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PETER-WEYL THEOREM FOR HOMOGENEOUS SPACES OF COMPACT

GROUPS

ARASH GHAANI FARASHAHI∗

Abstract. This paper presents a structured formalism for a constructive generalization of the Peter-

Weyl Theorem over homogeneous spaces of compact groups. Let H be a closed subgroup of a compact

group G and µ be the normalized G-invariant measure on the compact left coset space G/H. We then
present an abstract TH -version of the Peter-Weyl Theorem for the Hilbert function space L2(G/H, µ).

1. Introduction

The abstract aspects of harmonic analysis over homogeneous spaces of compact non-Abelian groups
or precisely left coset (resp. right coset) spaces of non-normal subgroups of compact non-Abelian
groups is placed as building blocks for classical harmonic analysis [5,7], coherent states analysis [8,11],
theoretical and particle physics [1]. Over the last decades, abstract and computational aspects of
Plancherel formulas over symmetric spaces have achieved significant popularity in geometric analysis,
mathematical physics and scientific computing (computational engineering), see [2–4, 6, 12, 13] and
references therein.

The Peter-Weyl theorem is a fundamental result in the theory of classical harmonic analysis, apply-
ing to compact topological groups that are not necessarily abelian. It was initially proved by Hermann
Weyl and Fritz Peter, in the setting of a compact topological groups [15]. The theorem is a collection
of results generalizing the significant facts about the decomposition of the regular representations of
finite groups, as presented by F. G. Frobenius and Issai Schur, see [1, 9, 10] and classical references
therein. The theorem has three parts. The first part states that the matrix coefficients of irreducible
representations of a compact groups G are dense in the space C(G) of continuous complex-valued func-
tions on G, and thus also in the space L2(G) of square-integrable functions. The second part asserts
the complete reducibility of unitary representations of G. The final part then asserts that the regular
representation of G on L2(G) decomposes as the direct sum of all irreducible unitary representations.
Moreover, the matrix coefficients of the irreducible unitary representations form an orthonormal basis
of L2(G).

Let G be a compact group and H be a closed subgroup of G. Also, let G/H be the left coset space

of H in G and Ĝ/H be the abstract dual space of G/H. Let µ be the normalized G-invariant measure
over the homogeneous space G/H with respect to the probability measures of H and G, associated to
the Weil’s formula. Then we present a structured formalism for a constructive generalization of the
Peter-Weyl Theorem for the Hilbert function space L2(G/H,µ).

The paper is organized as follows. Section 2 is devoted to fixing notations and a brief summary
on the non-Abelian Fourier analysis of compact groups, general formalism of the Peter-Weyl theorem,
and preliminaries and classical results on harmonic analysis of compact homogeneous spaces. Then we
present a systematic study of abstract harmonic analysis over the Hilbert function space L2(G/H,µ).

In section 4, using the abstract notion of the dual space Ĝ/H of the homogeneous space G/H, we
prove that the Hilbert function space L2(G/H,µ) satisfies a canonical decomposition into a direct sum
of some closed and mutually orthogonal subspaces. This decomposition coincides with the Peter-Weyl
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decomposition, when H is a normal subgroup of G. This result can be considered as a generalization
of the Peter-Weyl Theorem for homogeneous spaces of compact groups.

2. Preliminaries and Notations

Let H be a separable Hilbert space. An operator T ∈ B(H) is called a Hilbert-Schmidt operator
if for one, hence for any orthonormal basis {ek} of H we have

∑
k ‖Tek‖2 < ∞. The set of all

Hilbert-Schmidt operators on H is denoted by HS(H) and for T ∈ HS(H) the Hilbert-Schmidt norm
of T is ‖T‖2HS =

∑
k ‖Tek‖2. The set HS(H) is a self adjoint two sided ideal in B(H) and if H is

finite-dimensional we have HS(Hπ) = B(H). An operator T ∈ B(H) called trace-class, whenever
‖T‖tr = tr[|T |] <∞, where tr[T ] =

∑
k〈Tek, ek〉 and |T | = (TT ∗)1/2, see [14].

