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HERMITE-HADAMARD TYPE INEQUALITIES FOR p-CONVEX FUNCTIONS

İMDAT İŞCAN∗

Abstract. In this paper, the author establishes some new Hermite-Hadamard type inequalities for

p-convex functions. Some natural applications to special means of real numbers are also given.

1. Introduction

Let f : I ⊂ R→ R be a convex function defined on the interval I of real numbers and a, b ∈ I with
a < b. The following inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2

holds. This double inequality is known in the literature as Hermite-Hadamard integral inequality
for convex functions. Note that some of the classical inequalities for means can be derived from (1.1)
for appropriate particular selections of the mapping f . Both inequalities hold in the reversed direction
if f is concave. For some results which generalize, improve and extend the inequalities (1.1) we refer
the reader to the recent papers (see [2, 3, 5, 6, 8, 9, 12]).

In [3], Dragomir gave the following Lemma:

Lemma 1. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦ and a, b ∈ I◦ with a < b. If
f ′ ∈ L[a, b], then the following equality holds:

(1.2)
f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx =
b− a

2

1∫
0

(1− 2t) f ′ (ta+ (1− t)b) dt.

By using this Lemma, Dragomir obtained the following Hermite-Hadamard type inequalities for
convex functions:

Theorem 1. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦ and a, b ∈ I◦ with a < b. If |f ′|
is convex on [a, b] , then the following inequality holds:

(1.3)

∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ (b− a) (|f ′(a)|+ |f ′(b)|)
8

.

Theorem 2. Let f : I◦ ⊂ R → R be a differentiable mapping on I◦ and a, b ∈ I◦ with a < b and
p > 1. If the new mapping |f ′|q is convex on [a, b] , then the following inequality holds:

(1.4)

∣∣∣∣∣∣f(a) + f(b)

2
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣ ≤ (b− a)

2(p+ 1)1/p

[
|f ′(a)|q + |f ′(b)|q

2

]1/q

,

where 1/p+ 1/q = 1.
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Let A (a, b; t) = ta + (1 − t)b, G (a, b; t) = atb1−t, H (a, b; t) = ab/(ta + (1 − t)b) and Mp (a, b; t) =

(tap + (1− t)bp)
1/p

, p ∈ R\ {0} , be the weighted arithmetic, geometric, harmonic , power of order
p means of two positive real numbers a and b with a 6= b for t ∈ [0, 1] , respectively. Mp (a, b; t) is
continuous and strictly increasing with respect to t ∈ R for fixed p ∈ R\ {0} and a, b > 0 with a > b.
See [13, 7] for some kinds of convexity obtained by using weighted means.

In [7], the author, gave definition Harmonically convex and concave functions as follow.

Definition 1. Let I ⊂ R\ {0} be a real interval. A function f : I → R is said to be harmonically
convex, if

(1.5) f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.5) is reversed, then f is said to be harmonically
concave.

The following result of the Hermite-Hadamard type holds for harmonically convex functions.

Theorem 3 ([7]). Let f : I ⊂ R\ {0} → R be a harmonically convex function and a, b ∈ I with a < b.
If f ∈ L[a, b] then the following inequalities hold

(1.6) f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

The above inequalities are sharp.

Lemma 2 ([7]). Let f : I ⊂ R\ {0} → R be a differentiable function on I◦ and a, b ∈ I with a < b. If
f ′ ∈ L[a, b] then

f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

=
ab (b− a)

2

1∫
0

1− 2t

(tb+ (1− t)a)
2 f
′
(

ab

tb+ (1− t)a

)
dt.(1.7)

Using this Lemma, the following inequalities hold.

Theorem 4 ([7]). Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with a < b, and
f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q ≥ 1, then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣(1.8)

≤ ab (b− a)

2
λ

1− 1
q

1

[
λ2 |f ′ (a)|q + λ3 |f ′ (b)|

q] 1
q ,

where

λ1 =
1

ab
− 2

(b− a)
2 ln

(
(a+ b)

2

4ab

)
,

λ2 =
−1

b (b− a)
+

3a+ b

(b− a)
3 ln

(
(a+ b)

2

4ab

)
,

λ3 =
1

a (b− a)
− 3b+ a

(b− a)
3 ln

(
(a+ b)

2

4ab

)
= λ1 − λ2.
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Theorem 5 ([7]). Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with a < b, and
f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q > 1, 1

p + 1
q = 1, then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣(1.9)

≤ ab (b− a)

2

(
1

p+ 1

) 1
p (
µ1 |f ′ (a)|q + µ2 |f ′ (b)|

q) 1
q ,

where

µ1 =

[
a2−2q + b1−2q [(b− a) (1− 2q)− a]

]
2 (b− a)

2
(1− q) (1− 2q)

,

µ2 =

[
b2−2q − a1−2q [(b− a) (1− 2q) + b]

]
2 (b− a)

2
(1− q) (1− 2q)

.

