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PETER-WEYL THEOREM FOR HOMOGENEOUS SPACES OF COMPACT
GROUPS

ARASH GHAANI FARASHAHI*

ABSTRACT. This paper presents a structured formalism for a constructive generalization of the Peter-
Weyl Theorem over homogeneous spaces of compact groups. Let H be a closed subgroup of a compact
group G and p be the normalized G-invariant measure on the compact left coset space G/H. We then
present an abstract Tr-version of the Peter-Weyl Theorem for the Hilbert function space L2(G/H, ).

1. INTRODUCTION

The abstract aspects of harmonic analysis over homogeneous spaces of compact non-Abelian groups
or precisely left coset (resp. right coset) spaces of non-normal subgroups of compact non-Abelian
groups is placed as building blocks for classical harmonic analysis [5,7], coherent states analysis [8,11],
theoretical and particle physics [1]. Over the last decades, abstract and computational aspects of
Plancherel formulas over symmetric spaces have achieved significant popularity in geometric analysis,
mathematical physics and scientific computing (computational engineering), see [2—4, 6,12, 13] and
references therein.

The Peter-Weyl theorem is a fundamental result in the theory of classical harmonic analysis, apply-
ing to compact topological groups that are not necessarily abelian. It was initially proved by Hermann
Weyl and Fritz Peter, in the setting of a compact topological groups [15]. The theorem is a collection
of results generalizing the significant facts about the decomposition of the regular representations of
finite groups, as presented by F. G. Frobenius and Issai Schur, see [1,9,10] and classical references
therein. The theorem has three parts. The first part states that the matrix coefficients of irreducible
representations of a compact groups G are dense in the space C(G) of continuous complex-valued func-
tions on G, and thus also in the space L?(G) of square-integrable functions. The second part asserts
the complete reducibility of unitary representations of G. The final part then asserts that the regular
representation of G on L?(G) decomposes as the direct sum of all irreducible unitary representations.
Moreover, the matrix coefficients of the irreducible unitary representations form an orthonormal basis
of L?(G).

Let G be a compact group and H be a closed subgroup of G. Also, let G/H be the left coset space
of H in G and (?/?[ be the abstract dual space of G/H. Let u be the normalized G-invariant measure
over the homogeneous space G/H with respect to the probability measures of H and G, associated to
the Weil’s formula. Then we present a structured formalism for a constructive generalization of the
Peter-Weyl Theorem for the Hilbert function space L?(G/H, p).

The paper is organized as follows. Section 2 is devoted to fixing notations and a brief summary
on the non-Abelian Fourier analysis of compact groups, general formalism of the Peter-Weyl theorem,
and preliminaries and classical results on harmonic analysis of compact homogeneous spaces. Then we
present a systematic study of abstract harmonic analysis over the Hilbert function space L*(G/H, u).

In section 4, using the abstract notion of the dual space G/H of the homogeneous space G/H, we
prove that the Hilbert function space L?(G/H, j1) satisfies a canonical decomposition into a direct sum
of some closed and mutually orthogonal subspaces. This decomposition coincides with the Peter-Weyl
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decomposition, when H is a normal subgroup of G. This result can be considered as a generalization
of the Peter-Weyl Theorem for homogeneous spaces of compact groups.

2. PRELIMINARIES AND NOTATIONS

Let H be a separable Hilbert space. An operator T € B(H) is called a Hilbert-Schmidt operator
if for one, hence for any orthonormal basis {ex} of H we have Y, ||Tey||* < co. The set of all
Hilbert-Schmidt operators on H is denoted by HS(H) and for T € HS(H) the Hilbert-Schmidt norm
of T is ||T|ls = Y_i |Tex||*>. The set HS(H) is a self adjoint two sided ideal in B(H) and if H is
finite-dimensional we have HS(H.) = B(H). An operator T' € B(#) called trace-class, whenever
T ||er = tr[|T|] < oo, where tr[T] = 3", (Tey, ex) and |T| = (TT*)'/2, see [14].

Let G be a compact group with the Haar measure dx, H be a closed subgroup of G with the left
Haar measure dh. The left coset space G/H is considered as a locally compact homogeneous space
that G acts on it from the left and ¢ : G — G/H given by = — ¢(x) := xH is the surjective canonical
mapping. The function space C(G/H) consists of all functions T (f), where (see Proposition 2.48
of [1]) f € C(G) and

Ta(f)(wH) = [ fah)dn. (2.1)

Let u be a Radon measure on G/H and x € G. The translation p, of u is defined by p,(E) = p(zE),
for Borel subsets E of G/H. The measure p is called G-invariant if p, = u, for x € G. If G is compact,
the homogeneous space G/H has a G-invariant measure p, which satisfies the following Weil’s formula,
for f € LY(G) (see [1])

|t emdutet) = [ fd (2.2)
G/H G

If 1 is a G-invariant measure on the homogeneous space G/H and p > 1, the notation LP(G/H, u)
stands for the Banach space of all equivalence classes of y-measurable complex valued functions ¢ :
G/H — C such that (@] rr(q)m,u) < 0.

