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Abstract. The paper investigate a necessary and sufficient condition for the composition operator from
harmonic Lipschitz spaces Lipf, (0 < a < 1) into weighted harmonic Zygmund spaces Zf,, (0<pB<
o0) to be bounded and compact on the open unit disk. As an application, it estimates the essential

norms of such an operator from Lipf; into Zf, spaces.

1. Introduction

The operator theory has been characterized for spaces of analytic functions with different settings,
and a significant number of related papers have appeared in the literature (see, for example, [7], [8],
[10], [13], [17], and [22]). However, a similar investigation of the harmonic setting remains limited,
see [2] and [14].

In [1], we have examined numerous characterizations of the weighted Bloch spaces and closed
separable subspaces of harmonic mappings. We then presented the relationships between the weighted
harmonic Bloch space and its Carleson measure. In [3], Aljuaid and Colonna studied the weighted
Bloch space as the Banach space for harmonic mappings on an open unit disk. They then showed that
the mappings in weighted Bloch space can be characterized in terms of a Lipschitz condition relative
to the metric and can also be thought of as the harmonic growth space. Besides, in [5] they studied
the harmonic Zygmund spaces and their closed separable subspace called the little harmonic Zygmund

space. In [12], Colonna introduced and studied Bloch harmonic mappings on D as Lipschitz maps from
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the hyperbolic disk into C. In [19], Lusky investigated weighted spaces of harmonic functions on D and,
in [20], isomorphism classes of weighted spaces of holomorphic and harmonic functions with a radial
weight on C and on D. In [21], Yoneda studied harmonic Bloch spaces and harmonic Besov spaces.
Characterizations of the isometries between weighted spaces of harmonic functions were provided by
Boyd and Rueda in [9]. In [16], Jorda and Zarco studied Banach spaces of harmonic functions and
composition operators between weighted Banach spaces of pluriharmonic functions. Isomorphisms on
weighted Banach spaces of harmonic and holomorphic functions were treated in [15].

Lately, studies on operator theory acting on spaces of harmonic mappings on the unit disk have
been conducted. In [4], the composition operators were studied on the Banach spaces of harmonic
mappings on I, including the weighted Bloch spaces, the growth spaces, the Zygmund space, the
analytic Besov spaces, and the space BMOA. Chao et al. in [11] studied composition operators in
the space of bounded harmonic functions D, and then provided criteria for determining the essential
norm of the difference between two composition operators. In [18], Laitila and Tylli characterized the
weak compactness of the composition operators on vector-valued harmonic Hardy spaces and on the
spaces of vector-valued Cauchy transforms for reflexive Banach spaces.

A harmonic mapping with domain ID is a complex-valued function u such that:

02%u
oot =0.
In this paper, let H(DD) denote the space consisting of analytic functions on the unit disk D := {( €

Au:=4

C :|¢| < 1}, Har(D) denote the space consisting all harmonic mappings. The harmonic mapping u
is always a representation of the form h+ f, where h and f are analytic functions. Up to the additive
constants, this representation is unique. Therefore, u € Har(D) if and only if u = h + f where

h,f € H(D) and f(0) = 0. For a general reference on the theory of harmonic functions, see [6].

Let S(ID) be the set of all analytic or conjugate analytic self-maps of D. The composition operator

Cy induced by ¢ € S(D) is defined as the operator
Cou=uop,
for all u € Har(ID). Surely, such an operator preserves harmonicity.

Recall that, for any two normed linear spaces X and Y/, the linear operator T : X — Y is said to
be bounded if there exists C > 0 such that ||Tully < C||lu||x,Yu € X. Furthermore, a linear operator
T : X — Y is said to be compact if it maps every bounded set in X to a relatively compact set in Y
(i.e., a set whose closure is compact).

We start with several preliminaries that will be used to get the main results in this work, then
we focus on the boundedness and the compactness of the composition operators from the harmonic
Lipschitz spaces Lip%, (0 < a < 1) into the harmonic weighted Zygmund spaces Zﬁ, (0 < B < ).

We conclude by approximating the essential norm.
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2. Spaces treated in this paper

Most of the research on harmonic mappings in the last two decades has been conducted by analyzing
the function theoretic aspects.
Firstly, let H2? = H37 (D) denote the space of all bounded harmonic mappings v on D equipped

with the norm
|ullso = sup |u(¢)].
¢eb

The harmonic weighted Bloch space B¢. For a € (0,00), the harmonic a-Bloch space B
contains all u € Har(D) is defined such that

a . ~avaf [0u(€) 6u(C)>
By -—Z:tgrém(l I<1%) <’ ac +’ 3 < 00

If u€ BY is represented as u = h+ f, with h, f € H(D), the harmonic a-Bloch seminorm 3% can be

characterized as
B = sup(1 = [CH)*(IN (O] +[F () < oo.
¢eb
The quantity
[ullsg = |u(0)] + By,
yields a Banach space structure on Bf; see [3].

