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COMMON BEST PROXIMITY POINTS FOR CYCLIC ¢y—CONTRACTION MAPS

M. AHMADI BASERIY*, H. MAZAHERI' AND T. D. NARANG?

ABSTRACT. The purpose of this paper is to introduce new types of contraction condition for a pair of
maps (S,T) in metric spaces. We give convergence and existence results of best proximity points of
such maps in the setting of uniformly convex Banach spaces. Moreover, we obtain existence theorems
of best proximity points for such contraction pairs in reflexive Banach spaces. Our results generalize,
extend and improve results on the topic in the literature.

1. INTRODUCTION AND PRELIMINARIES

Let A and B be nonempty subsets of a metric space X := (X,d) and T a cyclic map on AU B i.e.
T(A) C B, T(B) C A. An element x € AU B is called a best proximity point of the mapping T if
d(x,Tx) = d(A, B), where d(A, B) is distance of A and B i.e.

d(A,B) = inf{d(z,y) : x € A,y € B}.
The map T is called a cyclic contraction [2] if

for some k € (0,1) and for all x € A and y € B. If ¢ : [0,00) — [0,00) is a strictly increasing map
then the cyclic map T is called cyclic p—contraction map [1] if

d(Tz,Ty) < d(z,y) — (d(z,y)) + ¢(d(A, B)),
for every x € A and y € B.

Given two self maps S and T on AU B, a common best proximity point of the pair (S,7T) is a point
x € AU B satistying d(z, Sx) = d(x,Tz) = d(A, B).
The pair (S, T) is called a semi-cyclic contraction [3] if:
(1) S(4) C B, T(B) C A
(ii) Ja € (0,1), such that d(Sz,Ty) < ad(z,y) + (1 — a)d(A, B), for every x € A and y € B.
Let S(A) C B, T(B) C A. If ¢ : [0,00) — [0,00) is a strictly increasing map and
d(Sz, Ty) < d(z,y) — p(d(z,y)) + ¢(d(A4, B)),
for every € A and y € B, then the pair (5, T) is called semi-cyclic p—contraction [8].

Clearly, if S =T then a semi-cyclic p—contraction pair reduces to a cyclic p— contraction map.

The best proximity point theorems emerge as a natural generalization of fixed point theorems, because
a best proximity point reduces to a fixed point if AN B # (). A fundamental result in fixed point theory
is the Banach contraction principle. One of the interesting extentions of this result was given by Kirk,
Srinivasan and Veermani [5]. Eldred and Veeramani [2] gave existence and convergence results of best
proximity point for cyclic contraction maps in uniformly convex Banach spaces and metric spaces,
to include the case A N B = (). Al-Thagafi and Shahzad [1] obtained some such results for cyclic ¢-
contraction maps . Also Rezapour, Derafshpour and Shahzad [7] gave best proximity point of cyclic
(- contraction map on reflexive Banach spaces.

In 2011, Gabeleh and Abkar [3] proved theorems on the existence and convergence of best proximity
point for semi-cyclic contraction pair in Banach spaces. In 2014, Thakur and Sharma [8] obtaind best
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proximity point for semi-cyclic ¢p—contraction pair in uniformly convex Banach spaces. Inspired by
these results, we introduce a generalized semi-cyclic ¢-contraction pair in metric spaces, which contain
the general contractive pair of maps, and prove the existence and convergence of best proximity point
for such pair of maps in metric spaces, uniformly convex Banach spaces and in reflexive Banach spaces.
The following, definitions are needed for our resuls.

Definition 1.1. [1] Let A and B be nonempty subsets of a normed linear space X, T : AUB — AUB,
T(A) C B and T'(B) C A. We say that T satisfies the proxzimal property if
T, S x € AUB, ||z, — Tx,| — d(A, B) = ||z — Tz| = d(A, B),
for {zn}n>0 € AU B.
Definition 1.2. A Banach space X is said to be

(i) uniformly convez if there exists a stricly increasing function ¢ : (0,2] — [0, 1] such that the following
implication holds for all x1,29,p € X,R >0 and r € [0,2R] :

i —=pll < R, i =1,2 and |[z1 — 22| Z 7 = |[(z1 + 22)/2 = pl| < (1 = 6(r/R))R
(1) strictly convex if the following impilication holds for all x1,29,p € X and R >0
lz: = p|| < R, i=1,2 and x1 # x2 = ||(z1 + 22)/2 — p|| < R.