Each irreducible representation of G is finite dimensional and every unitary representation of G is
a direct sum of irreducible representations, see [1,9]. The set of of all unitary equivalence classes of
irreducible unitary representations of G is denoted by G. This definition of G is in essential agreement
with the classical definition when G is Abelian, since each character of an Abelian group is a one
dimensional representation of GG. If 7 is any unitary representation of G, for u,v € H, the functions
Tuw(x) = (m(x)u, v) are called matrix elements of 7. If {e;} is an orthonormal basis for H,, then m;;
means T, .. The notation & is used for the linear span of the matrix elements of 7 and the notation
€ is used for the linear span of U[W]e & €x. The Peter-Weyl Theorem (see [1,9]) guarantees that if G is

a compact group, £ is uniformly dense in C(G), L*(G) = @[ﬂ]e@ Er, and {d;lmmj 21,7 =1..dy,[7] €
6’} is an orthonormal basis for L?(G). Using the Peter-Weyl Theorem, for f € L*(G) we have

dr
F=Y Y &(Hm, (2.3)

[r]e@ =1

where czj(f) =d(f, 7Tij>L2(G)'

3. ABSTRACT HARMONIC ANALYSIS OVER HOMOGENEOUS SPACES OF COMPACT GROUPS

Throughout this article we assume that H is a closed subgroup of a compact group G with normalized
Haar measures dh and dx respectively.

We start this section with an extension of the linear map Ty : C(G) — C(G/H) for other function
spaces related to the homogeneous space G/H. If p = 1, it is easy to check that |7y (f)|z1(q/m,u) <

Ifllzrc)-

Proposition 3.1. Let H be a closed subgroup of a compact group G. The linear map Ty : C(G) —
C(G/H) is a uniformly continuous.
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Proof. Let f € C(G) and x € G. Then we have

Nl =| [ samar| < [ 1snian < 1l ([ an) =15l
H H H
which implies [|Tg (f)lsup < [I.f llsup- L
Next we prove that the linear map T is norm-decreasing in L?-spaces.

Theorem 3.1. Let H be a closed subgroup of a compact group G, pu be the normalized G-invariant
measure on G/H associated to the Weil’s formula. The linear map Ty : C(G) — C(G/H) has a unique
extension to a bounded linear map from L*(G) onto L*(G/H, ).

Proof. We shall show that, each f € C(G) satisfies ||Tw(f)||z2(G/m,u) < IfllL2(c)- Let f € C(G). Using
compactness of H and the Weil’s formula we have

1o (D22 (678, —/G/H | Tr () (w H) [P dpu( H)

_ /G y ’ /H Fahyan| duern)
< B ([ f(xh)ldh>2du(ch)
</ y | \tahPdnauatn)

- /G y /H | (eh)dhdpu(x H)
- / Tyt (1) H)dp () = / F@)dz = 120,
G/H G

Thus, we can extend T to a bounded linear operator from L?*(G) onto L*(G/H, ), which we still
denote it by Ty. O

Let JP(G,H) := {f € LP(G) : Ty(f) = 0}. Then, J2(G, H)* is the orthogonal completion of the
closed subspace J2(G, H) in L*(G).
As an immediate consequence of Proposition 3.1 we deduce the following corollary.

Corollary 3.1. Let H be a closed subgroup of a compact group G and p be a G-invariant measure on
G/H. The linear map Ty : L*(G) — L*(G/H, i) is partial isometric.

Proof. Let p € L?(G/H, i) and ¢, := ¢ o q. Then, we have ¢, € L?(G). Indeed,
leallZaie) = [ lpq(@)|*dx
G

- / Tyt (Ial?) (H)du (2 H)
G/H

L. (/[ 1eatatirzan) dutatn
_ /G y < /H |g0(th)|2dh> du(zH)
L. (/[ tetatnan) duotn
-/ P ( / dh) Ay H)

- /G PGP = gy
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Also T3 () = ¢4 and TyTj;(¢) = . Because using the Weil’s formula, for all f € L?(G) we achieve
(Tr (@), ez = (o, Ta(f)) 2/

- / o H) T () e H) dpa (2 H)
G/H

- / o H) Ty (F) (e H ) dpu(c H)
G/H

- / Tyt (0 F) (e H)dpu(aH) = / (@) F(@)de = (90, 120,
G/H G

Now a straightforward calculation implies Ty = TyT5Ty. Then by Theorem 2.3.3 of [14], Ty is a
partial isometric operator. O

We can conclude the following corollaries as well.

