that is, Kρ2 = bρ1,
see [1, 2, 3]. Here we do not use any additional condition for the coefficients of
the system. Our work improves the result obtained in [7] in the sense that delays
has been introduced in the control ( damping terms ). The delays µ2φt(x, t − τ),
µ4ψt(x, t − τ) makes the problem different from that considered in the literature.
It is well known that small delays in the controls might turn such well-behaving
system into a wild one. In recent years, the PDEs with time delay effects have
become an active area of research.

The plan of this work is follows: in the next section, we introduce the Energy
Space and prove that the full energy of the system decay. In the section 3, we
introduce the semigroup representation for the system and prove that A the infin-
itesimal generator of the semigroup is dissipative, and more, that A generates a
eA t, C0-semigroup of contractions, that implies, prove the existence and regularity
of solution. Finally in the section 4 by Theorem of Gearhart we prove that eA t is
exponentially stably.

2. Energy Space

For the Sobolev spaces we use the standard notation as in [11]. Let us proceed
as [12]. We introduce the followings new dependents variables as in

z(x, ρ, t) = φt(x, t− τρ), w(x, ρ, t) = ψt(x, t− τρ), ρ ∈ (0, 1),(8)

that satisfies for (x, ρ, t) ∈ (0, L)× (0, 1)× (0,∞)

τ zt(x, ρ, t) + zρ(x, ρ, t) = 0, τ wt(x, ρ, t) + wρ(x, ρ, t) = 0.(9)

Therefore, problem (1)-(2) is equivalent to

ρ1φtt(x, t)−K(φx + ψ)x(x, t) + µ1φt(x, t) + µ2z(x, 1, t) = 0,

ρ2ψtt(x, t)− bψxx(x, t) +K(φx + ψ)(x, t) + µ3ψt(x, t) + µ4w(x, 1, t)

= 0,(10)

τ zt(x, ρ, t) + zρ(x, ρ, t) = 0, τ wt(x, ρ, t) + wρ(x, ρ, t) = 0,
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The above system subjected to the following initial and boundary conditions

φ(0, t) = φ(L, t) = ψ(0, t) = ψ(L, t) = 0, t > 0,

z(x, 0, t) = φt(x, t), w(x, 0, t) = ψt(x, t), x ∈ (0, L), t > 0,

φ(·, 0) = φ0, φt(·, 0) = φ1, x ∈ (0, L),(11)

ψ(·, 0) = ψ0, ψt(·, 0) = ψ1, x ∈ (0, L),

z(x, 1, 0) = f0(x, t− τ), w(x, 1, 0) = g0(x, t− τ), in (0, L)× (0, τ).

Now, the energy space H is defined as

H = {H1
0 × L2 ×H1

0 × L2 × L2(0, 1; L2)× L2(0, 1; L2)}.

For µ1 > µ2, µ3 > µ4 satisfying

τµ2 < ξ < τ(2µ1 − µ2), τµ4 < η < τ(2µ3 − µ4)(12)

respectively, we define the full energy of the system in the energy space as

E(t) =
1

2

∫ L

0

(ρ1|φt|2 + ρ2|ψt|2 +K|φx + ψ|2 + b|ψx|2)dx

+
ξ

2

∫ L

0

∫ 1

0

z2(x, ρ, t) dρ dx+
η

2

∫ L

0

∫ 1

0

w2(x, ρ, t) dρ dx.

Lemma 2.1. There exists a positive constant C such that for any regular solution
(φ,ψ, z, w) of the problem (10)-(11) and for any t ≥ 0, we have

d

dt
E(t) ≤ −C

∫ L

0

(|φt|2 + |ψt|2 + z2(x, 1) + w2(x, 1)) dx.(13)

Proof. 2.1. We multiplying (1) by φt, (2) by ψt, and using integration by part to
get