The harmonic little a-Bloch space Bf/,o is defined as the subspace of BY, consisting of the mappings
u € Har(D) such that

Bo = lim (1—[¢*)*

I<l—1

(Eanialy
o¢ o¢
In [12], Bloch harmonic mappings were introduced and the connection between the Lipschitz constant
of a bounded harmonic mapping and its supremum norm was studied.
The harmonic Lipschitz space. For o € (0,1), Lip® consists of all complex-valued harmonic

mappings u on ID satisfying the condition: there exists a constant C > 0 such that
lu(w) —u(z2)| < Clw —z|*, V w,z €D.

The norm of the harmonic Lipschitz space Lipf; is defined by the quantity

ju(w) - u(2)|

ine = | k(0 S
Jullein = O] + sup == 5

Let u € Lipy and set C = sup{M :w # z}. Therefore, for w € D, we have

[w—z|*
lu(w)| < [u(0)] + Clw|* < [|ullLipg-
Then, taking the supremum over all w € D, we get

[ulloo < [lullLipg < oo (2.1)
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The elements of Lipf are characterized by the following harmonic Bloch condition: v € Lip§ if
and only if
ba(u) = su%(l — (W) (Juw (W) + |t (w)]) < oo. (2.2)
we

The weighted harmonic Zygmund space Zﬂ. For B € (0, ), ZE, consists of all complex-valued
harmonic mappings u € Har(D) such that

2<<>D< . (2.3)

o = sup(a — ¢ (| S50+

Define
ol = |u<o>|+] <0>H (o>\+||u||*5

Obviously, H'HZ’E/ iS @ norm on Z‘E, and Zg is a Banach space. For 3 = 1, Z}, is with the harmonic

Zygmund space Zy; see [5].

Remark 2.1. When u € H(ID), the mapping % 8“ reduces to u' and 62’ = 8< = 0. Thus, for all
0 < B < oo, the collection of analytic funct/ons in the space ZH is the classical weighted Zygmund

space ZP and both norms are identical.

By Theorem 19 provided in [3], we have the following characterization of the harmonic Bloch-type

mappings. Given 0 < a < 1 and let u € Har(D), then
lullLipg = lullgr-e = [ ul] z2-o- (2.4)

Let b € D be fixed, and let k € {1,2,3}. Then, for any ¢ € D, we consider a set of three functions

Fp« as follows:

(1 [b)* (1 —[bP)*
(1 —=bOk~> (1= bO)f=

Moreover, it is evident that Ilim Fbk = 0 uniformly on compact subsets D C D. Recall the power

(2.5)

|bl—
series representations of F.*, arelglven as
FEUO) = (- IbP)* Z oS wey + ooy
=~ (- |b|2>k21“1{(b<)f+<b<>f}. 2.6
j=0

By direct calculation, we know that, for all n € N and k € {1, 2, 3},

O"Fp(Q) (k+na1){ "(1—|b]2)" ]

o¢n  (k—a-1)! |(1-b¢)ktn—a
0"F&(O)  (k+n—a—1)]b"(1—|b]?)"
ac" B (k—a—1)! [(1 _ bC)k+na:| ' (2.7)



Int. J. Anal. Appl. (2023), 21:125 5

Then, we obtain
n

0"Fg,(b) (k—a+n—1)! b
e - (k—a—1)! (1_|b|2)”—°‘
0"Fg . (b) (k—a+n-1)! b"
TZ" - (k—a—1)! (1—1p]2)"
As before, for all { € D, we have
_ ok
20| = wra-n[A
< 2(k —a+1)2t—>
T -t
2e0| - wra-nfft _b'c';'kl
2(k —a+1)2t~@
(1-1¢P) "

Then, we have
(k —a+ 1)23 @
(1—1CP )

Thus, for every k € N, it can be demonstrated that Fgfk € L/pﬁ and

O] @) <

2UD ”FkaL:p"‘ =1

Throughout this paper, we use the notation A < B, which implies that there is a constant C > 0
such that A < CB. Therefore, when B < A < B, we use the notation A =~ B, meaning that A and B

are equivalent.

3. Boundedness

In this section, we characterize the boundedness composition operators from the harmonic Lipschitz
space Lip{, o € (0, 1) into the weighted harmonic Zygmund space ZE,, 0<pB<o0.