2. MAIN RESULTS

We introduce generalized semi-cyclic ¢—contraction pair in metric spaces as under:

Definition 2.1. Let A and B be nonempty subsets of a metric space X and S, T : AUB - AUB
be such that S(A) C B and T(B) C A. Then the pair (S,T) is said to be generalized semi-cyclic
p-contraction if ¢ : [0, +00) — [0, +00) is a strictly increasing map and
d(Sz,Ty) < (1/3){d(z,y) +d(Sz,z) + d(Ty,y)}
— ¢ld(z,y) + d(Sz,z) + d(Ty,y)) + »(3d(4, B)),
forallx € A and y € B.

Example 2.1. Take ¢(t) = (1 — k)(t/3) fort >0 and 0 < k < 1, we obtain
d(Sz, Ty) < (k/3){d(z,y) + d(x, Sz) + d(y, Ty)} + (1 — k)d(A, B),

for all x € A and y € B, which is generalization of semi-cyclic contraction.
Note that, S =T then we obtain generalized cyclic contraction map [4].

Example 2.2. Let X = R with the usual metric. For A=10,1], B =[-1,0], define S,T: AUB —

AUB by
- wT€A
S(z) = T(x) =

5 TEDB, - TEB.

Clearly S(A) C B andT(B) C A. Witha€ A, b€ B and p(t) = % fort >0, (S,T) is a generalized
semi-cyclic p-contraction.

re A

I8

Let (S,T) be a generalized semi-cyclic ¢-contraction. Consider zyp € A, then Sxzy € B, so there
exists yg € B such that yg = Sxg. Now T'yy € A, so there exists 1 € A such that 21 = T'yg. Inductively,
we define sequences {z,} and {y,} in A and B, respectively by

(1) Tn+1 = Tyn, Yn = Sxp.

Lemma 2.1. Let A and B be nonempty subsets of a metric space X and S, T : AUB — AUDB be
such that the pair (S,T) is generalized semi-cyclic p-contraction . For xg € AU B, the sequences {xp}
and {yn} are generated by (1) then for allz € A, y € B, and n > 1, we have

(a) —p(d(z,y) + d(z, Sz) + d(y, Ty)) + ¢(3d(A, B)) <0,

(b) d(Sz,Ty) < (1/3){d(z,y) + d(z, Sz) + d(y,Ty)},

(c) d(xy, Sty) < d(xp—1,5Tn—1),

(d) d(anrlvyn) < d(y?“HTyn*l)»
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(6) d(yn+1aTyn) S d(yanyn—l)'

Proof. We have 3d(A, B) < d(z,y)+d(Tx,z)+d(Ty,y). Hence ¢ is a strictly increasing map, (a)
and (b) are obtained. Since

A(Xp, Sp) < (1/3){d(yn—-1,2n) + d(@n, Szpn) + d(Yn-1,2n)},

SO
(2) d(xpn, Szy) < d(Yn—1,2n)-
Also, since

d(yn—la an) S (1/3){d(yn—1a xn—l) + d(xn—h an—l) + d(yn—la xn)}v we hcwe
(3) d(ynfla xn) S d(mnfh Sﬁrnfl)«
From (2) and (3), inequality (c) is obtained.
Since

d(xn-ﬁ-la yn) S (1/3){d(mna yn) + d(xn-i-lv yn) + d(xna yn)}a

SO

d(anrlv yn) S d(y'ru Tynfl)a
that is inequlity (d).
Now, since

d(Ynt1, Tyn) < (/30 d(@n11,yn) + d(Ynt1, Tyn) + d(Zni1,yn)}, we have

d(yn+la Tyn) < d(xn+1> yn)
By using (d), inequality (e) is obtained.

Following result will be needed in what follows.

Proposition 2.1. Let A and B be nonempty subsets of a metric space X and S, T : AUB — AUB be
such that the pair (S,T) is generalized semi-cyclic p-contraction map. For xqg € AU B, the sequences
{zn} and {yn} are generated by (1). Then

d(xp, Sty) = d(A, B) and d(yn, Tyn—1) — d(4A, B).

Proof. Let d,, = d(z,, Sx,). It follows from Lemma 2.1(c), that {d,} is decreasing and bounded.
So lim,, o d,, = tg. Since (S,T) is a generalized semi-cyclic ¢-contraction pair, we obtain
dpt1 < d(Szp, Tyn)
< (1/3){2dn + d(yn, Tyn)} — ¢(2dy + d(yn, Tyn)) + ¢(3d(A, B))
< dp — ¢(2dn + d(yn, Tyn)) + ¢(3d(A, B)).

