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POLYNOMIAL APPROXIMATION ON UNBOUNDED
SUBSETS AND THE MARKOV MOMENT PROBLEM

OCTAV OLTEANU

ABSTRACT. We start this review paper by recalling some known and
relatively recent results in polynomial approximation on unbounded
subsets. These results allow approximation of nonnegative continuous
functions with compact support contained in the first quadrant by
sums of tensor products of positive polynomials in each separate
variable, on the positive semiaxes. Consequently, we characterize the
existence of solution of a two dimensional Markov moment problem
in terms of products of quadratic forms. Secondly, one proves some
applications of abstract results on the extension of linear operators
with two constraints to the Markov moment problem. Two

applicationsrelated to this last part are considered.

1. Introduction

Using polynomial decomposition and approximation in existence,
uniqueness and construction of the solution of the classical moment problem
is a well known technique [1]-[3], [5]-[20]. Another general method is to
endow different concrete spaces (including spaces of analytic functions) with
a natural linear order relation. On such spaces, the abstract results from [4],
[12] and many other works can be applied. For the construction and the

uniqueness of the solution, L> - approximation is usually sufficient [9], [14],
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but not necessary [2]. For the characterization of the existence of the solution,
L' - approximation is necessary, and sometimes is also sufficient. The idea is
to approximate nonnegative continuous functions with compact support by
sums of tensor products of positive polynomials in each separate variable,
which for the expression in terms of sums of squares is well known. This
leads to characterization of the existence of the solution in terms of products
of quadratic forms or mappings [16]-[20]. A similar idea in solving complex
moment problems, by other techniques, appears in [8].

The first aim of this paper is to illustrate these methods. Secondly, we
apply general extension theorems for linear operators, with two constraints,
to the moment problem. Theorems 4.2 and 4.4 are such applications. For
uniqueness of the solution see [1], [2]. For other aspects of the moment
problem see [3], [5]. The background of this work is partially contained in [1],
[4], [12].

The rest of this work is organized in the following way. Section 2
contains polynomial approximation results on unbounded closed subsets.

In Section 3, an application of these results to the real
multidimensional moment problem is illustrated. Section 4 is devoted to
some applications of earlier theorems of extension of linear operators to the
Markov moment problem. A common point of all these considerations is the
Hahn-Banach principle and its generalizations.

2. Approximation on unbounded subsets

The following results were published in [10], [11], being applied in solving
moment problems from [11], recently recalled in [14]-[15]. For the
multidimensional moment problem on unbounded subsets, Stone-
Weierstrass and Luzin’s theorems are used too.

Lemma 2.1. For any x e R, we have

m

exp (x)—(1+i+...+x—\: b (IX)~JEXP (—t)~tmdt, m e N.
L )

1! m! m
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The proof is quite standard. Multiplication by ep (- x) followed by
derivation-operation leads to the equality of the derivatives. Then the
conclusion follows easily.

Remark 2.1. The statement remains true when we replace x e R with z e c, by

analytic continuation.
Corollary 2.1. For all o > 0, k e N we have

2 2 2k, 2k
a-t o -t a t
exp (~at)<1- + -+ ,t>0,
1! 2! (2k )
o -t a2~t2 a2kt2k a2k+1t2k+l
exp (—at)21- —+ — - ,t>0.
1! 2! (2k ) (2k + 1)

Corollary 2.2. Let ¢, (t)=exp (~kt), t >0,k e N, and y an element of the linear

subspace generated by {o, ; k € N|. Then there exists a sequence of polynomials
(P1)oy P>y (t)ve>0,

and tim p, =y uniformly on the compact subsets K < [0,») and in L} ([0,)), for

any positive reqular determinate Borel measure v on [0,x).

Theorem 21. Let y :[0,0) > R, be a continuous function, such that

lim ., w(t)e R, exists. Then there is a decreasing sequence (h,), in the linear hull

of the functions P keN defined above, such that
hy(t)>w(t)t>0,1eN,lim h =y uniformly on [0,0). There exists a sequence
(Py),, Py 2hy >y, Ve N, lm p, =y uniformly on compact subsets of [0, ).