Corollary 3.2. Let H be a closed subgroup of a compact group G. Let P2 gy and Pg2g my. be
the orthogonal projections onto the closed subspaces J*(G,H) and J*(G,H)* respectively. Then, for
each f € L*(G) and a.e. x € G we have

Pram+(f)(@) = Tu(f)(zH), P (f)(@) = f(x) = Tu(f)(zH). (3.1)
Corollary 3.3. Let H be a compact subgroup of a locally compact group G and p be a G-invariant
measure on G/H. The following statements hold.
(1) JXG, H)* = {4 : ¢ € L*(G/H, p)}.
(2) For all f € J*(G,H)* and each h € H we have Ry, f = f.
(3) For ally € L*(G/H, p) we have ||tqllr2(c) = [Vl L2 8,0 -
(4) For all f,g € J*(G,H)* we have (Tu(f), Tu(9))12(c 10 = ([ 9)r2()-
Remark 3.1. Invoking Corollary 3.3 one can regard L*(G/H, 1) as a closed subspace of L*(G), that
is the subspace consists of all f € L?(G) which satisfies Ry, f = f for all h € H. Then Theorem 3.1
and Proposition 3.1 guarantees that the linear map
Ty : L*(G) — L*(G/H, ) C L*(G)

18 an orthogonal projection.

4. PETER-WEYL THEOREM FOR HOMOGENEOUS SPACES OF COMPACT GROUPS

For a closed subgroup H of G, define
H* ::{[W]Eéiﬂ'(h):[ forallhEH}, (4.1)

If G is Abelian, each closed subgroup H of G is normal and the locally compact group G/H is Abelian

and so G/H is precisely the set of all characters (one dimensional irreducible representations) of G
which are constant on H, that is precisely H+. If G is a non-Abelian group and H is a closed normal

subgroup of G, then the dual space G/H which is the set of all unitary equivalence classes of unitary
representations of G/H, has meaning and it is well-defined. Indeed, G/H is a non-Abelian group.

In this case, the map @ : C?/?I — H* defined by o + ®(0) := 0 o q is a Borel isomorphism and

CT/?J = H*, see [1]. Thus if H is normal, H+ coincides with the classic definitions of the dual space
either when G is Abelian or non-Abelian.
For a closed subgroup H of G and a continuous unitary representation (m, H,) of G, define

Th ::/Hw(h)dh, (4.2)

where the operator valued integral (4.2) is considered in the weak sense. In other words,

(TRC.€) = /H ()G, E)dh, for C.€ € Hy. (4.3)
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The function h +— (7(h)(, &) is bounded and continuous on H. Since H is compact, the right integral
is the ordinary integral of a function in L!'(H). Hence, T% defines a bounded linear operator on H
with [|[TF] < 1.

Remark 4.1. Let (7, H,) be a continuous unitary representation of G with Tf; # 0. Let (0,Hs) be a
continuous unitary representation of G such that [n] = [o]. Let S : Hr — H, be the unitary operator
which satisfies o(x)S = Sw(x) for all x € G. Then we have

ST =S < /H 7r(h)dh>
= /H Sm(h)dh

- /Ho—(h)Sdh - (/H o(h)dh> S =TgS,

which implies that TF # 0 as well. Thus we deduce that the non-zero property of Tf; depends only on
[r], that is the unitary equivalence class of (w,Hx).

Let
KE .= {CeH,:n(h){=(Vhe H}. (4.4)
Then, KX is a closed subspace of H, and R(T%) = KH | where
R(Tx) =A{THC: ¢ € Hr}
It is easy to see that [7] € H* if and only if KX = H,,.

Proposition 4.1. Let H be a closed subgroup of a compact group G and (7, H,) be a continuous
unitary representation of G. Then,

(1) The operator TE is an orthogonal projection onto KH .
(2) The operator TF is unitary if and only if 7] € HL.

Proof. (1) Using compactness of H, it can be easily checked that (T7)* = T7. As well as we achieve

that
I = ( /H w(h)dh) ( /H 7r(t)dt>
/H (h) ( /H w(t)dt) dh
/H ( /H w(h)w(t)dt) dh
/H</H7r(ht)dt> dh:/HT;;dt:T;}.

(2) Since TF is a projection, the operator T is unitary if and only if 77 = I. The operator Ty is
identity if and only if w(h) = I for all h € H. Thus, TF is unitary if and only if [x] € H.

O

Definition 4.1. Let H be a closed subgroup of a compact group G. Then we define the dual space of
G/H, as the subset of G which is given by

CT/?I::{[W]E@:T}}#O}:{ME@:/ﬂ(h)dh#o}. (4.5)
H
Evidently, any closed subgroup H of G satisfies

H* c G/H. (4.6)

Next we shall show that the reverse inclusion of (4.6) holds, if and only if H is a normal subgroup
of G.