Hence,

P(3d(A, B)) < 0(2dy, + d(yn, Tyn)) < dn — dnt1 + p(3d(A, B)).
Thus
(4) lim (2, + d(yn, Tun)) = 9(3d(A, B).

Since ¢ is strictly increasing and d,, > d(yn, Tyn) > dp+1 > to > d(A, B), we have
Jim o(2dy + d(yn, Tyn)) = ¢(3t0) = ¢(3d(A, B)).

From (4),
¢(3to) = p(3d(A, B)).
As ¢ is strictly increasing, we have to = d(A, B).
Theorem 2.1. Let A and B be nonempty subsets of a metric space X and S, T : AUB — AU B be
such that the pair (S,T) is a generalized semi-cyclic o-contraction map. For xo € AU B, the sequences

{z,} and {y,} are generated by (1). If {x,} and {y,} have convergent subsequences in A and B, then
there exists x € A and y € B such that

d(z,Sz) =d(A,B) =d(y,Ty).
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Proof. Let {y,,} be a subsequence of {y,} such that y,, — y. The relation

d(A, B) < d(Tyn,.,y) < d(yni,y) + d(yn,., Tyn,.)
holds for each k > 1. Letting k — oo, by Proposion 2.1 and Lemma 2.1(d), we obtain
lim d(Tyy,,y) = d(A, B).
k—o0

From Lemma2.1(b),

d(Ty,yn,) < (1/3){d(y, zn,) + d(y, Ty) + d(wn,, Stn, )}

< (1/3)d(y, yn) + d(Yny Tny) + Ay, yn,) + ATy, yn,) + d(@n,, ST, ) }-
Letting kK — oo, by Proposion 2.1, we get

(2/3)d(A, B) < (2/3) klim d(Ty, yn,) < (2/3)d(A, B).
— 00
So d(Ty,y) = d(A, B). Similary, it can be proved that d(z, Sx) = d(A, B).

Proposition 2.2. Let A and B be nonempty subsets of a metric space X and S, T: AUB —- AUB
be such that the pair (S,T) is generalized semi-cyclic p-contraction. Then the sequences {x,} and {y,}
generated by (1) are bounded.

Proof. By Proposition 2.1, we have d(x,, Sz,) — d(A, B) as n — oco. It is sufficient to show that
{Sx,} is bounded. For the unbounded map ¢, take M > 0 such that

(M) > (4/3)d(x0, S10) + p(3d(A, B)).

If {Sz,} is not bounded, then there exists a natural number N € N, such that
d(zy,SxNn) > M, d(z1,Stn_1) < M.

Then

M < d(x1,SzN)
< d(yo, zN)
< (1/3){d(x0, yn—1) + d(wo, Szo) + d(yn—1,Tyn—1)}
—p(d(zo,yn—1) + d(x0, S70) + d(yn-1,Tyn-1)) + ¢(3d(A, B))
< (1/3){d(wo, 1) + d(21,yn—1) + d(wo, Sz0) + d(TN_1,yN—1)}
—p(d(xo,yn—1)) + »(3d(A, B))
< (1/3){d(z0,y0) + d(yo,z1) + M + d(z0, Sx0) + d(TN-1,yN—2)}
—p(d(zo,yn-1)) + (3d(A, B)
< (1/3){3d(z0, Szo) + M + d(
—p(d(wo,yn—1)) + »(3d(A, B)
< (4/3)d(z0, Swo) + M — ¢(d(
Hence

+ ¢(3d(4, B))

)
§3N—2,ZUN—2)}
To,yn—1)) + ©(3d(A, B)).

o(d(zo,yn—1)) < (4/3)d(x0, Sz0) + p(3d(A, B)).
Therefore

p(M) < p(d(a1, Szn)) < p(d(yo, 2n)) < p(d(z0,yn-1))
< (4/3)d($0, Sx()) + QO(?)d(A, B))7
which is a contradiction. Hence {Sz,} is bounded, therefore {z,} is bounded.

Corollary 2.1. Let A and B be nonempty subsets of a metric space X and S, T : AUB — AU B be
such that the pair (S,T') is generalized semi-cyclic p-contraction. If A and B are boundedly compact
then there exists x € A and y € B such that

d(z,Sz) = d(A, B) = d(y, Ty).

Proof. The result is an immediately consequence of Proposition 2.2 and Theorem 2.1.