Let G be a compact group with the Haar measure dx, H be a closed subgroup of G with the left
Haar measure dh. The left coset space G/H is considered as a locally compact homogeneous space
that G acts on it from the left and q : G→ G/H given by x 7→ q(x) := xH is the surjective canonical
mapping. The function space C(G/H) consists of all functions TH(f), where (see Proposition 2.48
of [1]) f ∈ C(G) and

TH(f)(xH) =

∫
H

f(xh)dh. (2.1)

Let µ be a Radon measure on G/H and x ∈ G. The translation µx of µ is defined by µx(E) = µ(xE),
for Borel subsets E of G/H. The measure µ is called G-invariant if µx = µ, for x ∈ G. If G is compact,
the homogeneous space G/H has a G-invariant measure µ, which satisfies the following Weil’s formula,
for f ∈ L1(G) (see [1]) ∫

G/H

TH(f)(xH)dµ(xH) =

∫
G

f(x)dx. (2.2)

If µ is a G-invariant measure on the homogeneous space G/H and p ≥ 1, the notation Lp(G/H,µ)
stands for the Banach space of all equivalence classes of µ-measurable complex valued functions φ :
G/H → C such that ‖φ‖Lp(G/H,µ) <∞.

Each irreducible representation of G is finite dimensional and every unitary representation of G is
a direct sum of irreducible representations, see [1, 9]. The set of of all unitary equivalence classes of

irreducible unitary representations of G is denoted by Ĝ. This definition of Ĝ is in essential agreement
with the classical definition when G is Abelian, since each character of an Abelian group is a one
dimensional representation of G. If π is any unitary representation of G, for u, v ∈ Hπ the functions
πu,v(x) = 〈π(x)u, v〉 are called matrix elements of π. If {ej} is an orthonormal basis for Hπ, then πij
means πei,ej . The notation Eπ is used for the linear span of the matrix elements of π and the notation
E is used for the linear span of

⋃
[π]∈Ĝ Eπ. The Peter-Weyl Theorem (see [1,9]) guarantees that if G is

a compact group, E is uniformly dense in C(G), L2(G) =
⊕

[π]∈Ĝ Eπ, and {d−1/2π πij : i, j = 1...dπ, [π] ∈
Ĝ} is an orthonormal basis for L2(G). Using the Peter-Weyl Theorem, for f ∈ L2(G) we have

f =
∑
[π]∈Ĝ

dπ∑
i,j=1

cπij(f)πij , (2.3)

where cπi,j(f) = dπ〈f, πij〉L2(G).

3. Abstract Harmonic Analysis over Homogeneous Spaces of Compact Groups

Throughout this article we assume thatH is a closed subgroup of a compact groupG with normalized
Haar measures dh and dx respectively.

We start this section with an extension of the linear map TH : C(G) → C(G/H) for other function
spaces related to the homogeneous space G/H. If p = 1, it is easy to check that ‖TH(f)‖L1(G/H,µ) ≤
‖f‖L1(G).

Proposition 3.1. Let H be a closed subgroup of a compact group G. The linear map TH : C(G) →
C(G/H) is a uniformly continuous.
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Proof. Let f ∈ C(G) and x ∈ G. Then we have

|TH(f)(xH)| =
∣∣∣∣∫
H

f(xh)dh

∣∣∣∣ ≤ ∫
H

|f(xh)|dh ≤ ‖f‖sup
(∫

H

dh

)
= ‖f‖sup,

which implies ‖TH(f)‖sup ≤ ‖f‖sup. �

Next we prove that the linear map TH is norm-decreasing in L2-spaces.

Theorem 3.1. Let H be a closed subgroup of a compact group G, µ be the normalized G-invariant
measure on G/H associated to the Weil’s formula. The linear map TH : C(G)→ C(G/H) has a unique
extension to a bounded linear map from L2(G) onto L2(G/H,µ).

Proof. We shall show that, each f ∈ C(G) satisfies ‖TH(f)‖L2(G/H,µ) ≤ ‖f‖L2(G). Let f ∈ C(G). Using
compactness of H and the Weil’s formula we have

‖TH(f)‖2L2(G/H,µ) =

∫
G/H

|TH(f)(xH)|2dµ(xH)

=

∫
G/H

∣∣∣∣∫
H

f(xh)dh

∣∣∣∣2 dµ(xH)

≤
∫
G/H

(∫
H

|f(xh)|dh
)2

dµ(xH)

≤
∫
G/H

∫
H

|f(xh)|2dhdµ(xH)

=

∫
G/H

∫
H

|f |2(xh)dhdµ(xH)

=

∫
G/H

TH(|f |2)(xH)dµ(xH) =

∫
G

|f(x)|2dx = ‖f‖2L2(G).

