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ON GENERALIZED ABSOLUTE MATRIX SUMMABILITY METHODS

HİKMET SEYHAN ÖZARSLAN∗

Abstract. In this paper, we prove a general theorem dealing with absolute matrix summability
methods of infinite series. This theorem also includes some new and known results.

1. Introduction

Let
∑
an be a given infinite series with the partial sums (sn). Let (pn) be a sequence of positive

numbers such that

Pn =

n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1) .(1)

The sequence-to-sequence transformation

σn =
1

Pn

n∑
v=0

pvsv(2)

defines the sequence (σn) of the
(
N̄ , pn

)
mean of the sequence (sn), generated by the sequence of

coefficients (pn) (see [5]). The series
∑
an is said to be summable

∣∣N̄ , pn∣∣k , k ≥ 1, if (see [1])

∞∑
n=1

(
Pn

pn

)k−1

|σn − σn−1|k <∞.(3)

Let A = (anv) be a normal matrix, i.e., a lower triangular matrix of nonzero diagonal entries. Then
A defines the sequence-to-sequence transformation, mapping the sequence s = (sn) to As = (An(s)),
where

An(s) =

n∑
v=0

anvsv, n = 0, 1, ...(4)

The series
∑
an is said to be summable |A, pn|k , k ≥ 1, if (see [6])

∞∑
n=1

(
Pn

pn

)k−1 ∣∣∆̄An(s)
∣∣k <∞,(5)

where

∆̄An(s) = An(s)−An−1(s).

Let (ϕn) be any sequence of positive real numbers. The series
∑
an is summable ϕ− |A, pn|k, k ≥ 1,

if
∞∑

n=1

ϕk−1
n |∆̄An(s)|k <∞.(6)

If we take ϕn = Pn

pn
, then ϕ− |A, pn|k summability reduces to |A, pn|k summability. If we set ϕn = n

for all n, ϕ− |A, pn|k summability is the same as |A|k summability (see [7]). Also, if we take ϕn = Pn

pn
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and anv = pv

Pn
, then we get |N̄ , pn|k summability. If we take ϕn = n and anv = pv

Pn
, then we get |R, pn|k

summability (see [2]). Furthermore, if we take ϕn = n, anv = pv

Pn
and pn = 1 for all values of n, then

ϕ− |A, pn|k summability reduces to |C, 1|k summability (see [4]).
Before stating the main theorem we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and Â = (ânv) as
follows:

ānv =

n∑
i=v

ani, n, v = 0, 1, ...(7)

and

â00 = ā00 = a00, ânv = ānv − ān−1,v, n = 1, 2, ...(8)

It may be noted that Ā and Â are the well-known matrices of series-to-sequence and series-to-series
transformations, respectively. Then, we have

An (s) =

n∑
v=0

anvsv =

n∑
v=0

ānvav(9)

and

∆̄An (s) =

n∑
v=0

ânvav.(10)

2. Known Result

Bor [3] has proved the following theorem for
∣∣N̄ , pn∣∣k summability method.

Theorem 1. Let (pn) be a sequence of positive numbers such that

Pn = O(npn) as n→∞.(11)

If (Xn) is a positive monotonic non-decreasing sequence such that

|λm|Xm = O(1) as m→∞,(12)

m∑
n=1

nXn|∆2λn| = O(1) as m→∞(13)

and
m∑

n=1

pn
Pn
|tn|k = O(Xm) as m→∞,(14)

where

tn =
1

n+ 1

n∑
v=1

vav,

then the series
∑
anλn is summable |N̄ , pn|k, k ≥ 1.

3. Main Result

The aim of this paper is to generalize Theorem 1 to ϕ− |A, pn|k summability. Now we shall prove
the following theorem.
Theorem 2. Let A = (anv) be a positive normal matrix such that

ān0 = 1, n = 0, 1, ...,(15)

an−1,v ≥ anv, for n ≥ v + 1,(16)

ann = O

(
pn
Pn

)
,(17)

|ân,v+1| = O (v |∆vânv|) .(18)
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Let (Xn) be a positive monotonic non-decreasing sequence and
(

ϕnpn

Pn

)
be a non-increasing sequence.

If conditions (12)-(13) of Theorem 1 and
m∑

n=1

ϕk−1
n

(
pn
Pn

)k

|tn|k = O(Xm) as m→∞,(19)

are satisfied, then the series
∑
anλn is summable ϕ− |A, pn|k, k ≥ 1.

It should be noted that if we take ϕn = Pn

pn
and anv = pv

Pn
in Theorem 2, then we get Theorem 1.

In this case, condition (19) reduces to condition (14), condition (18) reduces to condition (11). Also,

the condition “
(

ϕnpn

Pn

)
is a non-increasing sequence” and the conditions (15)-(17) are automatically

satisfied. We require the following lemma for the proof of Theorem 2.
Lemma 1 ([3]). Under the conditions of Theorem 2, we have that

nXn|∆λn| = O(1) as n→∞,(20)

∞∑
n=1

Xn|∆λn| <∞.(21)

4. Proof of Theorem 2

Let (In) denotes A-transform of the series
∑
anλn. Then, by (9) and (10), we have

∆̄In =

n∑
v=0

ânvavλv =

n∑
v=1

ânvλv
v

vav.

Applying Abel’s transformation to this sum, we get that

∆̄In =

n−1∑
v=1

∆v

(
ânvλv
v

) v∑
r=1

rar +
ânnλn
n

n∑
r=1

rar

=
n+ 1

n
annλntn +

n−1∑
v=1

v + 1

v
∆v (ânv)λvtv

+

n−1∑
v=1

v + 1

v
ân,v+1∆λvtv +

n−1∑
v=1

ân,v+1λv+1
tv
v

= In,1 + In,2 + In,3 + In,4.

