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ALPHA CONVEX FUNCTIONS ASSOCIATED WITH CONIC DOMAINS

KHALIDA INAYAT NOOR1, NASIR KHAN1 AND KRZYSZTOF PIEJKO2,∗

Abstract. In this paper we define a new class k−UMα [A,B] of Janowski type k−uniformly alpha

convex functions. We use the method of differential subordinations theory to obtain some new results

like sufficient condition, inclusion relations, coefficient estimate and covering properties. The results
presented here include a number of well-known results as their special cases.

1. Introduction

Let A denote the class of functions f (z) of the form

(1.1) f (z) = z +

∞∑
n=2

anz
n,

which are analytic in the unit disk E = {z ∈ C : |z| < 1}. Furthermore S represents class of all
functions in A which are univalent in E.

For two functions f(z) and g(z) analytic in A, we say that f(z) is subordinate to g(z) in E (and
write f ≺ g or f(z) ≺ g(z)), if there exists an analytic function w(z) such that |w(z)| ≤ |z| and
f(z) = g (w(z)) for z ∈ E. If g(z) is univalent in E then f(z) ≺ g(z) if and only if f (0) = g (0)
and f (E) ⊂ g (E). The idea of subordination goes back to Lindelöf [9]. Subordination was more
formally introduced and studied by Littelwood [10] and later by Rogosinski [20] and [19]. The concept
of subordination was considered by Miller [12] and further investigated by Noor et al. [16] and many
others see [9],[21].

Definition 1. A function p (z) is said to be in the class P [A,B] , if it is analytic in E with p (0) = 1
and

p (z) ≺ 1 +Az

1 +Bz
, − 1 ≤ B < A ≤ 1.

This class was presented by Janowski [3] and explored by a few creators. Kanas and Wísniowska
[4],[5] presented and examined the class k−ST of k−starlike functions and the relating class k−UCV
of k−uniformly convex functions. There were characterized subject to the conic region Ωk, k ≥ 0, as

Ωk =

{
u+ iv : u > k

√
(u− 1)

2
+ v2

}
.

This domain represents the right half plane, a parabola, a hyperbola and an ellipse for k = 0, k =
1, 0 < k < 1 and k > 1 respectively. The extremal functions for these conic regions are

(1.2) pk (z) =



1+z
1−z , k = 0,

1 + 2
π2

(
log 1+

√
z

1−
√
z

)2
, k = 1,

1 + 2
1−k2 sinh2

{(
2
π arccos k

)
arctanh

√
z
}
, 0 < k < 1,

1 + 2
k2−1 sin

(
π

2R(t)

∫ u(z)√
t

0
dx√

1−x2
√

1−(tx)2

)
+ 1

k2−1 , k > 1,

where

u(z) =
z −
√
t

1−
√
tx
, (z ∈ E) ,
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and t ∈ (0, 1) and z is chosen such that k = cosh
(
πR′(t)
4R(t)

)
. Here R(t) is Legendre’s complete elliptic

integral of first kind and R′(t) is the complementary integral of R (t). If pk (z) = 1 + δkz + · · · , then
it is shown in [5] that from (1.2), one can have

(1.3) δk =


8(arccos k)2

π2(1−k2) , 0 ≤ k < 1,
8
π2 , k = 1,

π2

4(k2−1)
√
t(1+t)R2(t)

, k > 1.

Using the concepts of Janowski functions and the conic regions, Noor et al. [16] gave the following

Definition 2. [16]A function p (z) is said to be in the class k − P [A,B] , if and only if

p (z) ≺ (A+ 1) pk (z)− (A− 1)

(B + 1) pk (z)− (B − 1)
, k ≥ 0,

where pk (z) is defined in (1.2) and −1 ≤ B < A ≤ 1.