Thus, we can extend TH to a bounded linear operator from L2(G) onto L2(G/H,µ), which we still
denote it by TH . �

Let J p(G,H) := {f ∈ Lp(G) : TH(f) = 0}. Then, J 2(G,H)⊥ is the orthogonal completion of the
closed subspace J 2(G,H) in L2(G).
As an immediate consequence of Proposition 3.1 we deduce the following corollary.

Corollary 3.1. Let H be a closed subgroup of a compact group G and µ be a G-invariant measure on
G/H. The linear map TH : L2(G)→ L2(G/H,µ) is partial isometric.

Proof. Let ϕ ∈ L2(G/H,µ) and ϕq := ϕ ◦ q. Then, we have ϕq ∈ L2(G). Indeed,

‖ϕq‖2L2(G) =

∫
G

|ϕq(x)|2dx

=

∫
G/H

TH
(
|ϕq|2

)
(xH)dµ(xH)

=

∫
G/H

(∫
H

|ϕq(xh)|2dh
)
dµ(xH)

=

∫
G/H

(∫
H

|ϕ(xhH)|2dh
)
dµ(xH)

=

∫
G/H

(∫
H

|ϕ(xH)|2dh
)
dµ(xH)

=

∫
G/H

|ϕ(xH)|2
(∫

H

dh

)
dµ(xH)

=

∫
G/H

|ϕ(xH)|2dµ(xH) = ‖ϕ‖2L2(G/H,µ).
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Also T ∗H(ϕ) = ϕq and THT
∗
H(ϕ) = ϕ. Because using the Weil’s formula, for all f ∈ L2(G) we achieve

〈T ∗H(ϕ), f〉L2(G) = 〈ϕ, TH(f)〉L2(G/H,µ)

=

∫
G/H

ϕ(xH)TH(f)(xH)dµ(xH)

=

∫
G/H

ϕ(xH)TH(f)(xH)dµ(xH)

=

∫
G/H

TH(ϕq.f)(xH)dµ(xH) =

∫
G

ϕq(x)f(x)dx = 〈ϕq, f〉L2(G).

Now a straightforward calculation implies TH = THT
∗
HTH . Then by Theorem 2.3.3 of [14], TH is a

partial isometric operator. �

We can conclude the following corollaries as well.

Corollary 3.2. Let H be a closed subgroup of a compact group G. Let PJ 2(G,H) and PJ 2(G,H)⊥ be

the orthogonal projections onto the closed subspaces J 2(G,H) and J 2(G,H)⊥ respectively. Then, for
each f ∈ L2(G) and a.e. x ∈ G we have

PJ 2(G,H)⊥(f)(x) = TH(f)(xH), PJ 2(G,H)(f)(x) = f(x)− TH(f)(xH). (3.1)

Corollary 3.3. Let H be a compact subgroup of a locally compact group G and µ be a G-invariant
measure on G/H. The following statements hold.

(1) J 2(G,H)⊥ = {ψq : ψ ∈ L2(G/H,µ)}.
(2) For all f ∈ J 2(G,H)⊥ and each h ∈ H we have Rhf = f .
(3) For all ψ ∈ L2(G/H,µ) we have ‖ψq‖L2(G) = ‖ψ‖L2(G/H,µ).

(4) For all f, g ∈ J 2(G,H)⊥ we have 〈TH(f), TH(g)〉L2(G/H,µ) = 〈f, g〉L2(G).

Remark 3.1. Invoking Corollary 3.3 one can regard L2(G/H,µ) as a closed subspace of L2(G), that
is the subspace consists of all f ∈ L2(G) which satisfies Rhf = f for all h ∈ H. Then Theorem 3.1
and Proposition 3.1 guarantees that the linear map

TH : L2(G)→ L2(G/H,µ) ⊂ L2(G)

is an orthogonal projection.