The idea of the proof is to join the infinity point and to apply Stone-

Weierstrass theorem for the subalgebra generated by the functions
eop (-n-t),neN,t>0. Then one approximates the exponentials by partial

sums-polynomials. The proofs of the preceding results are published in [10]
and [11].
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Theorem 2.2. (see [11], [16]-[20]). Let A = R" be an unbounded closed subset and
v a positive reqular Borel measure on a, with finite moments of all orders. Then for

any y < (Cy(A)),, there is a sequence (p,) ~ of polynomials on
A Pm 2w, Py — v inLL(A). We have

lim Ipmdv =jy/ dv,
A A
1

v

the cone p, of positive polynomials is dense in (L (A))+ and p is dense in L} (A).

An improved proof of this lemma will appear soon.

3. Approximation and the Markov moment problem

Let
i,k . 2
Xjx(tity)=t't, (i,k)eN" t; >0,1=12.

Using the form of positive polynomials on R, [1] in terms of squares:
2 2
pi(ty)=rp () +typ () 20,1 =12,

and the above approximation results, one obtains the following result.
Let H be a Hilbert space, A;, A, two positive commuting selfadjoint

operators acting on H, with spectrums o(A;) j=12. We introduce the

commutative algebra Y =Y (A, A, ) of selfadjoint operators ([4], [7]), which is

also an order-complete vector lattice:

V=T cAH)TA, = AT, j=12]

Y={UeY;UT =TU VT eV}

We denote by x the space of all continuous functions x :[0,»)* - R, with

the modulus dominated by a polynomial at each point of [0,)?, and by



POLYNOMIAL APPROXIMATION 72

x(jx)y the elements of the base of polynomials, namely

Xt t) =1ty 1,20 Let K = o(A)x o (A,) Xy = C(K).

Theorem 3.1 (see also [11], [15]) Let (B(j’k))(j ez €Y The following assertions

are equivalent:
(a) there is a linear operator F e L(X,,Y ) such that:

Fx(j))=B(ju) ¥(ik)ez? 0<F(x)s jx(tl,tz)dE A OB A, ¥XeE X,
O'(Al)XO'(AZ)
F (o)< I|¢(t1’tz)|dE A GE A, Vo< Xy |F <

O'(Al)XO'(Az)

(b) for any finite subsets 3,,3, < z, andany {a ;} . {B\},., . we have:

jed,’

i+ A k+1
0< > ;i@ B BiBiisjken) < > aia By BiAL A,
i,jedyk,led, i,jedy,k,led,
i+ j+1 , k+1
0< Z ;@ i BB\ Biiyjirker) S z aa B BA Ay s
i,jed; k,led, i,jed; k,led,
i+, k+1+1
0< z i@ i BB\ Blisjkrrer) S z aia (B BiAL A, :
i,jed; k,led, i,jed; k,led,
i+ j+1 , k+1+1
0< > i i By PiBiysjrrkeis1) < > aia By A Az :
i,jed; k,led, i, jedy k,led,

Proof. Let x be a nonnegative continuous function defined on o (A;)x o (A,).
Then x is approximated by means of a sequence formed by sums of tensor
products of positive functions from (C.([0,=))), ® (C.([0,«))), . To this end,

one applies firstly Luzin’s theorem and Bernstein approximation theorem for
a rectangle
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[ag,b;]x[ay,by] > o (A )xa(Ay).

Extend each factor of any of the terms of this sum with zero value outside the
intervals [a b ] =12 and then apply Luzin’s Theorem in each separate

variable. Let x; ® x,, x; 20, j =1,2 be such a tensor product. For each of the

separate variables t,,t,, applying Theorem 2.1, there is a sequence of positive

polynomials on the nonnegative semi axes such that:

pm’j>xj20,VmeZ+,pm'j—>xj,m—>oo,j:1,2,

the convergence being uniform on compact subsets. Because the polynomials
involved are positive on the whole interval [0, ), from [1] we know their

form:
pmvj(tj):qrzn,j(tj)+tjrnf,j(tj), j=12,meZ,.