Geometrically, the function p (z) ∈ k − P [A,B], takes all values from the domain Ωk[A,B], −1 ≤
B < A ≤ 1, k ≥ 0 which is defined as

Ωk[A,B] =

{
w : Re

(
(B − 1)w (z)− (A− 1)

(B + 1)w (z)− (A+ 1)

)
> k

∣∣∣∣ (B − 1)w (z)− (A− 1)

(B + 1)w (z)− (A+ 1)
− 1

∣∣∣∣} .
The domain Ωk[A,B] retains the conic domain Ωk inside the circular region defined by Ω[A,B]. The

impact of Ω[A,B], on the conic domain Ωk, changes the original shape of the conic regions. The ends
of hyperbola and parabola get closer to one another but never meet anywhere and the ellipse gets the
oval shape. When A→ 1, B → −1 the radius of the circular disk defined by Ω[A,B] tends to infinity,
consequently the arm of the hyperbola and parabola expands to the oval terns into ellipse. We see
that Ωk[1,−1] = Ωk, the conic domain defined by Kanas and Wísniowska [4].

Now using Janowski functions and the conic regions, we give the following

Definition 3. A function f (z) ∈ A is said to be in the class k−UMα [A,B] , k ≥ 0, 0 ≤ α ≤ 1,−1 ≤
B < A ≤ 1, if and only if

(1.4) J (α, f ; z) ∈ k − P [A,B] ,

where

J (α, f ; z) = (1− α)
zf ′(z)

f (z)
+ α

(zf ′(z))
′

f ′(z)
.

Special Cases:
(i) k − UM0 [A,B] = k − ST [A,B], k − UM1 [A,B] = k − UCV [A,B] , the classes introduced by

Noor et al. in [16].
(ii) k − UM0 [1,−1] = k − ST and k − UM1 [1,−1] = k − UCV, we get the classes investigated by

Kanas and Wisniowska [4], [5].
(iii) k − UMα [1,−1] = k − UMα, we have the class introduced and studied by Kanas [7].
(iv) 0− UM0 [A,B] = S [A,B] and 0− UM1 [A,B] = C [A,B] , the well-known classes of Janowski

starlike and Janowski convex functions, respectively, introduced by Janowski [3].

Definition 4. Let SS∗ (β) denote the class of strongly starlike functions of order β,

SS∗ (β) =

{
f ∈ A :

∣∣∣∣arg
zf ′(z)

f (z)

∣∣∣∣ < βπ

2
z ∈ E

}
, β ∈ (0, 1) ,

which was introduced in [24] and [1].

In this paper, several interesting subordination results are derived which yield sufficient condition,
inclusion relations, coefficient estimate, covering result and order of strongly starlikeness in the class
of uniformly alpha convex function.

To avoid repetitions, it is admitted once that 0 ≤ α ≤ 1, k ≥ 0, and −1 ≤ B < A ≤ 1.
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2. Preliminary results

To prove our main results we need the following Lemmas.

Lemma 1. [19]Let f(z) be subordinate to g(z), with

f(z) = 1 +

∞∑
n=1

anz
n, g(z) = 1 +

∞∑
n=1

bnz
n.

If g(z) is univalent in E and g(E) is convex, then |an| ≤ |b1|.

Lemma 2. [11]Let F be analytic and convex in E. If f ,g ∈ A and f, g ≺ F, then for t ∈ [0, 1]

(1− t)f + tg ≺ F.

Lemma 3. [14] Let k ≥ 0 and let δ, σ be any complex numbers with δ 6= 0 and <
((

2k+1−A
2k+1−B

)
δ + σ

)
>

0. If p(z) is analytic in E and p(0) = 1 and satisfies

(2.1a) p(z) +
zp
′
(z)

δp(z) + σ
≺ pk(A,B; z),

where

pk(A,B; z) =
(A+ 1) pk (z)− (A− 1)

(B + 1) pk (z)− (B − 1)
,

and q(z) is an analytic solution of

q(z) +
zq(z)

δq(z) + σ
= pk(A,B; z)

then function q(z) is univalent p(z) ≺ q(z) ≺ pk(A,B; z) and q(z) is the best dominant of (2.1a) and
is given as

q(z) =

[
δ

∫ 1

0

(
tδ+σ−1 exp

∫ tz

t

pk(A,B, z)− 1

u
du

)δ
dt

]−1
− σ

δ
.