To complete the proof of Theorem 2, by Minkowski’s inequality, it is sufficient to show that
∞∑

n=1

ϕk−1
n | In,r |k<∞, for r = 1, 2, 3, 4.(22)

First, by using Abel’s transformation, we have that
m∑

n=1

ϕk−1
n |In,1|k = O(1)

m∑
n=1

ϕk−1
n aknn|λn|k|tn|k

= O(1)

m∑
n=1

ϕk−1
n

(
pn
Pn

)k

|λn|k−1|λn||tn|k

= O(1)

m∑
n=1

ϕk−1
n

(
pn
Pn

)k

|λn||tn|k

= O(1)

m−1∑
n=1

∆|λn|
n∑

v=1

ϕk−1
v

(
pv
Pv

)k

|tv|k +O(1)|λm|
m∑

n=1

ϕk−1
n

(
pn
Pn

)k

|tn|k

= O(1)

m−1∑
n=1

|∆λn|Xn +O(1)|λm|Xm

= O(1) as m→∞,
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by virtue of the hypotheses of Theorem 2 and Lemma 1. Now, applying Hölder’s inequality with
indices k and k′, where k > 1 and 1

k + 1
k′ = 1, as in In,1, we have that

m+1∑
n=2

ϕk−1
n |In,2|k = O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|∆v(ânv)| |λv| |tv|

)k

= O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|∆v(ânv)| |λv|k |tv|k
)
×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
ϕnpn
Pn

)k−1
(

n−1∑
v=1

|∆v(ânv)| |λv|k |tv |
k

)

= O(1)

m∑
v=1

|λv|k|tv|k
m+1∑

n=v+1

(
ϕnpn
Pn

)k−1

|∆v(ânv)|

= O(1)

m∑
v=1

|λv|k|tv|k
(
ϕvpv
Pv

)k−1 m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

|λv|k−1|λv||tv|kavv
(
ϕvpv
Pv

)k−1

= O(1)

m∑
v=1

ϕk−1
v

(
pv
Pv

)k

|λv| |tv|k

= O(1) as m→∞,

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Now, using Hölder’s inequality we have that

m+1∑
n=2

ϕk−1
n |In,3|k = O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|ân,v+1||∆λv||tv|

)k

= O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

v|∆v(ânv)||∆λv||tv|

)k

= O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

(v|∆λv|)k |tv|k|∆v(ânv)|

)
×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
ϕnpn
Pn

)k−1
(

n−1∑
v=1

(v|∆λv|)k |tv|k|∆v(ânv)|

)

= O(1)

m∑
v=1

(v|∆λv|)k |tv|k
m+1∑

n=v+1

(
ϕnpn
Pn

)k−1

|∆v(ânv)|

= O(1)

m∑
v=1

(v|∆λv|)k−1 (v|∆λv|) |tv|k
(
ϕvpv
Pv

)k−1 m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

ϕk−1
v

(
pv
Pv

)k

v|∆λv||tv|k

= O(1)

m−1∑
v=1

∆(v|∆λv|)
v∑

r=1

ϕk−1
r

(
pr
Pr

)k

|tr|k +O(1)m|∆λm|
m∑

v=1

ϕk−1
v

(
pv
Pv

)k

|tv|k

= O(1)

m−1∑
v=1

vXv|∆2λv|+O(1)

m−1∑
v=1

|∆λv|Xv +O(1)m|∆λm|Xm

= O(1) as m→∞,



70 ÖZARSLAN

by virtue of the hypotheses of Theorem 2 and Lemma 1.
Finally by using (18), as in In,1, we have that

m+1∑
n=2

ϕk−1
n |In,4|k ≤

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|ân,v+1||λv+1|
|tv|
v

)k

= O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|∆v(ânv)||λv+1||tv|

)k

= O(1)

m+1∑
n=2

ϕk−1
n

(
n−1∑
v=1

|∆v(ânv)||λv+1|k|tv|k
)
×

(
n−1∑
v=1

|∆v(ânv)|

)k−1

= O(1)

m+1∑
n=2

(
ϕnpn
Pn

)k−1
(

n−1∑
v=1

|∆v(ânv)||λv+1|k|tv|k
)

= O(1)

m∑
v=1

|λv+1|k−1|λv+1||tv|k
m+1∑

n=v+1

(
ϕnpn
Pn

)k−1

|∆v(ânv)|

= O(1)

m∑
v=1

|λv+1||tv|k
(
ϕvpv
Pv

)k−1 m+1∑
n=v+1

|∆v(ânv)|

= O(1)

m∑
v=1

|λv+1||tv|kavv
(
ϕvpv
Pv

)k−1

= O(1)

m∑
v=1

ϕk−1
v

(
pv
Pv

)k

|λv+1| |tv|k

= O(1) as m→∞,
by virtue of hypotheses of Theorem 2 and Lemma 1.
This completes the proof of Theorem 2.

5. Conclusions

It should be noted that, if we take ϕn = Pn

pn
, then we get a theorem dealing with |A, pn|k summability.

Also, if we take anv = pv

Pn
, then we have a result dealing with ϕ− |N̄ , pn|k summability. Furthermore,

if we take anv = pv

Pn
and pn = 1 for all values of n, then we get another result dealing with ϕ− |C, 1|k

summability. When we take ϕn = n, anv = pv

Pn
and pn = 1 for all values of n, then we get a result

for |C, 1|k summability. Finally, if we take k = 1 and anv = pv

Pn
, then we get a result for

∣∣N̄ , pn∣∣
summability and in this case the condition “

(
ϕnpn

Pn

)
is a non-increasing sequence” is not needed.
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