1

2

d

dt

∫ L

0

(ρ1|φt|2 + ρ2|ψt|2 +K|φx + ψ|2 + b|ψx|2)dx = − µ1

∫ L

0

|φt|2 dx

− µ2

∫ L

0

φt z(1, t) dx

− µ3

∫ L

0

|ψt|2 dx

− µ4

∫ L

0

ψt w(1, t) dx

and using the Energy E(t) of the system, we obatin

d

dt
E(t) = −µ1

∫ L

0

|φt|2 dx− µ2

∫ L

0

φt z(1, t) dx− d

dt

{
ξ

2

∫ L

0

∫ 1

0

z2(x, ρ, t) dρ dx

}

−µ3

∫ L

0

|ψt|2 dx− µ4

∫ L

0

ψt w(1, t) dx− d

dt

{
η

2

∫ L

0

∫ 1

0

w2(x, ρ, t) dρ dx

}
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using (14) and (15)

d

dt

ξ

2

∫ L

0

∫ 1

0

z2(x, ρ, t) dρ dx = − ξ
τ

∫ L

0

∫ 1

0

z(x, ρ, t)zρ(x, ρ, t) dρ dx

= − ξ

2τ

∫ L

0

∫ 1

0

∂

∂ ρ
z2(x, ρ, t) dρ dx

=
ξ

2τ

∫ L

0

(z2(x, 0)− z2(x, 1)) dx(14)

d

dt

η

2

∫ L

0

∫ 1

0

w2(x, ρ, t) dρ dx = −η
τ

∫ L

0

∫ 1

0

w(x, ρ, t)wρ(x, ρ, t) dρ dx

= − η

2τ

∫ L

0

∫ 1

0

∂

∂ ρ
w2(x, ρ, t) dρ dx

=
η

2τ

∫ L

0

(w2(x, 0)− w2(x, 1)) dx(15)

we obtain

d

dt
E(t) = −µ1

∫ L

0

|φt|2 dx− µ2

∫ L

0

φt z(1, t) dx(16)

+
ξ

2τ

∫ L

0

(z2(x, 0)− z2(x, 1)) dx

−µ3

∫ L

0

|ψt|2 dx− µ4

∫ L

0

ψt w(1, t) dx

+
η

2τ

∫ L

0

(w2(x, 0)− w2(x, 1)) dx(17)

Now, using Youngs’s inequality we can rewritten the last equation as

d

dt
E(t) ≤ −

(
µ1 −

ξ

2τ
− µ2

2

)∫ L

0

|φt|2 dx−
(
ξ

2τ
− µ2

2

)∫ L

0

z2(x, 1) dx

−
(
µ3 −

η

2τ
− µ4

2

)∫ L

0

|ψt|2 dx−
( η

2τ
− µ4

2

)∫ L

0

w2(x, 1) dx

from where our conclusion holds.

3. Existence of solution

Let us introduce the semigroup representation. To this end, let U = (φ,φt, ψ, ψt, z, w)
T

and rewrite the problem (10)-(11) as

Ut = AU

U(0) = U0(18)
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where the operator A is defined for U = (φ, u = φt, ψ, v = ψt, z, w)
T by

AU =



u
K
ρ1
(φx + ψ)x − µ1

ρ1
u− µ2

ρ1
z(·, 1)

v
b
ρ2
ψxx − K

ρ2
(φx + ψ)− µ3

ρ2
u− µ4

ρ2
w(·, 1)

− 1
τ zρ

− 1
τ wρ

 ,

with domain

D(A) = {(φ,φt, ψ, ψt, z, w)
T ∈ H : u = z(·, 0, ·), v = w(·, 0, ·), in(0, 1)},

where for x ∈ (0, L) we denote H = H(0, L), L = L(0, L) and

H = {(H2 ∩H1
0)×H1

0 × (H2 ∩H1
0)×H1

0 × L2(0, 1;H1)× L2(0, 1;H1)}.

For U = (φi, ui, ψi, vi, zi, wi)T ∈ H, i = 1, 2 and ξ, η as in (12) we defined the
following inner product in the energy space as

⟨U1, U2⟩ =

∫ L

0

[ρ1u
1u2 + ρ2v

1v2 +K(φ1 + ψ1)(φ2 + ψ2) + bψ1ψ2)dx

+ ξ

∫ L

0

∫ 1

0

z1(x, ρ)z2(x, ρ) dρ dx+ η

∫ L

0

∫ 1

0

w1(x, ρ)w2(x, ρ) dρ dx.

For to prove the existence of solution we begin with the proof that the operator A
is dissipative.

Lemma 3.1. For U = (φ, u = φt, ψ, v = ψt, z, w)
T ∈ D(A), we have ⟨AU,U⟩ ≤ 0.

Proof. 3.1.