Lemma 4. [18] Let a function p (z) be analytic in E and has the form

p(z) = 1 +

∞∑
n=m

cnz
n , cm 6= 0,

with p (z) 6= 0 for |z| < 1. If there exists a point z◦, |z◦| < 1, such that

|arg p(z)| < π

2
θ for |z| < |z◦|

and

|arg p(z◦)| =
π

2
θ,

for some θ > 0, then we have

z◦p
′(z◦)

p(z◦)
= ilθ,

where

l ≥ m

2
(x+

1

x
) ≥ m when arg {p(z◦)} =

π

2
θ

and

l ≤ −m
2

(x+
1

x
) ≤ −m when arg {p(z◦)} = −π

2
θ,

where

(p (z◦))
1
θ = ±ix and x > 0.
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3. Main results

Theorem 1. A function f (z) ∈ k − UMα[A,B], if it satisfies the condition

∞∑
n=1

zn (k, α,A,B) < |B −A| ,

where
(3.1)

zn (k, α,A,B)

=
∑∞
n=2[|{2 (k + 1) (1− n) (1− α (1− n)) + ((A+ 1) (n+ 1)

− (B + 1)
(
2n+ α

(
1− n2

))
)}| |an|+

∑n−1
j=2 |{2 (k + 1) ((1− j)− α (n+ 1− 2j))

+ ((A+ 1)− (B + 1) ((1− 2α) j + α (1 + n)))} (n+ 1− j) | |ajan+1−j |].

Proof. Assume that (3.1) holds, then it suffices to show that

(3.2) k

∣∣∣∣ (B − 1)J (α, f ; z)− (A− 1)

(B + 1)J (α, f ; z)− (A+ 1)
− 1

∣∣∣∣−Re

[
(B − 1)J (α, f ; z)− (A− 1)

(B + 1)J (α, f ; z)− (A+ 1)
− 1

]
< 1.

We have

k

∣∣∣∣ (B − 1)J (α, f ; z)− (A− 1)

(B + 1)J (α, f ; z)− (A+ 1)
− 1

∣∣∣∣−Re

[
(B − 1)J (α, f ; z)− (A− 1)

(B + 1)J (α, f ; z)− (A+ 1)
− 1

]
≤ (k + 1)

∣∣∣∣∣ (B − 1)
(
(1− α) zf ′(z)f ′(z) + αf (z) (zf ′(z))

′)− (A− 1)f (z) f ′(z)

(B + 1)
(
(1− α) zf ′(z)f ′ (z) + αf (z) (zf ′(z))

′)− (A+ 1)f (z) f ′(z)
− 1

∣∣∣∣∣
= 2 (k + 1)

∣∣∣∣∣ (1− α) f (z) f ′(z)− (1− α) zf ′(z)f ′(z)− αzf (z) f ′′(z)

(B + 1)
(
(1− α) zf ′(z)f ′(z) + αf (z) (zf ′(z))

′)− (A+ 1)f (z) f ′(z)

∣∣∣∣∣ .
(3.3)

Now we have

zf ′(z)f ′(z) = z

( ∞∑
n=0

nanz
n−1

)( ∞∑
n=0

nanz
n−1

)
(3.4)

=
1

z

( ∞∑
n=0

nanz
n

)( ∞∑
n=0

nanz
n

)

=
1

z

∞∑
n=0

 n∑
j=0

j (n− j) ajan−j

 zn

=

∞∑
n=0

 n∑
j=0

j (n− j) ajan−j

 zn−1

= z +

∞∑
n=3

 n∑
j=0

j (n− j) ajan−j

 zn−1

= z +

∞∑
n=2

n+1∑
j=0

j (n+ 1− j) ajan+1−j

 zn

= z +

∞∑
n=2

2nan +

n−1∑
j=2

j (n+ 1− j) ajan+1−j

 zn.(3.5)
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Proceeding on the same way we have

