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EXISTENCE OF HETEROCLINIC SOLUTIONS TO FOURTH

ORDER Φ−LAPLACIAN DYNAMICAL EQUATIONS

K. R. PRASAD1, P. MURALI1 AND N.V.V.S. SURYANARAYANA2,∗

Abstract. In this paper, we derive sufficient conditions for the existence of

heteroclinic solutions to fourth order Φ−Laplacian dynamical equation,[
Φ
(
y∆2

(t)
)]∆2

= f(y(t)), t ∈T,

on infinite time scales by using variational approach as minimizers of an ac-
tion functional on special functional space. And also, as an application we

demonstrate our result with an example.

1. Introduction

The study of heteroclinic solutions for p and Φ-Laplacian operators on infinite
time scales have a certain impulse in recent years, which are motivated by appli-
cations in various Biological, Physical, Mechanical and Chemical models, such as
phase transition, physical processes in which the variable transits from an unstable
equilibrium to a stable one, or front propagation in reaction diffusion equation.
These solutions provide an important information on the dynamics of the system.
Due to the importance in both theory and applications, the study of heteroclin-
ic solutions gained momentum on real intervals, we list a few; Avrameseu and
Vladimirecu [1], Cabada and Cid [3, 4], Cabada and Tersion [5], and Marcelli and
Papalini [7, 8].

The history of p and Φ-Laplacian operators for boundary value problems also
enjoys a good history, first for differential equations, then finite difference equation-
s, and recently, unifying results for dynamic equations. These operators have been
widely studied by many researchers. In this theory, the most investigated operator
is the classical p-Laplacian, generally Φp(y) := y|y|p−2 with p > 1, which, in recent
years, has been generalized to other types of differential operators that preserve the
monotonicity of the p-Laplacian, but are not homogeneous. These more general op-
erators, which are usually referred to as Φ-Laplacian, are involved in the modeling
of non-Newtonian fluid theory, diffusion of flows in porous media, nonlinear elas-
ticity and theory of capillary surfaces. The related nonlinear differential equation
has the form

[Φ(y′)]′ = f(t, y, y′).

In this paper, we are dealing with some special class of time scales namely infinite
and semi infinite time scales because continuous time orbits and discrete time orbits
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are topologically different. A time scale is an arbitrary nonempty closed subset of
the real numbers and we denote the time scale by the symbol T. A time scale T is
said to be infinite time scale, we mean, if it has no infimum and no supremum. (i.e.,
inf T = −∞ and supT = +∞.) A time scale T is said to be semi infinite time scale,
we mean, if it has either infimum but no supremum or supremum but no infimum.
(i.e., inf T = a and supT = +∞ or inf T = −∞ and supT = b)and we denote as

T+
a = [a,+∞) and T−b = (−∞, b] respectively. For example if we consider time

scale T = {−(a)n}
n∈N ∪ {0} ∪ {b

n}
n∈N, (a, b > 1) then it is an infinite time scale

and if we remove either negative terms or positive terms then it is an example of
semi infinite time scale. By an interval [a, b]T means the intersection of the real

interval with a given time scale.

i.e [a, b]T = [a, b] ∩T.

Most of the definitions and results on time scales are from the text book by Bohner
and Peterson [2] and Lakshmikantham, Sivasundaram and Kaymakcalan [6]. Hete-
roclinic solutions to time scale dynamical systems are not available in the literature
which will unify both the continuous and discrete dynamical systems.

Now, we consider fourth order Φ−Laplacian dynamical equation on infinite time
scales,

(1)
[
Φ
(
y∆2

(t)
)]∆2

= f(y(t)), t ∈ T,

where f : T → R is continuous. By using variational approach, we establish suffi-
cient conditions for the existence of heteroclinic solution to the dynamical equation
(1) under certain assumptions.

A heteroclinic solution of equation (1) connecting −1 to +1 in the phase-space,

is a function y∆2 ∈ C2
rd(T) such that y∆2 ∈ (−a, a), Φ ◦ y∆2 ∈ C2

rd(T) and y
satisfies the dynamical equation (1) and with the property

lim
t→±∞

(y(t), y∆(t), y∆2

(t), y∆3

(t))) = (±1, 0, 0, 0).

Through out the paper we assume the following:

(A1) f(y) = 0 if and only if y = ±1.
(A2) there exists a primitive F of f such that F (−1) = F (+1) and F (y) ≥ 0 for

all y ∈ R and

lim
|y|→+∞

inf f(y) > 0.

(A3) Φ : (−a, a) → R is a positive increasing homeomorphism with Φ(0) = 0
and 0 < a < +∞.