Let the sequence p;(w) = 7w/ + W), for w e D and j > 0 is an element of the integers.

Theorem 3.1. Suppose that p € S(D),0 < aa < 1and0 < B < co. Then the following are equivalent:
(1) The composition operator Cy, : Lipfy — ZE, is bounded.
(2) S_UP||C<ppj||gﬁ < 0o0.

(3) The quantities L1 = % and L, = %‘W are finite.

Proof. (1) == (2). Suppose that Cy, : Lipf; — ZE, is bounded. The sequence {p,} is bounded in the
harmonic Lipg space. Then, for each j > 0 and 0 < 8 < oo, we have

ICoil 22 < IColles.
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Therefore,

sup ||Coupill 26 < oo.
R oPjll 28

(2) = (3). Suppose that L = [|Cypj| ;5 < oo.
H

Since Cpp1 = @ + 7, for € D, we have

SICoP ()]
a¢?

2
9 [ngl(o] = ["(¢)].
a¢

Then,
1 L
1 — 2\B |, < = < = 1
sup(1 — 0Pl (Q)] < 51Copill g < 5 (31)

Moreover, we know that Cppa = 27%(¢? + ©2),

2

‘ﬂca“}’?(m = 22_0‘{(@’(0)2+<p(C)<p”(C)},

2

a[C(piff(O] = 22_a{(<ﬂ’(<))2+<p(C)<P”(C)}-
o¢

Since |p(¢)| < 1 for ¢ € D, we have

0*[Cop2(¢)]
o¢?

+e"(Q)1.

/ 1 62 C
¥/ (OF < 23_a{ . [;522(01 }

Thus,

B?[Cpp2(¢)]
52 ‘+

2
sup(1~ [CPPIF (O < 55g sup(1 — [P (\ Al ALY D
¢eD CeD ac
+sup(1— (¢RI Q)
¢eb

1 1 (2272 4+ 1)L
< 237—a||c¢’p2”2ﬂ + EHCtpleZg < T oo (3.2)

On the other hand, by the linearity of the test function (2.6), for k = 1,2,3 and { € D, we have

ICoFaieyullzs = (=10 D 0O lICopill 5o < L. (3.3)
J=0

From (2.7), for k =1,2,3 and { € D, we obtain

0%[CoFgie) k(O] _ (k= o)k —a+ 1)[e(Q)e' (O 4 k= a)[p(O)¢"(¢)]
oc? (1 le(0)R) "™ (1= le(R)
OlCoFgio kOl (k= a)(k — a+ Dp(Qe (O L (k= 2)[e(Oe"(O)]

a¢c” (1-lp(O)PR)*™ (1— o)) ™™
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Next, for k =1,2,3 we let

PICoFa (O] PICoFE e (O
qu((),k = ac? + 6?2 :

By solving the system of equations (3.4), for k =1, 2, 3, we get

2[p(O)¢'(0))? N 2[p(Q)¢'(0))?
(1-1ePR)*™  (1-lePR)*™

Moreover,

©(O)e"(0) L e Qe"(Q)
(1 le@©)R)™ (1 —|e)PR) ™
= (8= a)Qy)1 1+ (5 —2a)Qy)2 — (2= a)Qyp().3-

Thus, from (3.5) we obtain
(L= 1CPPleOPle' (O
(1= le(O)P)*™

1
< ZSUD(l — [¢|?)P <|Qw(g),1| + 2[Qyp(¢) 2| + |Q<p(c),3|>
¢eD

1
= 3 <HC¢ o)1l 25 T 20 CoF ) 2ll 25 + ||C<pF$(¢),3||Zﬁ>ﬁ L.

Furthermore, from (3.6) we obtain

(1 - [CRPle(O)]19" (O
(1- o))

1
< 5 225(1 —[¢[?)P ((3 — a)|Qyp(e). 1] + (5 = 20)[Qp(e) 2| + (2 — Ol)|Q<p(<),3|>

1
< 5 ((3 = )[Co o)1l z5 + (5= 20)[[CoFgie) oll 6 + (2 = 04)||C<pF$(¢),3||Zg>
< (5-2a)L.

Now we let 0 < s < 1, then if [©(¢)| > s in (3.7) we have
1— 2\B |,/ 2 L
L A= KPPIOP

(1= le(R)* = %
On the other hand, if we let [@p({)] < s in (3.2) we have
_Q-KPPIPQPR (2241l
(1 . |QD(C)‘2)27OL — (1 _ 52)2—0&23—0('

From (3.9) and (3.10) it follows that the quantity Ly is finite.