In [16], Zhang and Wan gave definition of p-convex function as follow:

Definition 2. Let I be a p-convex set. A function f : I → R is said to be a p-convex function or
belongs to the class PC(I), if

f
(

[αxp + (1− α)yp]
1/p
)
≤ αf(x) + (1− α)f(y)

for all x, y ∈ I and α ∈ [0, 1].

Remark 1 ([16]). An interval I is said to be a p-convex set if [αxp + (1− α)yp]
1/p ∈ I for all x, y ∈ I

and α ∈ [0, 1], where p = 2k + 1 or p = n/m, n = 2r + 1, m = 2t+ 1 and k, r, t ∈ N.

Remark 2 ([10]). If I ⊂ (0,∞) be a real interval and p ∈ R\ {0}, then

[αxp + (1− α)yp]
1/p ∈ I for all x, y ∈ I and α ∈ [0, 1].

According to Remark 2, we can give a different version of the definition of p-convex function as
follow:

Definition 3 ([10]). Let I ⊂ (0,∞) be a real interval and p ∈ R\ {0} . A function f : I → R is said
to be a p-convex function, if

(1.10) f
(

[αxp + (1− α)yp]
1/p
)
≤ αf(x) + (1− α)f(y)

for all x, y ∈ I and α ∈ [0, 1]. If the inequality in (1.10) is reversed, then f is said to be p-concave.

According to Definition 3, It can be easily seen that for p = 1 and p = −1, p-convexity reduces to
ordinary convexity and harmonically convexity of functions defined on I ⊂ (0,∞), respectively.

Example 1. Let f : (0,∞)→ R, f(x) = xp, p 6= 0, and g : (0,∞)→ R, g(x) = c, c ∈ R, then f and
g are both p-convex and p-concave functions.

In [4, Theorem 5], if we take I ⊂ (0,∞), p ∈ R\ {0} and h(t) = t , then we have the following
Theorem.

Theorem 6. Let f : I ⊂ (0,∞) → R be a p-convex function, p ∈ R\ {0}, and a, b ∈ I with a < b. If
f ∈ L[a, b] then we have

(1.11) f

([
ap + bp

2

]1/p
)
≤ p

bp − ap

b∫
a

f(x)

x1−p dx ≤
f(a) + f(b)

2
.

For some results related to p-convex functions and its generalizations, we refer the reader to see
[4, 10, 15, 14, 16].

In [15, Lemma 2.4], if we take I ⊂ (0,∞) and p ∈ R\ {0} , then we have the following Lemma.
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Lemma 3. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦ and a, b ∈ I with a < b and
p ∈ R\ {0}. If f ′ ∈ L[a, b] then

f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

=
bp − ap

2p

1∫
0

1− 2t

[tap + (1− t)bp]
1−1/p

f ′
(

[tap + (1− t)bp]
1/p
)
dt.(1.12)

Remark 3. In Lemma 3,
(i) If we take p = 1, then we have inequality (1.2) in Lemma 1.
(ii) If we take p = −1, then we have inequality (1.7) in Lemma 2.

For finding some new inequalities of Hermite-Hadamard type for functions whose derivatives are
p-convex, we need Lemma 3.

We recall the following special functions
(1) The Beta function:

β (x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

1∫
0

tx−1 (1− t)y−1
dt, x, y > 0,

(2) The hypergeometric function:

2F1 (a, b; c; z) =
1

β (b, c− b)

1∫
0

tb−1 (1− t)c−b−1
(1− zt)−a dt, c > b > 0, |z| < 1 (see [11]).

The main purpose of this paper is to establish some new results connected with the right-hand side of
the inequalities (1.11) for p-convex functions.