We define a linear operator on the subspace P, ® P, generated by the

products of polynomials in separate variables, such that the moment
conditions from the statement holds:
2

f (Z ajﬂkx(i,k)L > @ BB = fx(u0)= B viik)ez].
ik )ik

We have already seen that every continuous function with compact support
can be approximated by elements from P, ® P,. Using the above arguments,

the assertion (b) says that we have:

0< f(p; ®p,)< ﬂ py (t;)p, (t; )dE andE A, VP € (R[tj])+, j=12.

a (A xa(A,)
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An application of the majorizing subspace lemma ([4] p. 160), leads to the
existence of a positive linear (hence bounded on X, =C(c(A)xo(A,)))

extension F : X, -» Y of f. Using the uniform convergence of the special

polynomials on the product of spectrums, we obtain:

k(m) k(m)

F(x)=lim F[z Pmij® pmyzyj]lim m fLZ Pmij® pm,z,j}<

j=1 j=1
(‘&) W
< lim ” LZ Pmaj® meZ’deEAldEA2 =
o‘(Al)xa(Az) i=1
ﬂ x(ty,tp)dE 5 dE 5 VXxe Xy,

o (Ar)xa(Az)

This relation leads to the last conclusion (a), thanks to the following relation:

peX = |Flp)s< Flo" )+ Flo )< ﬁ o (t1,t JUE o, dE o, =
o(Ar)xa(Az)

”F((P)”S ||(p||oO Vpe X, = ||F||s 1.

Thus the proof of (b) = (a) is finished. Since the converse is obvious, the

proof of the theorem is complete.
(]

4. Extension of linear operators and the moment problem

If v is a convex neighborhood of the origin in a locally convex space, we
denote by p, the gauge attached to V. This section is based on some results

of [6] and on previous results (see the references there).
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Theorem 4.1. .Let x be a locally convex space, y an order complete vector lattice
with strong order unit u, and s < x a vector subspace. Let o = x be a convex

subset with the following qualities:
@) there exists a neighborhood v of the origin such that (s +v )N A= @
(A and s are distanced);
(ii) A is bounded.

Then for any equicontinuous family of linear operators {t,} , cLs.Y) and for
je

any y e Y, \{o}, there exists an equicontinuous family {F ;} < L(x,Y) such that
je

Filg=1f, and F|,2y,vjeJ.
Moreover, if v is a neighborhood of the origin such that
f,vNs)e[-ug,ugl (S+v)NnA=wo,
O<aeRstpy [p,<a, a;>0st y<aug,
then the following relations hold
Fi(x)<@+a+a;)py, (x)uy, xeX,jeld,

The last relation of Theorem 4.1 gives a relationship between an upper
bound and the lower bound of F;, i< J. The next result is a consequence of

the preceding one, in terms of the moment problem. In oder to apply the

above general theorem to concrete spaces, let X = H be the space of all
n

continuous functions in the polydisc D = I {lz i ‘ < 1}, which can be writen as

j-1
power series with real coefficients, centered at (0... 0), in the open polydisc

D. The order relation on x is given by the positive cone of all power series
with nonnegative coefficients. Let

k=1
and Ay, k =1.., n linear positive selfadjoint commuting operators on H, such
that |A, [ <1 k =1...n. We denote:
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Yi={UeA(H) AU =UA, k=1, n},Y ={VeY;VU =W VU eY,}.
Then Y is an order complete Banach lattice and a commutative Banach
algebra of selfadjoint operators [4], [7]. Let {B, }, _, < Y, .[B[ <1 k =1...n.

Theorem 4.2. Let (U ). o |i| =1 be sequence in v, such that
je

‘Uj‘Sp~A1Jl--« An +5.Bljl B, V= (g jn)eNn,|j|21.