For the second part L,, we similarly let 0 < s < 1. Then if [©o({)| > s in (3.8), we have

(L= KPPl (@] _ 1
Ly = < —(5—2a)L.
T eopt e TS0

= Qo)1 = 2Qp(¢).2 + Pop(¢) 3-

(3.4)

(3:5)

(3.7)

(3:8)

(3.9)

(3.10)

(3.11)
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If we instead let |¢(¢)] < sin (3.1), we have

KPPl L
(- lelR) = = aT-re o1

Therefore, the quantity L, is finite.

(3) = (1). Assume L1 and L are finite.

Noting that for any ¢ € D and u € Har(D), since Lipg; C H37, by (2.1), [lulloc < [[ullLipy, we have

[(Cou)(0)] = [u(@(0))] < llullLipg-

Therefore, because |¢(0)| < 1, we note that

‘G(C u) ‘ '8(C u) O)' _ au(épéo))(p,(o)‘ 8u(<apéo)) /(0)’
SOl

T (- [e)P)te

On the other hand, for any ¢ € D and u € Har(D),

0%( _ |2Pu(e(Q)), Ou(e({)
0| = |5 lwor+ 2Dy
2
< WP | 25D ey |21 (3.13)
2 2 I I
Te| - [ED “(‘”§<))[w'(<>12+‘9“(“’“”<p~<<>\
ot o
O] ZEED ) [242)] -
e ¢

Now adding the above expressions (3.13) and (3.13), and multiplying by (1 — |¢|?)P, then we obtain

2 2
(- |c|2>ﬁ(\a o]+ <<)D

2 2
< - |<|2)ﬁ|<p’(<)|2( Tk ““@“”D
el (1290 [0ue()
b a-KPPl (<>|( o - )
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Since u € Har(D), by (2.4), we obtain

(- |<|2>5< ol (C)D

(1—|<|2>5<p'<<>|2<] (C)’ (<>D

IN

+

(-1 )%"(<)|<] fof+|5 (<>D

L A=KPPlOP
T (M= le(Q)fP) e
= (Li+Lo)lullLipg,

QKPP
(L= lo(ORy— 8

[ullz2-o +

Finally, by taking the supremum over all ¢ € D the boundedness of Cy, : Lipf; — Zﬁ follows from

above. The proof of Theorem 3.1 is complete. Il

4. Compactness

In this section, we shift our attention to discussing the compactness of Cy, : Lipy — ZE,. The
following criterion lemma for the compactness is similar to the case of Banach spaces of analytic

functions (the analytic case), see for example Proposition 3.11 of [13].

Lemma 4.1. The bounded operator T : Lip — Zg is compact if and only if |[Tuml|l ;6 — 0 as
H

m — oo, for any bounded sequence {um}men in Lip§; converges to zero uniformly on compact

subsets G C D.

The following result indicates that the compactness of the composition operators can be charac-
terized in terms of the sequence [|Cyps| 6. where pj(w) = j~*(w/ + W), for w € D and when j >0
H

IS an integer.

Theorem 4.1. Let p € S(D),0 < a <1 and 0 < B < oo and assume that the operator C, : Lip% —
Zg is bounded. Then the following are equivalent:

(1) The composition operator Cy, @ Lipfy — ZE is compact.

@ Jim 1Coplz =0

A-LPPR O A-KPPl" @) _
(3) |<P(C)\—>1 (I—|e(O)]2)2 = =0 and \(p(lflg?—ﬂ -0 a —

Proof. (1) = (2). As in the proof of Theorem 3.1, since the sequence {p;} is bounded in the
harmonic space Lipg and converges to zero uniformly on compact subsets G C D, if Cy, : Lip — Zg

is compact, then by Lemma 4.1,

lim ||Cypj = 0.
Jim Copil
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(2) = (3). Assume lim ||Cypp;
J—o0
€ > 0, there is N € N such that

| z6 = 0. Next, we let L be an upper bound for [|Cypjl| z6. Then, for
H H

||C<ppj||zg <g Vj>N

By using the test function (2.6), for k =1,2,3 and { € D, we have

ICoFgioalle < (110l |2>Z|<p |J||c¢pj||zﬁ}

+(1—lo(¢ Z (O Copill 52

< (1—|<p<<>|2>NL+a.
Moreover,
N e’} .
1CoF, (()2”25 = (1—|<P(C)|2)2[{Z+ Z }J|90(C)|J_1||C(ppj1||zﬁ]
Jj=1 Jj=N+1
< a-lePP Y
N+1 o) .
ICoFiaallzg = @=10OP? {3+ 3 1t - D@ 2ozl
Jj=2 j=N+2
< (1-lpppNNFDNE2), o

6
On the other hand, for any ¢ € D let 0 < s < 1 sufficiently close to 1 such that |@({)| > s, thus

|CoF, (lelzﬁ < 2¢, for k=1,2,3.