⟨AU,U⟩ = −µ1

∫ L

0

|φt|2 dx− µ2

∫ L

0

φt z(1, t) dx− ξ

τ

∫ L

0

∫ 1

0

z(x, ρ, t)zρ(x, ρ, t) dρ dx

−µ3

∫ L

0

|ψt|2 dx− µ4

∫ L

0

ψt w(1, t) dx− η

τ

∫ L

0

∫ 1

0

w(x, ρ, t)wρ(x, ρ, t) dρ dx.

Using (14) and (15) in the equation above we obtain

⟨AU,U⟩ = −µ1

∫ L

0

|φt|2 dx− µ2

∫ L

0

φt z(1, t) dx+
ξ

2τ

∫ L

0

(z2(x, 0)− z2(x, 1)) dx

−µ3

∫ L

0

|ψt|2 dx− µ4

∫ L

0

ψt w(1, t) dx+
η

2τ

∫ L

0

(w2(x, 0)− w2(x, 1)) dx.

Now using (16) and Lemma 3.1 we concludes

⟨AU,U⟩ = d

dt
E(t) ≤ −C

∫ L

0

(|u|2 + |v|2 + z2(x, 1) + w2(x, 1)) dx.(19)

In the next lemma, we will prove an important property of resolvent of the
operator A.

Lemma 3.2. 0 ∈ ρ(A).
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Proof. 3.2. For any F = (f1, f2, f3, f4, f5, f6)
T ∈ H consider the equation AU =

F . This implies

u = f1,(20)

K(φx + ψ)x − µ1u− µ2z(·, 1) = ρ1f2,(21)

v = f3,(22)

bψxx −K(φx + ψ)− µ3v − µ4w(·, 1) = ρ2f4,(23)

−zρ = τf5,(24)

−wρ = τf6,(25)

We plug u = f1 obtained from (20) into (21) to get

K(φx + ψ)x = µ1u+ µ2z(·, 1) + ρ1f2 ∈ L2(0, L).

By Poincarè inequality we have

K(φx + ψ) ∈ L2(0, L).(26)

Now we plug v = f3 obtained from (26) and (22) into (23) to get

bψxx = K(φx + ψ) + µ3v + µ4w(·, 1) + ρ2f4 ∈ L2(0, L).(27)

By the standard theory in the linear elliptic equations , we have a unique ψ ∈
H2 ∩H1

0 satisfying (27). Then we plug ψ just obtained from solving (27) into (21)
to get

Kφxx = −Kψx + µ1u+ µ2z(·, 1) + ρ1f2 ∈ L2(0, L).(28)

Applying the standard theory in the linear elliptic equations again yields a unique
solvability of φ ∈ H2 ∩H1

0 for (28).

From (24) we have using Poincarè inequality,

1

Cp

∫ L

0

∫ 1

0

|z|2 dρdx ≤
∫ L

0

∫ 1

0

|zρ|2 dρdx ∈ L2(0, 1 : L2(0, L)),

then z ∈ L2(0, 1 : H1(0, L)). The same idea we use for w. Thus the unique solv-
ability of AU = F follows. It is clear from the theory of the linear elliptic equation,
see Chapter 1 of [13], that ||U ||H ≤ C||F ||H with C being a positive constant inde-
pendent of U , and then 0 ∈ ρ(A).

Now we will to prove that A generates a C0−Semigroup of contractions.

Lemma 3.3. The operator A generates a C0−Semigroup of contractions on a
Hilbert space H.

Proof. 3.3. From Lemma 3.1 we have that A is dissipative operator, and from
Lemma 3.2 follows that 0 ∈ ρ(A), them from Theorem 1.2.4, page 3 of [13], we
concludes that A generates a C0−Semigroup of contractions on H.

In this step, we prove that the problem (10)-(11) is well-posedness, and in this
direction, we have the following result

Theorem 3.4. If µ2 ≤ µ1 and µ4 ≤ µ3, then there exists a unique solution U ∈
C([0,∞),H) of the (10)-(11). Moreover if U0 ∈ D(A), then U ∈ C([0,∞), D(A))∩
C1([0,∞),H).
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Proof. 3.5. From the classical semigroup theory, see for example [14], follows by
Lemma 3.3 that U(t) = eA t U0 is the unique solution of the problem (10)-(11) in
the conditions of theorem. The proof is complete.

4. Asymptotic behavior

Now we are in position to present our principal result

Theorem 4.1. The semigroup eA t is exponentially stably.