4. Peter-Weyl Theorem for Homogeneous Spaces of Compact Groups

For a closed subgroup H of G, define

H⊥ :=
{

[π] ∈ Ĝ : π(h) = I for all h ∈ H
}
, (4.1)

If G is Abelian, each closed subgroup H of G is normal and the locally compact group G/H is Abelian

and so Ĝ/H is precisely the set of all characters (one dimensional irreducible representations) of G
which are constant on H, that is precisely H⊥. If G is a non-Abelian group and H is a closed normal

subgroup of G, then the dual space Ĝ/H which is the set of all unitary equivalence classes of unitary
representations of G/H, has meaning and it is well-defined. Indeed, G/H is a non-Abelian group.

In this case, the map Φ : Ĝ/H → H⊥ defined by σ 7→ Φ(σ) := σ ◦ q is a Borel isomorphism and

Ĝ/H = H⊥, see [1]. Thus if H is normal, H⊥ coincides with the classic definitions of the dual space
either when G is Abelian or non-Abelian.

For a closed subgroup H of G and a continuous unitary representation (π,Hπ) of G, define

TπH :=

∫
H

π(h)dh, (4.2)

where the operator valued integral (4.2) is considered in the weak sense. In other words,

〈TπHζ, ξ〉 =

∫
H

〈π(h)ζ, ξ〉dh, for ζ, ξ ∈ Hπ. (4.3)
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The function h 7→ 〈π(h)ζ, ξ〉 is bounded and continuous on H. Since H is compact, the right integral
is the ordinary integral of a function in L1(H). Hence, TπH defines a bounded linear operator on Hπ
with ‖TπH‖ ≤ 1.

Remark 4.1. Let (π,Hπ) be a continuous unitary representation of G with TπH 6= 0. Let (σ,Hσ) be a
continuous unitary representation of G such that [π] = [σ]. Let S : Hπ → Hσ be the unitary operator
which satisfies σ(x)S = Sπ(x) for all x ∈ G. Then we have

STπH = S

(∫
H

π(h)dh

)
=

∫
H

Sπ(h)dh

=

∫
H

σ(h)Sdh =

(∫
H

σ(h)dh

)
S = TσHS,

which implies that TσH 6= 0 as well. Thus we deduce that the non-zero property of TπH depends only on
[π], that is the unitary equivalence class of (π,Hπ).

Let
KHπ := {ζ ∈ Hπ : π(h)ζ = ζ ∀h ∈ H} . (4.4)

Then, KHπ is a closed subspace of Hπ and R(TπH) = KHπ , where

R(TπH) = {TπHζ : ζ ∈ Hπ}.
It is easy to see that [π] ∈ H⊥ if and only if KHπ = Hπ.

Proposition 4.1. Let H be a closed subgroup of a compact group G and (π,Hπ) be a continuous
unitary representation of G. Then,

(1) The operator TπH is an orthogonal projection onto KHπ .
(2) The operator TπH is unitary if and only if [π] ∈ H⊥.

Proof. (1) Using compactness of H, it can be easily checked that (TπH)∗ = TπH . As well as we achieve
that

TπHT
π
H =

(∫
H

π(h)dh

)(∫
H

π(t)dt

)
=

∫
H

π(h)

(∫
H

π(t)dt

)
dh

=

∫
H

(∫
H

π(h)π(t)dt

)
dh

=

∫
H

(∫
H

π(ht)dt

)
dh =

∫
H

TπHdt = TπH .

(2) Since TπH is a projection, the operator TπH is unitary if and only if TπH = I. The operator TH is
identity if and only if π(h) = I for all h ∈ H. Thus, TπH is unitary if and only if [π] ∈ H⊥.

�

Definition 4.1. Let H be a closed subgroup of a compact group G. Then we define the dual space of

G/H, as the subset of Ĝ which is given by

Ĝ/H :=
{

[π] ∈ Ĝ : TπH 6= 0
}

=

{
[π] ∈ Ĝ :

∫
H

π(h)dh 6= 0

}
. (4.5)

Evidently, any closed subgroup H of G satisfies

H⊥ ⊂ Ĝ/H. (4.6)

Next we shall show that the reverse inclusion of (4.6) holds, if and only if H is a normal subgroup
of G.

Theorem 4.1. Let H be a closed normal subgroup of a compact group G. Then

Ĝ/H = H⊥.