Since € is arbitrary, for k = 1,2, 3, it follows that
. N B
oo P llzg =0 (41)
Going back to the proof of Theorem 3.1, from (3.7) we know
(1= [CP)Ple' () <
(1= lp@OP)> ™ ~ Te(OF 12455

1€ o).kl 28 (4.2)

Moreover, from (3.8) we know

(1=1¢PPle" ()l (5—2a)
(1= 1le(QP )1 N "I(9] 10623

X NCohp(c) kll ze - (4.3)

Using (4.2), we have
im 2Pl (O _
2—a
eOl=1 (1= [p(¢)?)
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Moreover, by (4.3), we have

(1 - I¢)Ple" (O

w01 (1— o)

(3) = (1). Suppose that (3) holds. By Theorem 3.1 and the boundedness of Cy, : Lip% — Zg,

we see that

L W KPPROR KPPl

A= le(OR)ze (1= le)P)—=

For any € > 0, from (3), there is 0 < s < 1, where 1 > |p({)| > s, such that

(L= KPPIP©OP _ A= KPPl _,
(1-lp(O)PR)* (1—le())R)

(4.4)

Now we let a sequence {hp} in the harmonic space Lipf; with
M = sup ||hm||Lip,?‘, < 00,

meN

and h,, — 0 uniformly on compact subsets G C ID, as m — oo. To prove the compactness of

Co: Lipgy — Zg, it suffices to show that
mlﬂqoo ||C<phm’|gg = 0.

Thus, using (4.4), for [p(w)| > s we have

2

O[Cohm(Q)] ‘
ac? oc

0*hm(9(O) ], |9*hm(9({))

VAV IPN) 2

= itipe T VO O ac? ‘+ o D
—1A12\81 A Ohm(p(€)) | [0hm(v({))

£ (=Pl (o\(' L et D

(1- KPPIOR (- IR
= Nl (ST loEee + (e

Once again, going back to the proof of Theorem 3.1, from (3.1) and (3.2), we know

) = em (4.5)

L (227 4+ 1)L
sup(1 — [¢1)Ple"(O)] < 5 and sup(1 — ¢l (O < = (4.6)
CeD ¢eb
We know by Cauchy's estimates that, all the sequences {% , %}, {6522’"} and {%} are

convergent to zero on compact subsets G C D. Thus using (4.6), for any 0 < s < 1 if |¢(¢)| < s,
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we obtain

0%[Cohm ()]
o¢?

% hm(w(C))
ac2

(1- |<|2)ﬁ<
(227> 4 1)L <

. 82[cwfgq(<>1 D
ac

— 23—a

2
N hm(jg(cn D
ac

ik (\ahmé?@)) +‘ahmg§<<>> D

which implies that

0%[Cohm ()]
o¢?

li
m—oco

m (1- |<|2)5<

| 2(Cohm(O) D
ac

< lim

-~ m—oo

2hm(0(O)] . 182hm(@())
TJ%@OOTEQ

Adhm(@(¢)) ~[0hm(v(C))
ag*#ﬂlo‘ —a ':O'

+ lim ‘
m—00
Therefore, lim [Cy,hm(0)] =0 and lim ‘M|: 0 . Thus, we obtain
m— oo m— oo o¢
Jim [Cohmll 26 = 0. (4.9)
By Lemma 4.1, we verify that Cy, : Lipf; — Zﬁ is compact. [l
The proof of the main theorem of this section is complete. Our next goal of this paper is to provide

an approximation of the essential norm.

5. Essential norm

In this section, we characterize the essential norms of the composition operators from Lip to Zy.
We know that the essential norm || T ||e of an operator T is its distance from the compact operators
in the operator norm. Precisely, consider X and Y to be Banach spaces and let T : X — Y be a

bounded linear operator, then the essential norm of T between X and Y is then given by
ITllex—y = Inf{||T — Tlxoy|T : X = Y is compact}.