Now, define a sequence {z,} in AU B as:

(5) . Ty, n=2k
" Sz n=2k—1.
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In the following, we consider a uniformly convex Banach space X and give best proximity point for
generalized semi-cyclic y-contraction pair (S, T).

Lemma 2.2. Let A and B be nonempty convex subsets of a uniformly convexr Banach space X and
S, T : AUB — AU B be such that the pair (S,T) is generalized semi-cyclic p-contraction. For
xo € AU B, if the sequences {x,} and {yn,} are generated by (1) and sequence {z,} is generated by
(5), then ||zan+2 — 22n|| = 0 and ||z2n4+3 — 2on+1|| — 0 as n — oc.

Proof. To show ||z25,42 — 22, || — 0 as n — 00, assume the contrary. Then there exists ¢y > 0 such
that for each k > 1, there exists ng > k such that

2242 = 22m, || = €o- (6)
Choose € > 0 such that (1 -9 (d(%%)%)) (d(A, B) 4+ €) < d(A, B). By Proposition 2.1, there exists
N7 such that

22,42 = 22n, 41l < d(A, B) + €, (7)

for every ng > Np. Also,
”Zan - Zan+1H < Hynk - xnkJrlH < ||xnk _ynk” - d(AvB)a
so, there exists Ny such that
||22’n«k - Zan-H” < d(Av B) + €, (8)

for all ng, > Ny. Let N = max{Ny, Na}. From (6)-(8) and the uniform convex-
ity of X, we get

Z2n +22n €
i AT ZMHH < (1 -0 (ng)ﬁ)) (d(A,B) +e),

for all ny > N. As (29,42 + 220, )/2 € A, the choice of € implies that

Z2n,, +21%2n
SRS )

for all ny > N, a contradiction. By a similar argument we can show that ||zan4+3 — 2on+1|| — 0 as
n — oo.

Proposition 2.3. Let A and B be nonempty convex subsets of a uniformly conver Banach space X
and S,T : AUB — AU B be such that the pair (S,T) is generalized semi-cyclic p-contraction. For
xg € AU B, if the sequences {x,} and {y,} are generated by (1) and sequence {z,} is generated by
(5), then for each € > 0, there exists a positive integer Noy such that for all m > n > Ny,

HZZm - 22n+1|| < d(A, B) + €.

Proof. Suppose the contrary. So there exists ¢y > 0 such that for each k > 1, there is my > ny > k
satisfying

||Z27”k - ZZW+1|| > d(A, B) + € (9)
and
||22(mk,1) — Zgnk+1|| < d(A, B) + €. (10)
Now from (9) and (10), we get
d(A, B) + €0 < ||zam;, — 22np+1ll < 1 22my — 22(me—1) | + | 220mi—1) — 220,41

< ||22mk - ZZ(mkfl)” + d(A7B) =+ €o.
Letting £ — oo, Lemma 2.2 implies

lim Hz2mk - Z2nk+1|| = d(A, B) + €o. (11)
k—o00

By Lemma 2.1(b) and (d),
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[22m, = 22np 411l < [|22ms — 22mpt2ll + |z2mp+2 = 22n4 43 + 220,43 — 220,41l
< llz2mi = 22mu+2ll + (/3 Ymu+1 — Znp42||

Hymp+1 = Tmp2ll + [Tne+2 = Ynet2ll} + 22043 — 220,41

< ||Z2mk - Z2mk+2” + (1/9){||xmk+1 - ynk-i-l”

+||$mk+1 - ?Jvnk+1|| + ||ynk+1 - znk-&-lH}

+(1/3)UYmp+1 — Tl + [[Tnpt2 = Yngr2l} + 220,43 — 220,11 (|-

Letting k — oo, from (11), Lemma 2.2 and Proposition 2.1 we get

d(A,B) 4+ € < (1/9)(d(A, B) + €0) + (2/9)d(A, B) + (2/3)d(A, B),
SO
d(Aa B) +e < d(Av B) + (1/9)607

this is a contradiction.

Theorem 2.2. Let A and B be nonempty closed and convex subsets of a uniformly convexr Banach
space X and S, T : AUB — AUB be such that the pair (S,T) is generalized semi-cyclic p-contraction.
For g € AU B, if the sequences {x,} and {yn} are generated by (1) and sequence {z,} is generated
by (5), then there exist unique x € A and y € B such that z9, — x, zop+1 — y and ||z — Sz|| =
d(A, B) = |ly = Tyl|.