Proof. 4.2. We now use Theorem 1.1 and we use a contradiction argument. We
first prove (6). From Lemma 3.2 we have that 0 ∈ ρ(A) and follows from this fact
and the contraction mapping theorem that for any real number β with |β| < ||A||−1,
the operator iβI −A = A(iβA−1 − I) is invertible. Moreover, ||(iβI −A)−1|| is a
continuous function of β in the interval (−||A||−1, ||A||−1).

If sup{||(iβI − A)−1|| : |β| < ||A||−1} = M < ∞, then by the contraction map-
ping theorem, the operator iβI −A = (iβ0I −A)(I + i(β − β0)(iβ0I −A)−1) with
|β0| < ||A||−1 is invertible for |β − β0| < 1/M. It turns out that by choosing |β0| as
close to ||A||−1 as we can, we conclude that

{β : |β| < ||A||−1 + 1/M} ⊂ ρ(A)

and ||(iβI −A)−1|| is continuous function of β in the interval

(−||A||−1 − 1/M , ||A||−1 + 1/M).

From argument above, it follows that if (6) is not true, then there is w ∈ R with
||A||−1 ≤ |w| <∞ such that {iβ ; |β| < |w|} ⊂ ρ(A) and

sup{||(iβ −A)−1|| : |β| < |w|} = ∞.

It turns out that there exists a sequence βn ∈ R with βn → w, |βn| < |w| and a
sequence of complex vector functions Un = (φn, un, ψn, vn, zn, wn)T satisfying

Un ∈ D(A) with ||Un||H = 1

such that

||(iβn −A)Un|| → 0, as n→ ∞,

and then

iβnφn − un → 0 in H1
0(29)

iβnρ1u
n −K(φn

x + ψn)x + µ1u
n + µ2z

n(·, 1) → 0 in L2

iβnψn − vn → 0 in H1
0(30)

iβnρ2v
n − bψn

xx +K(φn
x + ψn) + µ3v

n + µ4w
n(·, 1) → 0 in L2

iβnτzn − znρ → 0 in L2(0, 1; L2)

iβnτwn − wn
ρ → 0 in L2(0, 1; L2)

Making the inner product of (iβnI −A)Un with Un in H, taking the real part, and
using (19) we have∫ L

0

(|un|2 + |vn|2 + zn(x, 1)2 + wn(x, 1)2) dx→ 0,
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from where follows that

un → 0(31)

vn → 0(32)

zn → 0(33)

wn → 0(34)

Using (31) into (29) we obtain

φn → 0,(35)

and using (32) into (30) we obtain

φn → 0.(36)

Now using (31),(32),(33),(34),(35),(36) we concludes that ||Un|| → 0 which is a
contradiction with ||Un|| = 1 and the proof of (6) is complete.

Finally we prove (7) by a contradiction argument again. Suppose that (7) is not
true. Then there exists a sequence βn with |βn| → ∞ and a sequence of complex
vector functions Un ∈ D(A) with unit norm in H such that

||(iβnI −A)Un|| → 0, as n→ ∞.

Again we have∫ L

0

(|un|2 + |vn|2 + zn(x, 1)2 + wn(x, 1)2) dx = −⟨AUn, Un⟩ → 0.(37)

Making the inner product of (iβnI −A)Un with Un in H we obtain

iβn||Un||2 − ⟨AUn, Un⟩ → 0.

From (37) we get

βn||Un||2 → 0.(38)

As βn → ∞ and ||Un|| is limited, we concludes that (38) is true only if ||Un|| → 0
contradict ||Un|| = 1. The proof of theorem is complete.

5. Numerical Solution

We will solve numerically the system of Timoshenko (1)-(5) in the one-dimension
domain Ω of the length L, using high-order schemes. We used the Implicit Compact
Finite Difference Method of fourth-order for discretization of spacial variable and
the classic Finite Difference for discretization of temporal variable.