PETER-WEYL THEOREM FOR HOMOGENEOUS SPACES OF COMPACT GROUPS 27

Proof. Let H be a closed normal subgroup of a compact group G. It is sufficient to show that

Ĝ/H ⊂ H⊥. Let [π] ∈ Ĝ/H be given. Due to the normality of H in G, for all x ∈ G the map
τx : H → H given by h 7→ τx(h) := x−1hx belongs to Aut(H) and x−1Hx = H. Invoking compactness
of G we have d (τx(h)) = dh, for x ∈ G. Now, for x ∈ G we get∫

H

π(h)dh =

∫
xHx−1

π(τx(h))d (τx(h))

=

∫
H

π(τx(h))dh

=

∫
H

π(x)∗π(h)π(x)dh

= π(x)∗
(∫

H

π(h)dh

)
π(x) = π(x)∗TπHπ(x).

Therefore π(x)TπH = TπHπ(x) for x ∈ G, which implies TπH ∈ C(π). Irreducibility of π guarantees that
TπH = αI for some non-zero α ∈ C with |α| ≤ 1. Thus, for t ∈ H we can write

π(t) = α−1π(t)αI

= α−1π(t)TπH

= α−1
∫
H

π(th)dh

= α−1
∫
H

π(h)dh = α−1TπH = I,

which implies [π] ∈ H⊥. �

Let (π,Hπ) be a continuous unitary representation of G such that TπH 6= 0. Then the functions
πHζ,ξ : G/H → C defined by

πHζ,ξ(xH) := 〈π(x)TπHζ, ξ〉 for xH ∈ G/H, (4.7)

for ξ, ζ ∈ Hπ are called H-matrix elements of (π,Hπ).
For xH ∈ G/H and ζ, ξ ∈ Hπ, we have

|πHζ,ξ(xH)| = |〈π(x)TπHζ, ξ〉|
≤ ‖π(x)TπHζ‖‖ξ‖ ≤ ‖TπHζ‖‖ξ‖ ≤ ‖ζ‖‖ξ‖.

Also we can write

πHζ,ξ(xH) = 〈π(x)TπHζ, ξ〉 = πTπHζ,ξ(x). (4.8)

Invoking definition of the linear map TH and also TπH we have

TH(πζ,ξ)(xH) =

∫
H

πζ,ξ(xh)dh

=

∫
H

〈π(xh)ζ, ξ〉dh

=

∫
H

〈π(x)π(h)ζ, ξ〉dh = 〈π(x)TπHζ, ξ〉,

which implies that

TH(πζ,ξ) = πHζ,ξ. (4.9)

Theorem 4.2. Let H be a closed subgroup of a compact group G, µ be the normalized G-invariant
measure and (π,Hπ) be a continuous unitary representation of G such that TπH 6= 0. Then

(1) The subspace Eπ(G/H) depends on the unitary equivalence class of π.
(2) The subspace Eπ(G/H) is a closed left invariant subspace of L1(G/H,µ).
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Proof. (1) Let (σ,Hσ) be a continuous unitary representation of G such that [π] = [σ]. Let S : Hπ →
Hσ be the unitary operator which satisfies σ(x)S = Sπ(x) for all x ∈ G. Remark 4.1 guarantees that
STπH = TσHS and also TσH 6= 0. Thus for x ∈ G and ζ, ξ ∈ Hπ we can write

πHζ,ξ(xH) = 〈π(x)TπHζ, ξ〉Hπ
= 〈S−1σ(x)STπHζ, ξ〉Hπ
= 〈σ(x)STπHζ, Sξ〉Hσ
= 〈σ(x)TσHSζ, Sξ〉Hσ = σHSζ,Sξ(xH),

which implies that Eπ(G/H) = Eσ(G/H).
(2) It is straightforward. �

If ζ, ξ belongs to an orthonormal basis {ei} for Hπ, H-matrix elements of [π] with respect to an
orthonormal basis {ej} changes in the form

πHij (xH) = πHej ,ei(xH) = 〈π(x)TπHej , ei〉, for xH ∈ G/H. (4.10)

The linear span of the H-matrix elements of a continuous unitary representation (π,Hπ) satisfying
TπH 6= 0, is denoted by Eπ(G/H) which is a subspace of C(G/H).

Definition 4.2. Let H be a closed subgroup of a compact group G and [π] ∈ Ĝ/H. An ordered
orthonormal basis B = {e` : 1 ≤ ` ≤ dπ} of the Hilbert space Hπ is called H-admissible, if it is an
extension of an orthonormal basis {e` : 1 ≤ ` ≤ dπ,H} of the closed subspace KHπ , which equivalently
means that dπ,H-first elements of B be an orthogonal basis of KHπ .