Proof. First, we show that {z9,} is a Cauchy sequence in A. If d(4, B) = 0, then let g > 0 be
given. By Lemma 2.1(d) and Proposition 2.1,

llz2n — 2ons1ll = |TYn — Sznia1|| < [|2n — Sz — d(A, B) = 0.
So, there exists a positive integer N such that
220 — z2ns1ll <,
for every n > Nj. By Proposition 2.2, there exists a positive integer No such that
[22m — z2n41ll <€,
for every m > n > Na. Let N = max{Ny, No}. It follows that
HZQm — zon|| < ll22m — 22n41|l + HZQn — Zong1|l < 2,

for all m > n > N. Therefore {z3,} is a Cauchy sequence in A. Now, we assume that d(A, B) > 0.
To show that {z2,} is a Cauchy sequence in A, we assume the contrary. Then there exists ey > 0 such
that for each k£ > 1 there exists my > ng > k so that

| 22m, — Z2ni || > €o- (12)
Choose € > 0 such that

€0
By Lemma 2.1(d) and Proposition 2.1,

||Z27’Lk - Z2Tbk+1|| = ||Tynk - ank-‘rl” < ||'T77/k - ankH - d(AvB)

Hence, there exists a positive integer N7 such that

”ZQﬂk - Zan-‘rlH < d(Aa B) + ¢ (13)
for all ny > N;. By Proposition 2.2 there exists a positive integer Ny such that
Iz2m, — 22nit1ll < d(A, B) + ¢, (14)

for all my, > ni > Na. Let N = max{N7, Nao}. From (12)-(14) and the uniform convexity of X, we get

< (14 (G pyre)) @am +o

for all my > ng > N. As (2am, + 220, )/2 € A, the choice of € implies that

Z22my, + 22n,
2 - Z2le+1

Zka + ZQTLk

. < d(A,B),

— 22np+1
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for all my > ny > N, a contradiction. Thus {zs,} Cauchy sequence in A. By a similar argument, we
can show that {z2,41} is a Cauchy sequence in B. The completeness of X and the closedness of A
implies that z9, — 2 as n — co. By Theorem 2.1, || — Sz|| = d(A, B). Also, it follows from closedness
of B and Theorem 2.1 that ||y — T'y|| = d(A, B). To prove uniqueness, assume that there is a € A such
that a #  and |ja — Sa|| = d(4, B). By Lemma 2.1 (b),
TSz — Sxf| < (1/3){2[|Sx — z|| + [| TSz — Sz},
hence
(2/3)d(4, B) < (2/3)|TSz — Sz < (2/3)[Sz — ]| = (2/3)d(4, B).
Therefore, || TSz — Sz| = d(A, B), it follows that TSz = 2. Now
1Sz —al = ||Sz —TSal| < (1/3){[|Sa — z|| + [lz — Sz| + [|Sa — a|}
< (1/9{ 15z — al| + [[Sa — a + ||z — Sz| }
+(1/3)]{llz = Sz + [[Sa — all}.
Hence
(8/9)d(A, B) < (8/9)|Sz — al| < (8/9)d(A, B),
which implies that, ||Sz — a|| = d(A, B). From convexity of A and strict convexity of X, we get
z+a x—Sxr a—Sx

2 2 2

a contradiction. Thus z = a. Similarly, we show the uniqueness of y € B.

< d(A, B),

+|-

Now, we show the existence of a best proximity point for generalized semi-cyclic ¢-contraction pair
(S,T) in reflexive Banach spaces.
First, we prove the following theorem.

Theorem 2.3. Let A and B be nonempty weakly closed subsets of a reflexive Banach space X and
S,T: AUB — AU B be such that the pair (S,T) is generalized semi-cyclic p-contraction. Then there
exists (z,y) € A X B such that

[ =yl = d(A, B).

Proof. If d(A, B) = 0, the result follows by Theorem 3.1(i) of [6]. So we assume that d(A, B) > 0.
For g € A, if the sequences {z,} and {y,} are generated by (1) and sequence {z,} is generated by
(5) then from Proposition 2.3, the sequences {za,} and {z2,+1} are bounded. Since X is reflexive and
A is weakly closed, the sequence {za,} has a subsequence {z2,, } such that za,, X xe A Also B is
weakly closed, hence 29, 41 Bt y € B as k — o0o. Since 2oy, — Zon,+1 e — y # 0 as k — oo, there
exists a bounded liner functional f : X — [0,00) such that ||f]| = 1 and f(z —y) = |Jx — y||. For all
k > 1, we have

| (zany = 22met )] < 1 Fllll22n, = 22np 1]l = 2200 = 22mi4al-
Since limg o0 | f(22n, — Z2n,+1)| = ||l — y||, by Lemma 2.1(d) and Proposition 2.1, we get
[z = yl| = limg—so0 [ f(22n, — 22n,4+1)] < liMiooo (220, — 220,41l
< limpoo |Zn, — Sn, ||
=d(A, B).
So, |l — y|l = d(4, B).
Theorem 2.4. Let A and B be nonempty weakly closed subsets of a reflexive Banach space X and