(A4) Φ and F satisfy symmetric conditions Φ(y) = Φ(−y) and F (y) = F (−y).

(A5) the energy is conserved. (i.e., Φ̃(y
2
) + F (y) = K, K ∈ R+

)

(A6) if {yn(t)} is a sequence of solutions of (1) for which for each n ∈ T+
0 an

arbitrary compact interval [0, σ2(n)]T and there exists an M > 0 such

that yn(t) ≤ M for all t ∈ [0, σ2(n)]T and for all t ∈ N, then there

exists a subsequence {ynj (t)}, such that {y∆i

nj } converges uniformly on

[0, σ2(n)]T, i = 0, 1.
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The rest of the paper is organized as follows, in Section 2, by using variational
approach, we establish sufficient conditions for the existence of heteroclinic solu-
tion to the differential equation (1). As an application, we give an example to
demonstrate our result.

2. Existence of Heteroclinic Solutions

In this section, by using variational approach, we establish sufficient conditions
for the existence of heteroclinic solution to the differential equation (1).

The equation (1) is the Euler-Lagrange equation corresponding to the action
functional

(2) F(y) =

∫
T

(∫
Φ(y

2
)∆y

2
+ F (y)

)
∆t,

where y
2

is the second delta derivative of y with respect to t and F (y) is the
primitive of f(y). The action functional is defined in functional space

(3) E =
{
y : T→ R| y(0) = 0, y + 1 ∈ H2(T−), y − 1 ∈ H2(T+

)
}
.

Theorem 2.1. The functional F : E → R defined by (2) on (3) is of class C1 and
any critical point in C∞ is a heteroclinic solution of (1) connecting −1 to +1.

Proof. For any function η ∈ C2
c (T), for all τ ∈ R, y+τη ∈ F and F(y+τη) is delta

differentiable as a real function of the parameter τ. Since y minimizes F in the space

E , the function F(y + τη) archives a minimum at τ = 0. Let Φ̃(y2) =
∫

Φ(y2)∆y2 ,

F∆τ (y + τη)|τ=0 =

[∫
T

(
Φ̃(y2) + F (y)

)
∆t

]∆τ

at τ = 0

F∆τ η =

∫
T

(
Φ̃∆τ (y2)η∆2

τ + f(y)η
)

∆t.

Now let y be a critical point of F . We have F∆τ (y)η = 0 for every η ∈ H2(T)
satisfies η(0) = 0. Starting with η ∈ C2

c (T) and Du Bois-Reymond Lemma, we have

Φ ◦ y∆2 ∈ C2(T) and y satisfies (1). Hence y − 1 ∈ H4(T+
). Similarly we have

y + 1 ∈ H4(T−). From the L2−Integrability of the delta derivative implies that

lim
t→±∞

y(t) = ±1 and lim
t→±∞

y∆n

(t) = 0 for n = 1, 2, 3,

so that y is a heteroclinic solution of (1) connecting −1 to +1 and a straightforward
argument given as y is of class C∞. �

Now, we prove main theorem which confirms the efficiency of a minimization
approach.

Theorem 2.2. The functional F : E → R defined by (2) on (3) has a minimizer
which is a heteroclinic solution of (1) connecting −1 to +1. Furthermore, any
minimizer is odd and positive in (0,+∞).

Proof. For convenience, we introduce the following spaces

E+ =
{
y : T+ → R : y(0) = 0, y − 1 ∈ H2(T+

)
}

E− =
{
y : T− → R : y(0) = 0, y + 1 ∈ H2(T−)

}
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and consider the action functionals F± : E± → R by

F±(y) =

∫
T± L(y, y∆, y∆2

)∆t,

where L(y, y∆, y∆2

) is the Lagrangian given by

L(y, y∆, y∆2

) = Φ̃(y2) + F (y).

Let us denote the values

c = inf
E
F and c± = inf

E±
F±.

Since F is symmetric, we have, for all y+ ∈ E+,

F+(y+) = F−(y−),

where y− ∈ E− is defined by y−(t) = −y+(−t). Therefore, we have

c+ = c− =
c

2
.

First we prove that the variational problem inf{F+(y) : y ∈ E+} has a positive
solution.