5.1. Discretization. In order to get the discretization of the problem (1)-(5), we
define the following sets:

Ωh = {xi : xi = ih, i = 0, 1, ... , I + 1; h = L/(I + 1)},
⊤k = {tn : tn = nk, n = 0, 1, ..., N ; k = Ch},
†k = {tn : tn = nk, n = −M,−M + 1, ..., 0; 0 < M < N}

where Qk
h = Ωh × ⊤k and Dk

h = Ωh × †k are the computational mesh, and mesh
of delay, respectively. The width of mesh Dk

h is τ = Mk. In Figure 1 we show a
mesh model for the full-domain Qk

h ∪ Dk
h. The points (xi, tn) are called nodes of
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( ,1)i

( , )i N

(1, )n ( , )I n

( ,0)i

( 1, )n- ( 2, )I n+( 1, )I n+(0, )n ( , )i n

( , 1)i -

( , )i M-

( , )i M

k

h
Q

k

h
D

Figure 1. Model mesh for the full-domain: Qk
h ∪ Dk

h.

the mesh and, usually denote by (i, n). The classification of nodes is as follows:
interiors (circles), boundaries (stars), initials (squares) and ghosts (diamonds).

Let χ = χ(x, t) be a function with second order partial derivatives. Henceforth
consider the following notation χn

i ≡ χ(xi, tn). We define the following approxima-
tion of the derivatives of χ, according to Taylor,

(χt)
n
i ≈ 1

k
δ−t χ

n
i , (χt)

n
i ≈ 1

2k
δ0tχ

n
i , (χt)

(n−M)
i ≈ 1

k
δ−t χ

(n−M)
i

(χx)
n
i ≈ 1

2h
δ0xχ

n
i , (χtt)

n
i ≈ 1

k2
δ2tχ

n
i , (χxx)

n
i ≈ 1

h2

[
δ2x

1 + 1
12δ

2
x

]
χn
i(39)

where the finite difference operators are given by

δ−t χ
n
i := χn

i − χn−1
i , δ0tχ

n
i := χn+1

i − χn−1
i ,

δ−t χ
(n−M)
i := χ

(n−M)
i − χ

(n−M)−1
i , δ0xχ

n
i := χn

i+1 − χn
i−1,

δ2tχ
n
i := χn+1

i − 2χn
i + χn−1

i , δ2xχ
n
i := χn

i+1 − 2χn
i + χn

i−1,

(40)
[
1 +

1

12
δ2x

]
χn
i :=

1

12
χn
i+1 +

5

6
χn
i +

1

12
χn
i−1

The discrete formulation of equations (1)-(5) is obtained using (39),

ρ1

[
1 +

1

12
δ2x

]
δ2tφ

n
i − α1δ

2
xφ

n
i − α2

[
1 +

1

12
δ2x

]
δ0xψ

n
i +

α3

[
1 +

1

12
δ2x

]
δ0tφ

n
i + α4

[
1 +

1

12
δ2x

]
δ−t φ

(n−M)
i = 0

in (xi, tn) ∈ Qk
h(41)
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ρ2

[
1 +

1

12
δ2x

]
δ2tψ

n
i − β1δ

2
xψ

n
i + β2

[
1 +

1

12
δ2x

]
δ0xφ

n
i + β0

[
1 +

1

12
δ2x

]
ψn
i +

β3

[
1 +

1

12
δ2x

]
δ0tψ

n
i + β4

[
1 +

1

12
δ2x

]
δ−t ψ

(n−M)
i = 0

in (xi, tn) ∈ Qk
h(42)

(43) φ0
i = (φ0)i, ψ0

i = (φ0)i, (φt)
0
i = (φ1)i, (ψt)

0
i = (ψ1)i in xi ∈ Ω̊h

(44) φn
0 = φn

I+1 = ψn
0 = ψn

I+1 = 0 on tn ∈ ⊤k

(45) φ
(n−M)
i = (f0)

(n−M)
i , ψ

(n−M)
i = (g0)

(n−M)
i , in (xi, t(n−M)) ∈ Dk

h

where, the parameters, are defined by

α1 = Kk2/h2, α2 = Kk2/2h, α3 = µ1k/2, α4 = µ2k,
β1 = bk2/h2, β2 = α2, β0 = Kk2, β3 = µ3k/2, β4 = µ4k

Substituting (40) in (41)-(42), we have the following linear algebraic system:

A1Φ
n+1 = B1Φ

n + C1Ψ
n +D1Φ

n−1 − E1δ
−
t Φ(n−M) +Υn

1(46)