Let [π] ∈ Ĝ/H and Bπ = {e` : 1 ≤ ` ≤ dπ} be an H-admissible basis for the representation space
Hπ. Then, each πi` with 1 ≤ i ≤ dπ and 1 ≤ ` ≤ dπ,H , is a well-defined continuous function over G/H.
Let E`π(G/H) be the subspace of C(G/H) spanned by the set B`

π := {
√
dππi` : 1 ≤ i ≤ dπ}.

Proposition 4.2. Let [π] ∈ Ĝ/H, Bπ be an H-admissible basis for the representation space Hπ, and
1 ≤ ` 6= `′ ≤ dπ,H . Then

(1) dim E`π(G/H) = dπ and B`
π is an orthonormal basis for E`π(G/H).

(2) E`π(G/H) is a closed left translation invariant subspace of C(G/H).

(3) E`′π (G/H) ⊥ E`π(G/H).

Proof. (1) Let 1 ≤ i, i′ ≤ dπ. Then by Theorem 27.19 of [10] we get

〈πi`, πi′`〉L2(G/H,µ) = 〈πi`, πi′`〉L2(G) = d−1π δii′ .

Since dim E`π(G/H) ≤ dπ we achieve that B`
π is an orthonormal basis for E`π(G/H) and hence

dim E`π(G/H) = dπ.
(2) It is straightforward.
(3) Let 1 ≤ i, i′ ≤ dπ. Applying Theorem 27.19 of [10] we get

〈πi`, πi′`′〉L2(G/H,µ) = 〈πi`, πi′`′〉L2(G) = d−1π δii′δ``′ ,

which completes the proof. �

The following theorem shows that H-admissible bases lead to orthogonal decompositions of the
subspace Eπ(G/H).

Theorem 4.3. Let H be a closed subgroup of a compact group G. Let [π] ∈ Ĝ/H and Bπ = {e`,π :
1 ≤ ` ≤ dπ} be an H-admissible basis for the representation space Hπ. Then Bπ(G/H) := {

√
dππi` :

1 ≤ i ≤ dπ, 1 ≤ ` ≤ dπ,H} is an orthonormal basis for the Hilbert space Eπ(G/H) and hence it satisfies
the following direct sum decomposition

Eπ(G/H) =

dπ,H⊕
`=1

E`π(G/H). (4.11)
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Proof. It is straightforward to check that Bπ(G/H) spans the subspace Eπ(G/H). Then Proposition
4.2 guarantees that Bπ(G/H) is an orthonormal set in Eπ(G/H). Since dim Eπ(G/H) ≤ dπ,Hdπ we
deduce that it is an orthonormal basis for Eπ(G/H), which automatically implies the decomposition
(4.11). �

Next proposition lists basic properties of H-matrix elements.

Proposition 4.3. Let H be a closed subgroup of a compact group G, µ be the normalized G-invariant
measure on G/H, and (π,Hπ) be a continuous unitary representation of G. Then,

(1) TπH = 0 if and only if Eπ(G) ⊆ J 2(G,H).
(2) If TπH 6= 0 then TH(Eπ(G)) = Eπ(G/H) and T ∗H(Eπ(G/H)) ⊆ Eπ(G).
(3) Eπ(G) ⊆ J 2(G,H)⊥ if and only if π(h) = I for all h ∈ H.

Then we can prove the following orthogonality relation concerning the functions in E(G/H).

Theorem 4.4. Let H be a closed subgroup of a compact group G, µ be a normalized G-invariant

measure on G/H and [π] 6= [σ] ∈ Ĝ/H. The closed subspaces Eπ(G/H) and Eσ(G/H) are orthogonal
to each other as subspaces of the Hilbert space L2(G/H,µ).

Proof. Let ψ ∈ Eπ(G/H) and ϕ ∈ Eσ(G/H). Then we have ψq ∈ Eπ(G) and also ϕq ∈ Eσ(G). Using
Proposition 4.3, Corollary 3.3, and Theorem 27.15 of [10], we get

〈ϕ,ψ〉L2(G/H,µ) = 〈ϕq, ψq〉L2(G) = 0.

which completes the proof. �

We can define
E(G/H) := the linear span of

⋃
[π]∈Ĝ/H

Eπ(G/H). (4.12)

Next theorem presents some analytic aspects of the function space E(G/H).