S,T: AUB — AU B be such that the pair (S,T) is generalized semi-cyclic p-contraction. Then there
erists x € A and y € B such that

[ — Sz|| = d(A, B) = [|Ty -y,

provided that one of the following conditions is satisfied
(i) S is weakly continuous on A and T is weakly continuous on B.
(i) T, S satisfy the proximal property.
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Proof. If d(A, B) = 0, the result follows from Theorem 3.1(i) of [6]. So we assume that d(A, B) > 0.
For zy € A, if the sequences {z,} and {y,} are generated by (1) and sequence {z,} is generated by
(5) then by Proposition 2.3 the sequences {z2,} and {z2,41} are bounded. Since A is weakly closed,
the sequence {z,} has a subsequence {zs,, } such that zs,, — z € A.

From (i), zon,+1 X Sxr e Bask — o0o. So Zong — Zon+1 B 2 — Sz #0 as k — oo. Now the proof
continues similar to that of Theorem 2.3. Also B is weakly closed, so 295,411 — y € B as k — ooc.
Since, (i) holds, zan, 1o — Ty, as k — oo. Next the proof continues similar to that of Theorem 2.3.
From (ii), by Lemma 2.1(d) and Proposition 2.1, ||z2n,+1 — T22n,+1]] — d(A,B) as k — oo. So
ly — Tyl| = d(A, B). Also, ||22n, — Szan, || — d(A, B) as k — oo. Thus ||z — Sz|| = d(A, B).

Next, we consider reflexive and strictly convex Banach spaces and give best proximity point for gen-
eralized semi-cyclic ¢-contraction pair.

Theorem 2.5. Let A and B be nonempty closed and convex subsets of a reflexive and strictly convex
Banach space X and S, T : AU B — AU B be such that the pair (S,T) is generalized semi-cyclic
p-contraction. If (A — A)N (B — B) = {0}, then there exists a unique © € A and a unique y € B such
that

|z — Sz|| =d(A, B) = [Ty —yl|.

Proof. If d(A, B) = 0, the result follows from Theorem 3.1(i) of [6]. So we assume that d(A, B) > 0.
Since A and B are closed and convex, they are weakly closed. By Theorem 2.3, there exists (z,y) €
A X B with ||z — y|| = d(A, B). Suppose that there exists (a,b) € A x B with ||a —b|| = d(A4, B). Since
(A—A)Nn (B - B) ={0}, z —y # a — b. By the strict convexity of X, and convexity of A and B, we
have

[z +a)/2=(y+b)/2l = [z —y)/2+ (a = 1)/2|| < d(A, B),
which is a contraction. This shows that (z,y) is unique.

Theorem 2.6. Let A and B be nonempty closed and convex subsets of a reflexive and strictly convex
Banach space X and S, T : AUB — AU B be such that the pair (S,T) is generalized semi-cyclic
p-contraction. Then there exist unique x € A and y € B such that

|z = Sz|| = d(A, B) = [Ty —yl,

provided that one of the following conditions is satisfied
(i) S is weakly continuous on A and T is weakly continuous on B.
(ii) T, S satisfy the proximal property.

Proof. If d(A, B) = 0, the result follows from Theorem 3.1(i) of [6]. So we assume that d(A, B) > 0.
Since A and B are closed and convex, they are weakly closed. By Theorem 2.4, there exists x € A and
y € B such that

|z = Sz|| = d(A, B) = | Ty — y].
For the uniqueness of x, suppose that there exists a € A such that ||a — Sal| = d(A, B). By the strict
convexity of X, and convexity of A and B, we have

(& +a)/2 = (S + 8a)/2] = (& — S2)/2+ (a — Sa)/2]| < d(A, B),
which is a contraction.
Now, for uniqueness of y, suppose that there exists b € B such that | Tb — b|| = d(A, B). Since

Iy +)/2 = (Ty +T0)/2|| = |[(y = Ty)/2+ (b = Tb)/2|| < d(4, B),

which is a contraction.
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