First, we define

B ey AP
el=1 (1= 1e(0)PR)
B> = limsu (1—|C|2)5|<p”(C)|

e©l-1 (1 o)) ™
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Theorem 5.1. Let ¢ € S(D) and consider the bounded operator Cy, : Lipf; — ZE,. Then

ICollesingzg, = 2%, {msup ICoFE(Olz5)

~ max{Bl, BQ}.
Proof. By using the test function (2.5), for k = 1,2,3 and { € D, we prove that

1@}353{I|m sup || Co Fikll 5 1 =2 1Co e jper s 26

Fix b € D, since for all 1 < k <3, Ff¥, € Lipf and Fg, converges uniformly to 0 on compact subsets

G C D. Then, for a compact operator 7 : Lipg — ZE,, we have

Thus,
ICo =Tl oz & TmsupllCo— T)EAg

> limsup [|CuFS kHZﬁ — limsup || TFy k||zﬁ
|b|—1 |b]—1

Hence, we obtain

N . N
1Colle Lipgze = inf 1Co =Tl = 1@5;3{“3;&[) HCwa,kllzg}-

Next, to prove that ||Cyl|

e,Lipk—2Z,
lim |o(w;)| = 1, for w € D. Moreover, we define
1—00

2 2 —
GO = FualO) = 5 Fgtu (O + 2 Ffup (),

Ki(Q) = Fown1(Q) = 2F 5 2(0) + Foi.3(€)-
For all ¢ € D, it can be proven that G;, K; € Lipf; and

Iim G;= Im K;=0,
lo(w;)|—1 lo(wi)|—1

uniformly on compact subsets G C . Moreover, by direct calculation we see that

Gile(w)) = Ki(p(w)) =0,

'ac (QD(W,))‘ B ’6G (w(w,))‘ [o(w;)]
B 3o (1= lo(w)PP)—

BGi(p(m) _ 9Gile(w)) _

a¢2 ac '
OKi(p(wi)) _ OKi(p(w)) _

a¢ ¢
ymwwm‘ mewm% 2lp(wi)

a¢2 (= Tle(w)2)Fe

=6 = max{Bi, Bo}, we define the sequence {w;} such that
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Since T : Lip}y — Zg IS a compact operator, by Lemma 4.1 we have

1Co =Tl jpg 25 = llrlilipIIC wGill z6 — li?lilip||TG’||35
> st - ] aZ(Gfé?§Wf>>>’+ a2(Gf(<p2<w,->>>'}
= timsup(1 — PPl )l | 252 o) | +| 22 ot |
= meun(t— PP 2 A

Similarly, we have

||C(P - TH/_,‘ oy 70 > ||m sup ||C<pKi||Zﬁ limsup HTK Hgﬁ
Ph H —00 i—00
. 8°(Ki(p(w))|  |8°(Ki(p(wi)))
> 1— 12\8 i i i i
> timsun(1 - [wP{ |75 7
. 0?(K; 82(K
= tmsup(1 I PPl ) { | s )| | 2 ot
1—00
. (W)@’ (w))[?
> limsup 1—|w,]?)B .
P oot = W (w2
Thus,
HC(PHe,L,'pz_)gg = ig,f”CQD_TH
. lo(wi)l[@" (i)
> limsup(1l — w;[?)P
R S P D
. [p(w)l|@" (W)
= limsup (1 — |w[?)P — = B,
e (1= lp(w)P)-e — 72
and
HC(PHe,L,'szgg = ig,fHCQO_TH
N2 1l (1) [2
> limsup(l — W'2 (6] |(p(WI)| |‘10(WI)|
= msel = )
. lp(w) |’ (w)]?
= limsup (1 — |w|?)P — = Bj.
(w1 (1= lp(w)Pyz-e —
Hence, we obtain
”C‘F’He,Lipg—)Zﬁ = igf HC(P —T1| = max{ By, B>}
Secondly, we prove that
1Colle 28 = 123;3{Ii|rpliulp 1CoFoill 2o }-
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For any 0 < < 1, let the operator 75 : Har(D) — Har(D) such that
(Tsu)(w) = us(w) = u(dw), u € Har(D).

Without a doubt, us — u uniformly on compact subsets of the unit disk as § — 1. Moreover, Ty is
a compact operator on Lipf; and ||73||L/pH—>L/pa <1.