Let (vn)n ⊂ E+ be a minimizing sequence for F+, i.e., vn ∈ E+ for all n ∈ N
and F+(vn)→ c+. For each n ≥ 0, we define

tn = sup{t ≥ 0 : vn(t) = 0}.
Since limt→+∞ vn(t) = 1, tn < +∞ for all n ≥ 0. We now consider the positive
sequence (v+

n )n ⊂ E+, where v+
n (t) = vn(t+ tn) for t ≥ 0. We observe that∫ tn

0

L(vn, v
∆
n , v

∆2

n )dt ≥ 0

so that F+(v+
n ) ≤ F+(vn) which implies that (v+

n )n is also a minimizing sequence
for F+.

As the sequence F+(v+
n ) is uniformly bounded, we deduce a uniform estimate

for ‖ v+
n − 1 ‖

H2(T+
)
. From the positivity of v+

n that∫
T+

F (v+
n )∆t ≤ F+(v+

n )

and there exists
v+ ∈ H2(T+

) + 1

such that
v+
n − 1 H2(T+

)
−−−−−→

v+ − 1

and
v+
n C1

loc(T
+

)
−−−−−−→

v+.

As the first two terms in F+ are the sequence of seminorms and Fatou’s Lemma is
applicable to the last one, we have

F+(v+) ≤ lim
n→+∞

inf F(v+
n ) = c+.

The converges being uniform an compact interval, we conclude that v+(0) = 0 so
that v+ ∈ E+ and F+(v+) = c+. Observe that v+ is positive on (0,+∞) otherwise
we could proceed as above to construct a positive function having smaller action.
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Secondly, we show that, if v ∈ E+ is such that (F+)∆τ (v) = 0, then v∆2

(0) =
0, v∗ ∈ E defined by

(4) v∗(t) =

{
v(t), if t ≥ 0
−v(−t) if t < 0

is a minimizer of F in E and v∗ is a heteroclinic solution of (1). We compute

(5) (F+)∆τ (v)(η) =

∫
T+

(
Φ̃∆τ (v

2
)η∆2

τ + f(v)η
)

∆t

for all η ∈ H2(T+
) ∩H1

0 (T+
).

From Theorem 2.1, we deduce that v is a solution of equation (1), Φ ◦ v∆2 ∈
C2(T+

) and

(6) lim
t→+∞

v(t) = +1 and lim
t→+∞

v∆n

(t) = 0 for n = 1, 2, 3,

Integrating (5), we obtain for all n ∈ H2(T+
) ∩H1

0 (T+
), as∫

T+

(∫
[Φ(y∆2

)]∆
2
τ + f(y)

)
η(t)∆t = 0.

Take (6) into account, we now deduce that

v∆2

(0)η∆(0) = 0

for all η ∈ H2(R+
) ∩ H1

0 (R+
) which implies that v∆2

(0) = 0. The function v∗ :
T→ R defined by (4) is of class C4, and solution of (1) and also as

F(v∗) = 2F+(v) = 2c+ = c.

We conclude that v∗ is a minimization of F in E .
Finally, we prove that if y ∈ E minimizes F , then y is odd.
Let us define y± = y|R± . As F(y) = c, we obviously have

F+(y+) = F−(y−) =
c

2

otherwise the odd extension of y+ or y− would have a lower action than c. Define
v+ ∈ E+ by v+(t) = −y−(−t). Then v+ satisfies F+(v+) = c+ and therefore
minimizer F+ in E+. It follows that both y+ and v+ are minimizers of F+ in

E+. From claim 2, we have that y∆2

(0) = (v+)∆2

(0) = 0 and as (v+)∆(0) =

(−y−)∆(0) = (y+)∆(0) and (v+)∆3

(0) = (−y−)∆3

(0) = (y+)∆3

(0), the functions
v+ and y+ are the solutions of the Cauchy problem,[

Φ
(
y∆2

(t)
)]∆2

= f(y(t)), t ∈ T,

y(0) = 0, y∆(0) = (y+)∆(0); y∆(0) = 0, y∆3

(0) = (y+)∆3

(0).

By uniqueness, this implies y+(t) = v+(t) for t ∈ R+
, that is y+(t) = −y−(−t) for

all t ∈ T+
. �
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Example

In this section, as an application, we give an example to demonstrate our result.
We consider the following fourth order Φ-Laplacian differential equation on infi-

nite time scale

T =
{
{−2n}

n∈N∪{0} ∪ [−1, 1] ∪ {2n}
n∈N∪{0}

}
(7)

[
Φ(y∆2

)
]∆2

= f(y), t ∈ T,

where Φ(y
2
) =

y2
2√

1+y2
2

for y
2
∈ T and f(y) = y2 − 1. Then Φ and f satisfy the

conditions (A1)-(A6) . Therefore, it follows from Theorem 2.2 that the fourth order
Φ-Laplacian differential (7) has a heteroclinic solution.
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