(3.6) f (z) f ′(z) = z +

∞∑
n=2

(n+ 1) an +

n−1∑
j=2

(n+ 1− j) ajan+1−j

 zn

and

(3.7) zf (z) f ′′(z) =

∞∑
n=2

n (n− 1) an +

n−1∑
j=2

(n+ 1− j) (n− j) ajan+1−j

 zn.

Using the equalities (3.5),(3.6) and (3.7) in (3.3), the equation (3.3) in simplified form can be written
as

k

∣∣∣∣ (B − 1)J (α, f ; z)− (A− 1)

(B + 1)J (α, f ; z)− (A+ 1)
− 1

∣∣∣∣−Re

[
(B − 1)J (α, f ; z)− (A− 1)

(B + 1)J (α, f ; z)− (A+ 1)
− 1

]
≤ 2 (k + 1)

∣∣∣∣∣ (1− α) f (z) f ′(z)− (1− α) zf ′(z)f ′ (z)− αzf (z) f ′′(z)

(B + 1)
(
(1− α) zf ′(z)f ′(z) + αf (z) (zf ′(z))

′)− (A+ 1)f (z) f ′(z)

∣∣∣∣∣

≤

2 (k + 1)

 ∑∞
n=2[|(1− n) (1− α (1− n))| |an|

+
∑n−1
j=2 |[(1− j)− α (n+ 1− 2j)] (n+ 1− j)| |ajan+1−j |]


 |B −A| −

∑∞
n=2[

∣∣((A+ 1) (n+ 1)− (B + 1)
(
2n+ α

(
1− n2

)))∣∣ |an|
−
∑n−1
j=2 |((A+ 1)− (B + 1) ((1− 2α) j + α (1 + n))) (n+ 1− j)| |ajan+1−j |]

 .

The last expression is bounded by 1, if∑∞
n=2[|{2 (k + 1) (1− n) (1− α (1− n)) + ((A+ 1) (n+ 1)

− (B + 1)
(
2n+ α

(
1− n2

))
)}| |an|+

∑n−1
j=2 |{2 (k + 1) ((1− j)− α (n+ 1− 2j))

+ ((A+ 1)− (B + 1) ((1− 2α) j + α (1 + n)))} (n+ 1− j) | |ajan+1−j |]

< |B −A| .
This completes the proof. �

Putting α = 0, in Theorem 1, we have the result below which is comparable to the one obtained by
Noor and Malik [15].

Corollary 1. A function f ∈ k − ST [A,B] , if it satisfies the condition
∞∑
n=2

{2 (k + 1) (n− 1) + |n (B + 1) + (A+ 1)|} |an| < |B −A| .

Putting α = 0, A = 1 and B = −1 in Theorem 1, we can obtain the following result which improves
the result of Kanas and Wísniowska [4].

Corollary 2. A function f ∈ k − ST, if it satisfies the condition
∞∑
n=2

{n+ k (n− 1)} |an| < 1.

Putting α = 0, A = 1− 2β, B = −1 with 0 ≤ β < 1 in Theorem 1, we have the result below which
is comparable to the one obtained by Shams et al. [22].

Corollary 3. A function f (z) ∈ SD (k, β) , if it satisfies the condition
∞∑
n=2

{n (k + 1)− (k + β)} |an| < 1− β.
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Putting α = 0, A = 1− 2β, B = −1 with 0 ≤ β < 1 and k = 0 in Theorem 1, we get the following
result proved by Silverman [23].

Corollary 4. A function f (z) ∈ S∗ (β) , if it satisfies the condition

∞∑
n=2

{n− β} |an| < 1− β.