2. Main Results

We obtain the another version of [15, Theorem 3.2] as follow:

Theorem 7. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I◦ with a < b, p ∈ R\ {0}
and f ′ ∈ L[a, b]. If |f ′|q is p-convex on [a, b] for q ≥ 1, then∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣(2.1)

≤ bp − ap

2p
C

1− 1
q

1

[
C2 |f ′ (a)|q + C3 |f ′ (b)|

q] 1
q ,

where

C1 = C1(a, b; p) =
1

4

(
ap + bp

2

) 1
p−1

×
[

2F1

(
1− 1

p
, 2; 3;

ap − bp

ap + bp

)
+2 F1

(
1− 1

p
, 2; 3;

bp − ap

ap + bp

)]
,

C2 = C2(a, b; p) =
1

24

(
ap + bp

2

) 1
p−1 [

2F1

(
1− 1

p
, 2; 4;

ap − bp

ap + bp

)
+6.2F1

(
1− 1

p
, 2; 3;

bp − ap

ap + bp

)
+2 F1

(
1− 1

p
, 2; 4;

bp − ap

ap + bp

)]
,

C3 = C3(a, b; p) = C1 − C2,
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Proof. From Lemma 3 and using the Power mean integral inequality, we have∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣
≤ bp − ap

2p

1∫
0

∣∣∣∣∣ 1− 2t

[tap + (1− t)bp]
1−1/p

∣∣∣∣∣ ∣∣∣f ′ ([tap + (1− t)bp]
1/p
)∣∣∣ dt

≤ bp − ap

2p

 1∫
0

|1− 2t|
[tap + (1− t)bp]

1−1/p
dt

1− 1
q

×

 1∫
0

|1− 2t|
[tap + (1− t)bp]

1−1/p

∣∣∣f ′ ([tap + (1− t)bp]
1/p
)∣∣∣q dt


1
q

.

Hence, by p-convexity of |f ′|q on [a, b], we have∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣
≤ bp − ap

2p

 1∫
0

|1− 2t|
[tap + (1− t)bp]

1−1/p
dt

1− 1
q

×

 1∫
0

||1− 2t||
[
t |f ′ (a)|q + (1− t) |f ′ (b)|q

]
[tap + (1− t)bp]

1−1/p
dt


1
q

≤ bp − ap

2p
C

1− 1
q

1

[
C2 |f ′ (a)|q + C3 |f ′ (b)|

q] 1
q .

It is easily check that
1∫

0

|1− 2t|
[tap + (1− t)bp]

1−1/p
dt = C1(a, b; p),

1∫
0

|1− 2t| t
[tap + (1− t)bp]

1−1/p
dt = C2(a, b; p),

1∫
0

|1− 2t| (1− t)
[tap + (1− t)bp]

1−1/p
dt = C1(a, b; p)− C2(a, b; p).

�

Remark 4. If we take p = −1 in Theorem 7, then we have inequality (1.8) in Theorem 4.

If we take q = 1 in Theorem 7, then we have the following corollary.

Corollary 1. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦, a, b ∈ I◦ with a < b,
p ∈ R\ {0} and f ′ ∈ L[a, b]. If |f ′| is p-convex on [a, b], then∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣
≤ bp − ap

2p
[C2 |f ′ (a)|+ C3 |f ′ (b)|] ,

where C2 and C3 are defined as in Theorem 7.
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Remark 5. If we take p = 1 in Corollary 1, then we have inequality (1.3) in Theorem 1.

Theorem 8. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with a < b, p ∈ R\ {0}
and f ′ ∈ L[a, b]. If |f ′|q is p-convex on [a, b] for q > 1, 1

r + 1
q = 1, then

∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣(2.2)

≤ bp − ap

2p

(
1

r + 1

) 1
r (
C4 |f ′ (a)|q + C5 |f ′ (b)|

q) 1
q ,

where

C4 = C4(a, b; p; q)

=


1

2aqp−q .2F1

(
q − q

p , 1; 3; 1−
(
b
a

)p)
, p < 0

1
2bqp−q .2F1

(
q − q

p , 2; 3; 1−
(
a
b

)p)
, p > 0

,

C5 = C5(a, b; p; q)

=


1

2aqp−q .2F1

(
q − q

p , 2; 3; 1−
(
b
a

)p)
, p < 0

1
2bqp−q .2F1

(
q − q

p , 1; 3; 1−
(
a
b

)p)
, p > 0

.

Proof. From Lemma 3, Hölder’s inequality and the p-convexity of |f ′|q on [a, b],we have,∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣
≤ bp − ap

2p

 1∫
0

|1− 2t|r dt


1
r

×

 1∫
0

1

[tap + (1− t)bp]
q−q/p

∣∣∣f ′ ([tap + (1− t)bp]
1/p
)∣∣∣q dt


1
q

≤ bp − ap

2p

(
1

r + 1

) 1
r

×

 1∫
0

t |f ′ (a)|q + (1− t) |f ′ (b)|q

[tap + (1− t)bp]
q−q/p dt


1
q

,

where an easy calculation gives

1∫
0

t

[tap + (1− t)bp]
q−q/p dt(2.3)

=


1

2aqp−q .2F1

(
q − q

p , 1; 3; 1−
(
b
a

)p)
, p < 0

1
2bqp−q .2F1

(
q − q

p , 2; 3; 1−
(
a
b

)p)
, p > 0
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and

1∫
0

1− t
[tap + (1− t)bp]

q−q/p dt(2.4)

=


1

2aqp−q .2F1

(
q − q

p , 2; 3; 1−
(
b
a

)p)
, p < 0

1
2bqp−q .2F1

(
q − q

p , 1; 3; 1−
(
a
b

)p)
, p > 0

.