For {6} C (0, 1) a sequence such that §; — 1 as / — oo. Thus, for all positive integers /i, we obtain
CoTs, : Lip — 28

is a compact operator. However, the definition of the essential norm, indicates that

HC(pHe'L,'pﬁﬁgg < /|—|>n(;]o sup HC(P - C‘p%iHLipﬁ*)Zg' (5-1)
Thus, we only need to demonstrate that
limsup [|(Cyp — CyTs, IIL,p o z0 =<  max {I|m SUDHCwa ngﬁ}
Let u € Lip§; such that [|ul|.ipx < 1, then
I(Co = CoTaull
= |u(p(0)) — u(bip(0))|
w1 25 o+ o)
+SUD(1— |<—|2)ﬁ{ 82[(U_U6,2)O(p(C)]‘ 82[("’_ LI5)O(,0(C)] } (5_2)
(eD ¢ 5‘(
It is obvious that
lim |u((0)) = u(6,(0))|
o(u —
~ i '(“”‘“(w(o»‘W(on
= im | 228 (o)l 031 =0 (53)

Moreover, we consider

0%[(u — us,) o ()] ‘Jr 0%[(u — ug,) o p(¢)] }

im sup(1 — |<|2>5{

i—r00 a¢2 o2
< limsup sup (1— ICIQ)B{ 32[(U—U51,)O(p(C)]‘+ 7] (v = us) o p(O)] }
oo [p(Q)|<én o¢? ac”
+ limsup  sup (1_|¢|2>ﬁ{ C"ZKU—%)O@(O]‘ Pl(u = vg) o 0(C)] }
i=oo ()] >0n 6¢? ac>

= ltp,i + J(p’,'. (5'4)
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Now let N € N be large enough and 9§; > % for all i > N. Then

{‘auu Ua)(w(C))‘ ’ (U—U5)(<p(C))]}

lpi < limsup sup (1 —1[¢1?)Ple”"(¢)]
=00 [@(O)<on

+ limsup sup (1—|C|2)ﬁ|<ﬂ/(f)|2{
i—oo |p(¢)|<on

0%[(u — us,)((¢ )]’

e

Since Cy @ Lip — Zf, is bounded, from Theorem 3.1, we see that
sup(1 — [¢[%)71e"(¢)] < oo,
¢eb
sup(1 — [¢*)P[e' () < oo,
¢eD

In addition, since the following limits are uniformly on compact subsets G C D,

jim 5,00 = 0 iy 6,24 _ 08
I—00 8{ 6(' I—00 ! az - azl
502U, _%%u 26 U5 02u
I|m ((5) a2~ ace ,_> m (0;) 8{2'
Then, we have
: ou(w) Ous.(w)| |Ou(w) Ous,(w) }
limsup su — ! - A =
2 2 2 2
limsup sup { 9 u(2vv) — 0 ”‘S'éW) 0 UE;V) - 0 ”‘S’EW)‘}: 0.
i—oo |wi<éy LI OC o¢ a¢ o¢
Hence, by the above equations, we have
lyi=0. (5.5)

Next, considering [@(¢)| > dn, we obtain

Joi < limsup sup (1—c] >5|<p”(<>|{'

i—oo o({)I>dn

Of(u - u(s)((p(C))]‘ ‘5[(U—U5)(<p(6))]}

+ s s (1-[0 )ﬁ|<p<c>|2{ Pl )0l ON, 82[(“‘;’?3(“’(0)]\}
< man w1 KPP | 2L 2000
" e, - '<'2>ﬁ'w”<<>'5f{ a”“é‘?“” 8““5‘2“” |
v imsp s (1= KPPIOR] | g D )
22u(5:9(¢)

© limsup  sup <1—|<|2>ﬁ|<p'<<>|2(6,->2{

i=oo  [p(C)I>6n

4
= > R,
j=1

n 8%(5,3;(())] '}

22
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Now we estimate the quantities R;, where j = 1,2, 3. We define

Go(€) = Fpi(Q) - sz(C)+ Fbs(C)
Kp(C) Fb,1(<>_2Fb,2(C)+Fb,3(<)-

Because ||ul|Lipy < 1, we have

swp (1~ ¢l (@[ 201D 2O

lp(Q)>dn

1 (3—a) ()|
< —lullise sup (1= [CP)Ple" () ~

O () (1—Jp(Q)PR)t—=
= sup [[CpGhll 2

[b]>6p
=< sup [|CuF]l +5 sup ||CoFi5ll
= 6+ —— 5

\b|>6n ©' b1 g 3—q Ib|> 8y ©!' b2 Z

2—o

T3 SUP ICeFEsl 2.