Putting α = 1, in Theorem 1, we can obtain Corollary 5, below which is comparable to the result
obtained by Noor and Malik [15].

Corollary 5. A function f ∈ k − UCV [A,B] , if it satisfies the condition

∞∑
n=2

n {2 (k + 1) (n− 1) + |n (B + 1) + (A+ 1)|} |an| < |B −A| .

The following is an inclusion result stating the fact that k − UMα[A,B] ⊂ k − ST [A,B].

Theorem 2. Let f(z) ∈ k − UMα[A,B]. Then f(z) ∈ k − ST [A,B].

Proof. Let f(z) ∈ k − UMα[A,B] and let

(3.8)
zf
′
(z)

f(z)
= p(z),

where p(z) is analytic in E with p(0) = 1.
Differentiating logarithmically we have

(3.9)
(zf ′(z))

′

f ′(z)
= p(z) +

zp
′
(z)

p(z)
.

Using (3.8) and (3.9), we have

J (α, f ; z) = p(z) +
αzp

′
(z)

p(z)
.

Since f(z) ∈ k − UMα[A,B], so we obtain

J (α, f ; z) = p(z) +
zp
′
(z)

1
αp(z)

∈ k − UMα[A,B].

Since <
((

2k+1−A
2k+1−B

)
1
α

)
> 0, z ∈ E, therefore applying Lemma 3, with δ = 1

α and σ = 0, we have

zf
′
(z)

f(z)
= p(z) ≺ pk(A,B, z),

which implies that f(z) ∈ k − ST [A,B]. �

By giving special values to the parameters in Theorem 2, we get the following well-known result
proved by Mocanu in [13].

Corollary 6. Let f(z) ∈ 0− UMα[1,−1]. Then f(z) ∈ 0− ST [1,−1]. That is

Mα ⊂ S∗, α ≥ 0.
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Theorem 3. If 0 ≤ α1 < α2, then

k − UMα2
[A,B] ⊂ k − UMα1

[A,B].

Proof. Let f(z) ∈ k − UMα2
[A,B]. Then consider

J (α1, f ; z) =

[
(1− α1)

zf
′
(z)

f(z)
+ α1

(
1 +

zf
′′
(z)

f ′(z)

)]

=

(
1− α1

α2

)
zf
′
(z)

f(z)
+
α1

α2

[
(1− α2)

zf
′
(z)

pf(z)
+ α2

(
1 +

zf
′′
(z)

f ′(z)

)]

=

(
1− α1

α2

)
J (0, f ; z) +

α1

α2
(J (α2, f ; z)) .

Now as f(z) ∈ k − UMα2 [A,B] so

J (α2, f ; z) ∈ k − p[A,B],

also from Theorem 2,

J (0, f ; z) ∈ k − p[A,B].

Using theses along with Lemma 2, we have

J (α1, f ; z) ∈ k − p[A,B],

which implies that

f(z) ∈ k − UMα1
[A,B].

�

Theorem 4. A function f (z) is in k − UMα[A,B], α > 0, if and only if there exists a function g (z)
belonging to the class k − ST [A,B], such that

(3.10) f (z) =

 1

α

z∫
0

{g (z)}
1
α t−1dt

α .
Proof. Let us set

g (z) = f (z)

{
zf ′(z)

f (z)

}α
,

so that (3.10) is satisfied. Logarithmically differentiation gives us

zg′(z)

g (z)
= (1− α)

zf ′(z)

f (z)
+ α

(zf ′(z))
′

f ′(z)
.

Hence f ∈ k − UMα[A,B] if and only if g ∈ k − ST [A,B]. �

Theorem 5. Let the function f (z) ∈ k − UMα[A,B]. Then

|a2| ≤
(A−B) δk
2 (1 + α)

,

where δk is given by (1.3).