Let §EY+,{y/j}j€Nn c

linear bounded operator F < B(X ,Y ) such that
Floj)=u . ]i|21Fly ;)28 jeN",

[ : : 7
|F(¢7)|S|2+HBH.(,0/|(H (1—||Ak||)w+5/( (1—|||3k||)ﬂ |.||¢,||w.u0,
R )

| |
) Lk=1 )

PR N VR

Proof. We apply Theorem 4.1 to s :Sp{(pj; jeN”,|j|21},A=co({y/j; jenm)

uoi[p/(l_rj[ (1—||Ak||)w+5/( : (1||Bk||)q~|, peX.

Conditions imposed on the values at (0,--,0) and on the norms of the
functions v ; lead to

On the other hand, for

se SNB(01) f(s)= { le,-co,} PIRILEE

jedog jedg

Cauchy inequalities for s and the hypothesis on the operators ‘U i ‘ yield
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1) - )M TIATHE

jeJO

zgjujs

jeJO

( o )
||S||.| o Z A1J1 AN LS Z Bljl BN Jg
ul [ Wl Wl a
ot Sl Sl e Sl Sl -

=R ES LA

j1eN ineN j1eN jneN

P o
+

\
|
-
| @-{A ) -8,
kp_l [l [ [+ "J

We also have

l =upg = -ug < f(s)<uy, V¥seSNB(I)

n n

: <|f HIL,JHl ||Ak||hg,|fn ‘- ||Bk||J e

(k=1 \k=1
Now all conditions from the hypothesis of theorem 4.1 are

accomplished and the conclusion follows.
|

We recall the following result [12] on the abstract Markov moment
problem, as an extension with two constraints theorem for linear operators.

Theorem 4.3. Let x be an ordered vector space, y an order complete vector lattice,
{xj} c X, {yj}_ , cY  given families and F,F, e L(X,Y) two linear
je

operators. The following statements are equivalent:

jeld

(a) there is a linear operator F < L(X,Y ) such that
FL(x)< F(x)< Fy(x)Vxe X, F(xj): yjVied;
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(b) for any finite subset 3, < 3 and any {1 | c R, we have:

jEJO
L Zﬂjxj SWo W, W1 Wo € X+J:> zﬂjyj < Fz(Wz)_Fl(W1)~

jEJO jEJO

From Theorem 4.3 we deduce the following result.
Theorem 4.4. With the notations and using the assumptions preceding Theorem 4.2,

the following statements are equivalent:
(a) there exists F e B(X,Y ) such that

Floj)=U [, ieN" 0<F(p)<p y(A Ay)+d w(Br.By)weX,,
”F” < p+9;
(b) we have: 0 < u | £p~Aljl--~ A +5-Bljl--- BN J= (g |
Proof. The implication (a) = (b) is obvious, because of the relations
pieX,>U;=Flp;)el0.p-0 (Al Ay)+5 9;(By. By)]=
[O,p . Aljl oAl ps Bljl g tn ] jenN".
Conversely, assume that (b) holds. We verify the implication in (b), Theorem

4.3. Namely, we have:

n
Zﬂj(pj:l/lZ_l/jl: Zam(pm_ Zﬂm(ﬂmvam,ﬂmZO,meN =

jedo meNn meNn

U . U . U (p. Al pAldn g1 jn)_
ZﬂJUJsZﬂJUJsZaJUJs Zal(p A, A" +6 B B," |=
jedo je‘](;r jeNn jENn

=p oA Ag)+ 8y, (Byi By) = Fplw )~ Fylwy) Fri=0,

A direct application of Theorem 4.3 leads to the existence of a linear operator

F e L(X,Y), such that
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0= F(y)=pw (A A)s 8oy (By Byl ¥y e X,

For an arbitrary ¢ < X, one obtains:

F (o)< F(¢+)+ F((p‘)s p-lo|(Ay s Ay)+ 8 -|o|(By By ) <
(o lola]l- |an )+ 5 -Jol(81 ] B0 D)1= [IF (0)] < (o + 5)- ]

VoeX = |F|sp+s.

This concludes the proof.
(|
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