Theorem 4.5. Let H be a closed subgroup of a compact group G and µ be the normalized G-invariant
measure on G/H associated to the Weil’s formula. Then,

(1) The linear operator TH maps E(G) onto E(G/H).
(2) E(G/H) is ‖.‖L2(G/H,µ)-dense in L2(G/H,µ).
(3) E(G/H) is ‖.‖sup-dense in C(G/H).

Proof. (1) It is straightforward.
(2) Let φ ∈ L2(G/H,µ) and also f ∈ L2(G) with TH(f) = φ. Then by ‖.‖L2(G)-density of E(G) in

L2(G) we can pick a sequence {fn} in E(G) such that f = ‖.‖L2(G) − limn fn. By Proposition 4.3 we

have {TH(fn)} ⊆ E(G/H). Then continuity of the linear map TH : L2(G)→ L2(G/H,µ) implies

φ = TH(f) = ‖.‖L2(G/H,µ) − lim
n
TH(fn),

which completes the proof.
(3) Invoking uniformly boundedness of TH , uniformly density of E(G) in C(G), and the same argument
as used in (1), we get ‖.‖sup-density of E(G/H) in C(G/H). �

The following theorem can be considered as an abstract extension of the Peter-Weyl Theorem for
homogeneous spaces of compact groups.

Theorem 4.6. Let H be a closed subgroup of a compact group G and µ be the normalized G-invariant
measure on G/H. The Hilbert space L2(G/H,µ) satisfies the following orthogonality decomposition

L2(G/H,µ) =
⊕

[π]∈Ĝ/H

Eπ(G/H). (4.13)

Proof. Using Peter-Weyl Theorem, Proposition 4.3, and since the bounded linear map TH : L2(G)→
L2(G/H,µ) is surjective we achieve that each ϕ ∈ L2(G/H,µ) has a decomposition to elements of

Eπ(G/H) with [π] ∈ Ĝ/H, namely

ϕ =
∑

[π]∈Ĝ/H

cπϕπ, (4.14)
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with ϕπ ∈ Eπ(G/H) for all [π] ∈ Ĝ/H. Since the subspaces Eπ(G/H) with [π] ∈ Ĝ/H are mutually
orthogonal we conclude that decomposition (4.14) is unique for each ϕ, which guarantees (4.13). �

We immediately deduce the following corollaries.

Corollary 4.1. Let H be a closed subgroup of a compact group G and µ be the normalized G-invariant

measure on G/H. For each [π] ∈ Ĝ/H, let Bπ = {e`,π : 1 ≤ ` ≤ dπ} be an H-admissible basis for the
representation space Hπ. Then we have the following statements.

(1) The Hilbert space L2(G/H,µ) satisfies the following direct sum decomposition

L2(G/H,µ) =
⊕

[π]∈Ĝ/H

dπ,H⊕
`=1

E`π(G/H), (4.15)

(2) The set B(G/H) := {πi` : 1 ≤ i ≤ dπ, 1 ≤ ` ≤ dπ,H} constitutes an orthonormal basis for the
Hilbert space L2(G/H,µ).

(3) Each ϕ ∈ L2(G/H,µ) decomposes as the following

ϕ =
∑

[π]∈Ĝ/H

dπ

dπ,H∑
`=1

dπ∑
i=1

〈ϕ, πi`〉L2(G/H,µ)πi`, (4.16)

where the series is converges in L2(G/H,µ).

Remark 4.2. Let H be a closed normal subgroup of a compact group G. Also, let µ be the normalized
G-invariant measure over G/H associated to the Weil’s formula. Then G/H is a compact group and
the normalized G-invariant measure µ is a Haar measure of the quotient compact group G/H. By

Theorem 4.1, we deduce that Ĝ/H = H⊥, and for each [π] ∈ Ĝ/H we get TπH = I and dπ,H = dπ.
Thus we obtain

L2(G/H) =
⊕

[π]∈H⊥
Eπ(G/H),

which precisely coincides with the decomposition associated to applying the Peter-Weyl Theorem to the
compact quotient group G/H.
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