Substituting equations (2.3) and (2.4) into the above inequality results in the inequality (2.2), which
completes the proof. �

Remark 6. In Theorem 8,
(i) If we take p = 1, then we have inequality (1.4) in Theorem 2.
(ii) If we take p = −1, then we have the inequality (1.9) in Theorem 5.

Theorem 9. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with a < b, p ∈ R\ {0}
and f ′ ∈ L[a, b]. If |f ′|q is p-convex on [a, b] for q > 1, 1

r + 1
q = 1, then∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣(2.5)

≤ bp − ap

2p
C

1
r
6

(
1

q + 1

) 1
q
(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

,

where

C6 = C6(a, b; p; r)

=


1

apr−r .2F1

(
r − r

p , 1; 2; 1−
(
b
a

)p)
, p < 0

1
bpr−r .2F1

(
r − r

p , 1; 2; 1−
(
a
b

)p)
, p > 0

,

Proof. From Lemma 3, Hölder’s inequality and the p-convexity of |f ′|q on [a, b],we have,∣∣∣∣∣∣f(a) + f(b)

2
− p

bp − ap

b∫
a

f(x)

x1−p dx

∣∣∣∣∣∣
≤ bp − ap

2p

 1∫
0

1

[tap + (1− t)bp]
r−r/p dt


1
r

×

 1∫
0

|1− 2t|q
∣∣∣f ′ ([tap + (1− t)bp]

1/p
)∣∣∣q dt


1
q

≤ bp − ap

2p
C

1
r
6 (a, b; p; r)

(
1

q + 1

) 1
q
(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

,

where an easy calculation gives

C6(a, b; p; r) =

1∫
0

1

[tap + (1− t)bp]
r−r/p dt(2.6)

=


1

apr−r .2F1

(
r − r

p , 1; 2; 1−
(
b
a

)p)
, p < 0

1
bpr−r .2F1

(
r − r

p , 1; 2; 1−
(
a
b

)p)
, p > 0
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and

(2.7)

1∫
0

|1− 2t|q tdt =

1∫
0

|1− 2t|q (1− t) dt =
1

2(q + 1)
.

Substituting equations (2.6) and (2.7) into the above inequality results in the inequality (2.5), which
completes the proof. �

3. Some applications for special means

Let us recall the following special means of two nonnegative number a, b with b > a :

(1) The arithmetic mean

A = A (a, b) :=
a+ b

2
.

(2) The geometric mean

G = G (a, b) :=
√
ab.

(3) The harmonic mean

H = H (a, b) :=
2ab

a+ b
.

(4) The power mean

Mr = Mr (a, b) :=

(
ar + br

2

)1/r

, r 6= 0.

(5) The Logarithmic mean

L = L (a, b) :=
b− a

ln b− ln a
.

(6) The p-Logarithmic mean

Lp = Lp (a, b) :=

(
bp+1 − ap+1

(p+ 1)(b− a)

) 1
p

, p ∈ R\ {−1, 0} .

(7) the Identric mean

I = I (a, b) =
1

e

(
bb

aa

) 1
b−a

.

These means are often used in numerical approximation and in other areas. However, the following
simple relationships are known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and L−1 = L.

Proposition 1. Let 0 < a < b and p ∈ (−∞, 1) \ {−1} . Then we have the following inequality

Mp.L
p−1
p−1 ≤ Lp

p ≤ A.L
p−1
p−1

Proof. The assertion follows from the inequality (1.11) in Theorem 6, for f : (0,∞)→ R, f(x) = x. �

Proposition 2. Let 0 < a < b and p > 1. Then we have the following inequality

H(ap, bp) ≤ Lp−1
p−1.L ≤ A(ap, bp).

Proof. The assertion follows from the inequality (1.11) in Theorem 6, for f : (0,∞) → R, f(x) =
x−p. �

Proposition 3. Let 0 < a < b. Then we have the following inequality

Lp
pH ≤ L

p−1
p−1G

2+2p ≤ Lp
pMp.

Proof. The assertion follows from the inequality (1.11) in Theorem 6, for f : (0,∞) → R, f(x) =
1/x. �
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