Proof. Let f (z) ∈ k − UMα [A,B] . Then

(1− α)
zf ′(z)

f (z)
+ α

(zf ′(z))
′

f ′(z)
= p (z) z ∈ E,

where

p (z) ≺ (A+ 1) pk (z)− (A− 1)

(B + 1) pk (z)− (B − 1)

= 1 +
1

2
(A−B) δkz + · · · ,

where pk (z) = 1 + δkz + · · · .
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Now using the definition of subordination we can see that there exists a function ω (z) analytic in
E with ω (0) = 0 and |ω (z)| < 1 such that

(1− α)
zf ′(z)

f (z)
+ α

(zf ′(z))
′

f ′(z)
= 1 +

1

2
(A−B) δkω (z) + · · ·

1 + (1 + α) a2z +
(
2 (1 + 2α) a3 − (1 + 3α) a22

)
z2 · · ·

= 1 +
1

2
(A−B) δk

(
c1z + c2z

2 + · · ·
)

+ · · · .

Comparing the coefficient of z both sides and using well known result due to Janowski and Lemma 1,
we have

|(1 + α) a2| ≤
1

2
(A−B) δk.

This gives

|a2| ≤
(A−B) δk
2 (1 + α)

and the proof is complete. �

Taking α = 0, A = 1, B = −1 in Theorem 5, we can obtain the following result proved in [5].

Corollary 7. Let f ∈ k − ST . Then

|a2| ≤ δk,
where δk is given by (1.3).

Putting k = 0, δk = 2, α = 0, A = 1, B = −1 in Theorem 5, we can obtain Corollary 8 below which
is the result obtained in [2].

Corollary 8. Let f ∈ S∗. Then

|a2| ≤ 2.

Putting α = 1, A = 1, B = −1 in Theorem 5, we can obtain Corollary 9 below which is comparable
to the result obtained in [4].

Corollary 9. Let f ∈ k − UCV . Then

|a2| ≤
δk
2
,

where δk is given by (1.3).

Putting k = 0, δk = 2, α = 0, A = 1, B = −1 in Theorem 5, we can obtain Corollary 10 below which
is the result obtained in [2].

Corollary 10. Let f ∈ C. Then

|a2| ≤ 1.

Theorem 6. The range of every univalent functions f ∈ k − UMα[A,B], contains the unit disk

Rα,δk =
2 (1 + α)

4 (1 + α) + (A−B) δk
,

where δk is given by (1.3).

Proof. Let ω◦ be any complex number such that f (z) 6= ω◦. Then

ω◦f (z)

ω◦ − f (z)
= z +

(
a2 +

1

ω◦

)
z2 + · · · ,

is univalent in E so that ∣∣∣∣a2 +
1

ω◦

∣∣∣∣ ≤ 2.

Therefore ∣∣∣∣ 1

ω◦

∣∣∣∣ ≤ 4 (1 + α) + (A−B) δk
2 (1 + α)

.
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Hence using Theorem 5, we have

|ω◦| ≤
2 (1 + α)

4 (1 + α) + (A−B) δk
= Rα,δk .

�

Putting α = 0, A = 1, B = −1 in Theorem 6, we can obtain Corollary 11.

Corollary 11. The range of every univalent functions f ∈ k − ST contains the unit disk

Rδk =
1

2 + δk
,

where δk is given by (1.3).

Putting α = 1, A = 1, B = −1 in Theorem 6, we can obtain Corollary 12.

Corollary 12. The range of every univalent functions f ∈ k − UCV contains the unit disk

Rδk =
2

4 + δk
,

where δk is given by (1.3).

Letting k = 1, A = 1 and B = −1, we have the following Theorem.

Theorem 7. Let f ∈ UMα and let it be of the form

f (z) = z +

∞∑
n=m+1

anz
n am+1 6= 0.

Then f (z) is strongly starlike of order θ◦, where

(3.11) θ◦ = min
θ∈(0,1)

{
1− 2xθ cos

(
θπ

2

)
+

(
αm

(
x2 + 1

)
θ

2x
+ xθ sin

(
θπ

2

))
≥ 0 for all x > 0

}
.