A2Ψ
n+1 = B2Ψ

n + C2Φ
n +D2Ψ

n−1 − E2δ
−
t Ψ(n−M) +Υn

2(47)

where, Φn+1 = (φn+1
1 , φn+1

2 , ..., φn+1
I )T and Ψn+1 = (ψn+1

1 , ψn+1
2 , ..., ψn+1

I )T, n =
0, 1, ..., N − 1, are unknown vectors,

A1 = tridiag
( 1

12
(ρ1 + α3),

5

6
(ρ1 + α3),

1

12
(ρ1 + α3)

)
,

B1 = tridiag
(1
6
(ρ1 + 6α1),

1

3
(5ρ1 − 6α1),

1

6
(ρ1 + 6α1)

)
,

C1 = pentadiag
(
− 1

12
α2,−

5

6
α2, 0,

5

6
α2,

1

12
α2

)
,

D1 = tridiag
( 1

12
(−ρ1 + α3),

5

6
(−ρ1 + α3),

1

12
(−ρ1 + α3)

)
,

E1 = tridiag
( 1

12
α4,

5

6
α4,

1

12
α4

)
,

A2 = tridiag
( 1

12
(ρ2 + β3),

5

6
(ρ2 + β3),

1

12
(ρ2 + β3)

)
,

B2 = tridiag
( 1

12
(2ρ2 + 12β1 − β0),

1

6
(10ρ2 − 12β1 − 5β0),

1

12
(2ρ2 + 12β1 − β0)

)
,

C2 = −C1,

D2 = tridiag
( 1

12
(−ρ2 + β3),

5

6
(−ρ2 + β3),

1

12
(−ρ2 + β3)

)
,

E2 = tridiag
( 1

12
β4,

5

6
β4,

1

12
β4

)
,

are matrices of order I×I. Υn
1 and Υn

2 are vectors of order I that load the boundary
data.
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5.2. Numerical test. In order to verify the asymptotic behavior of the solution
of the Timoshenko system, we consider the following data:

L = 2π, ρ1 = ρ2 = K = b = 1.

Boundary condition:

φ(0, t) = φ(2π, t) = ψ(0, t) = ψ(2π, t) = 0

Initial condition:

φ0(x) = 0, ψ0(x) = 0, φ1(x) = sin(x), ψ1(x) = cos(x)

Delay condition:

f0(x, t− τ) = sin(x) cos(t− τ), g0(x, t− τ) = cos(x) cos(t− τ)

Numerical data: I = 18, C = 0.3, τ = 10% of the width of the mesh Qk
h,

TOL = 4× 10−5 (tolerance).
Table 1 shows seven cases where Timoshenko system may behave differently

with the presence the terms of delay and damping. Each of these cases are plotted
in Figure 2-8. Note that the asymptotic behavior of the solution was calculated
by taking the maximum value of the function φ, in x ∈ [0, 2π], throughout time.
In Figure 2, it is observed that there is no asymptotic behavior of the solution, in
contrast to Figures 3-6, where the asymptotic behavior of the solution is increasingly
more acute. Figure 7 represents the case without delay, the presence of damping is
very evident, obtaining the asymptotic behavior of the solution immediately. Figure
8 represents the case without delay and damping, and as was expected, there is no
convergence of the solution. In Figure 9 we show the graph of function φ(x, t),
where x ∈ [0, 2π], t ∈ [−2.97, 29.76], µ1 = µ3 = 1, µ2 = µ4 = 0.8 and we choose
only 300 iterations along time. With respect to rotation angle ψ we observe that
it exhibits the same behavior that the function φ.

Table 1. Table for different cases.

Case Damping Delay Iterations in time Asymptotic be-
havior

1 µ1 = µ3 = 1 µ2 = µ4 = 1 3000 diverges
2 µ1 = µ3 = 1 µ2 = µ4 = 0.9 3000 converges
3 µ1 = µ3 = 1 µ2 = µ4 = 0.8 3000 converges
4 µ1 = µ3 = 1 µ2 = µ4 = 0.7 3000 converges
5 µ1 = µ3 = 1 µ2 = µ4 = 0.6 3000 converges

...
6 µ1 = µ3 = 1 µ2 = µ4 = 0 159 converges
7 µ1 = µ1 = 0 µ2 = µ4 = 0 3000 diverges
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Figure 8. Case 7.
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Figure 9. Graph
of φ(x, t).

6. Conclusion

We have demonstrated the well-posedness and asymptotic behavior solution of
the Timoshenko system. Thus, it also was obtained numerically the asymptotic
behavior of the solution confirming the theory developed.
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