& |p|>dp

Consequently,

3

Ri < lemsupHC okl zs.
k=1 |b]—1

Similarly, we see that

3

R, = lemsupHC Foull z8-
k=1 IbI=1

Because ||ullipy < 1, for all u € Lipf, we have

0%u(e({)) ], |9?ule(Q))

_1A12\B A 2

|<p(?)J\26N(1 Sal2(9] { a2 |7 a2 }
- 225 2 2I<p( )I

= sup HC Kb”zl3

[b|>6p

[bl>6n [b]>6n |bI>

Thus, we obtain

3

Ry = lemsupHC Fbk||z,3.
k=1 |b]—1

Similarly, we see that

3

Ry = lemsupHC okl zs.
k=1 |bl=1

= sup [ICuFillze +2 sup 1€ Fiallze + sup ICeFiallz2-

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
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By the inequalities (5.7)-(5.11), we obtain

Jpi = l CoFg : 5.12
i = 193;3{ I‘rp‘iulp\l 0 b,kllzg} (5.12)

Hence, by applying (5.5) and (5.12), we determine that

limsup [[(Cp, — CoTs. |, - < max {limsup||C,F> .
I__)OOPH( ® ® 5,||L,pﬁ_>gg > 1§k§3{ |b|—>1p|| ® b,kHZg}

Finally, we prove that

[Coll 25 < max{B1, Ba}.

e,Lip‘,‘},%

According to the definition of the essential norm, we only need to prove that

limsup ||Cyp — Cw%f||upg—>zﬁ < max{Bi, Ba2}.

I—00
From (5.6), we see that
(<)l

Ry = limsup (1 —[¢P)Ple"(Q)] — =Bo. (5.13)
(Ol -1 (1= lo(O)PP)t—=
Similarly,
R, = Bs. (5.14)
Moreover, for (5.9), we see that
: 2p(Q)I?
Rs = limsup(1—[¢]?)Ple'(¢)|? — = Bj. 5.15
|<p(¢)\—>1( Fle(o) 3(1 = Jp(¢)?)%~ (5.15)
Similarly,
Ry = Bj. (5.16)
Hence, by the inequalities (5.13)-(5.16), we obtain
Cole sz = max{Ba, Ba}.
The proof now is complete. OJ

Theorem 5.2. Let ¢ € S(D) such that Cy, : Lip% — ZE is bounded. Then
1Colle Lipgrzt, = limsup [ Copill 5.
Proof. First, we prove that

||C¢||6,L/Df,—>ZE, = ||5n_>sogp ||C<ij||gﬁ
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Recall that, the sequence pj(w) = j~*(w’/ + W), for w € D and when j > 0 is an integer. Then

||Pj||L,-pcﬁ = 1 and p; converges uniformly to 0 on compact subsets G C . Therefore, by Lemma 4.1

we see that
lim ||7Tp; =0.
lim |Tpll
Hence,
1Co = Tl ipa sz = limsup [(Cp = T)pjll 26 = limsup |Copl| 26 -
Jj—o0 Jj—o00
Therefore,

1Colle Lipg—z8 = “J-”liip 1Copil z6- (5.17)

Next, we prove that
1Coll 26 = limsup||Cyp;
H Jj—oo

e.Lipd— ”zﬁ-

Since Cy : Lipy — Zf, is bounded, then by Theorem 3.1
L :=sup||Cup; < 0.
p 1Copill

Now consider the test function Fg¥, with b € D in (2.6), for kK = 1,2,3. By the linearity of Cy, for

any fixed positive integer n > 2, we have

1€ Fiukll 26

ry+k

< — |b|?)k Z (k= ) |b|J||C<pPJ||zﬁ
n+k—2 >

rG+k—a),

< ) HZ > ] ke PGl
j=k=1  j=n+k-1

< (1= b2 L + sup |Copjl -
Jjzn i

Then, for every positive integer n > 2 and k =1, 2, 3, we obtain

limsup [[CoFoillzo < sup(|Copyll 22
|b|—1 Jjzn H

< limsup[|Cyp;

| 25
J—o0 Zh

Hence,

| CoF, =< i Copj .
1@;??3{ |msup|| kaZﬁ} = lj”lilipﬂ <pPJ||Zg

By Theorem 5.1, we obtain

s =< max {Ilm sup||C Fbk||Z,3}< sup |1Cop; (5.18)

||C(pHe,Lipﬁ~>Z 1<k< HZE

By (5.17) and (5.18), we have achieved the desired result. O
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6. Conclusions

In this work, an interesting result in harmonic mappings about the operator-theoretic properties of
composition operators between harmonic Lipschitz spaces Lip%, (0 < o < 1) and weighted harmonic
Zygmund spaces ZE,, (0 < B < o0) has been obtained. It is well known that the existing similar results
in spaces of analytic functions have been applied many times to the composition operators between
Lipg, (0 < o < 1) and weighted harmonic Zygmund spaces Zﬁ, (0 < B < o0). We hope that this
study can attract people’s attention to the operator theory on harmonic mappings.
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