Proof. From the assumption we have

(3.12) <
{

(1− α)
zf ′(z)

f (z)
+ α

(zf ′(z))
′

f ′(z)

}
>

∣∣∣∣(1− α)
zf ′(z)

f (z)
+ α

(zf ′(z))
′

f ′(z)
− 1

∣∣∣∣ .
Let p (z) = zf ′(z)

f(z) , then by p (z) has of the form

p(z) = 1 +

∞∑
n=m

cnz
n,

and (3.12) , becomes

(3.13) <
{
p(z) + α

z◦p
′(z◦)

p(z)

}
>

∣∣∣∣p(z) + α
z◦p
′(z◦)

p(z)
− 1

∣∣∣∣ .
If there exists a point z◦, |z◦| < 1, such that

|arg {p(z)}| < π

2
θ for |z| < |z◦| ,

and
|arg p(z◦)| =

π

2
θ.

Then, applying Lemma 4, we have
z◦p
′(z◦)

p(z◦)
= ilθ,

where (p(z◦))
1
θ = ±ix (x > 0),

l ≥ m

2
(x+

1

x
) when arg {p(z◦)} =

π

2
θ,

and

l ≤ −m
2

(x+
1

x
) when arg {p(z◦)} = −π

2
θ.
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Therefore, for the case arg {p(z◦)} = π
2 θ, we have

(3.14) <
(
p(z◦) + α

z◦p
′(z◦)

p(z◦)

)
= <

{
(ix)

θ
+ αlθ

}
= xθ cos

(
θπ

2

)
,

and ∣∣∣∣p(z◦) + α
z◦p
′(z◦)

p(z◦)
− 1

∣∣∣∣ =
∣∣∣(ix)

θ
+ iαlθ − 1

∣∣∣
=

∣∣∣∣xθ cos

(
θπ

2

)
− 1 + i

(
αlθ + xθ sin

(
θπ

2

))∣∣∣∣
=

√(
xθ cos

(
θπ

2

)
− 1

)2

+

(
αlθ + xθ sin

(
θπ

2

))2

.

(3.15)

From (3.11) and then from l ≥ m
2 (x+ 1

x ) for θ ≥ θ◦, we have

0 ≤ 1− 2xθ cos

(
θπ

2

)
+

(
αθm

2x
(x2 + 1) + xθ sin

(
θπ

2

))2

≤ 1− 2xθ cos

(
θπ

2

)
+

(
αθl + xθ sin

(
θπ

2

))2

.(3.16)

Therefore,

(3.17) 0 ≤ 1− 2xθ◦ cos

(
θ◦π

2

)
+

(
αθ◦l + xθ◦ sin

(
θ◦π

2

))2

,

by (3.14) and (3.15) is equivalent to the inequality

<
{
p(z◦) + α

z◦p
′(z◦)

p(z◦)

}
≤
∣∣∣∣p(z◦) + α

z◦p
′(z◦)

p(z◦)
− 1

∣∣∣∣ ,
which contradicts with (3.11). Therefore, |arg {p(z◦)}| < π

2 θ◦ for |z| < 1.
For the case arg {p(z◦)} = −π2 θ◦, applying the same method as the above we will get a contradiction.

In this way we have proved that f is strongly starlike of order θ◦. This completes the proof. �

Letting α = 1, in Theorem 7, we have the result 13 below which is comparable to the one obtained
in [18].

Corollary 13. Let f ∈ UCV and let it be of the form

f (z) = z +

∞∑
n=m+1

anz
n am+1 6= 0.

Then f (z) is strongly starlike of order θ◦, where

θ◦ = min
θ∈(0,1)

{
1− 2xθ cos

(
θπ

2

)
+

(
m

(
x2 + 1

)
θ

2x
+ xθ sin

(
θπ

2

))
≥ 0 for all x > 0

}
.
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