Theorem 4.1. Let H be a closed normal subgroup of a compact group G. Then
G/H = H*.
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Proof. Let H be a closed normal subgroup of a compact group G. It is sufficient to show that

CT/?{ C Ht. Let [n] € 67/7{ be given. Due to the normality of H in G, for all x € G the map
7.+ H — H given by h + 7,(h) := 27 ha belongs to Aut(H) and = Hx = H. Invoking compactness
of G we have d(1;(h)) = dh, for x € G. Now, for x € G we get

[ wtman= [ ()
_ /H (s (h))dh
_ /H w(x) w(h)r(z)dh
=nm(z)* (/H w(h)dh) m(x) = m(z) Tn(z).

Therefore w(x)Tf = THw(x) for x € G, which implies TF, € C(w). Irreducibility of m guarantees that
TF = ol for some non-zero o € C with |o| < 1. Thus, for ¢ € H we can write

7(t) = a tn(t)al
=a lr(t)TE
= a—l/ 7(th)dh
H
= a_l/ m(h)dh = o 'Tf =1,
H
which implies [7] € HL. O

Let (m,Hr) be a continuous unitary representation of G such that Tf # 0. Then the functions
ng : G/H — C defined by

ﬂgg(IH) = (n(x)T{¢,€) for xH € G/H, (4.7)

for &, ¢ € H, are called H-matrix elements of (m, H).
For H € G/H and (,& € H,, we have

mlle(zH)| = [(n(2)TFC, )|
< m(@)THCIEN < N1TECIIEN < [ICIE]-
Also we can write
ng(a:H) = (m(x)THC,E) = 7rT;rI<75(x). (4.8)

Invoking definition of the linear map Ty and also Tf; we have
Th(mee)(xH) = / ¢.¢(zh)dh
H
~ [ (rtanc.yan
H
~ [ @, i = (@75, 6),
H

which implies that

Ty(mce) = nle. (4.9)
Theorem 4.2. Let H be a closed subgroup of a compact group G, u be the normalized G-invariant
measure and (7, H.) be a continuous unitary representation of G such that Tf, # 0. Then

(1) The subspace E(G/H) depends on the unitary equivalence class of .
(2) The subspace E,(G/H) is a closed left invariant subspace of L'(G/H, ).
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Proof. (1) Let (0,H,) be a continuous unitary representation of G such that [7] = [o]. Let S : Hr —
H, be the unitary operator which satisfies o(z)S = Sw(x) for all x € G. Remark 4.1 guarantees that
STf =1Tg S and also T # 0. Thus for z € G and (,§ € H, we can write

nile(wH) = (m(2)TEC, E)n,

(710 (2)STEC, E)n,

(0(2)STHC, SE)n,

(0(2)T7SC, SE)u, = o8 se(xH),
)

which implies that £, (G/H) = £,(G/H).
(2) It is straightforward. U

If ¢, £ belongs to an orthonormal basis {e;} for H,, H-matrix elements of [r] with respect to an
orthonormal basis {e;} changes in the form

Wg(a:H) = Wg’ei (xH) = (m(x)THej,e;), for xH € G/H. (4.10)

The linear span of the H-matrix elements of a continuous unitary representation (m, ) satisfying
TFE # 0, is denoted by £(G/H) which is a subspace of C(G/H).

Definition 4.2. Let H be a closed subgroup of a compact group G and [r] € CT/T-I An ordered
orthonormal basis B = {e; : 1 < £ < d.} of the Hilbert space H, is called H-admissible, if it is an
extension of an orthonormal basis {e; : 1 < € < d, g} of the closed subspace K, which equivalently
means that d p-first elements of B be an orthogonal basis of K.

Let [n] € CT/?I and B, = {e;: 1 < ¢ < d.} be an H-admissible basis for the representation space
Hr. Then, each mjy with 1 <i <d, and 1 < /¢ <d g, is a well-defined continuous function over G/H.
Let ££(G/H) be the subspace of C(G/H) spanned by the set B¢ 1= {\/d,my: 1 <i <d,}.

Proposition 4.2. Let [r] € CT/?I, B, be an H-admissible basis for the representation space H,, and
1<0#0 <d.pu. Then

(1) dimEL(G/H) = dr and BL is an orthonormal basis for E£(G/H).

(2) EL(G/H) is a closed left translation invariant subspace of C(G/H).

(3) €5(G/H) L &L(G/H).

Proof. (1) Let 1 <,i < dr. Then by Theorem 27.19 of [10] we get
(it Tire) 2(G/Hp) = (Ties T 12(a) = diy "S-

Since dimEL(G/H) < d. we achieve that B% is an orthonormal basis for £%(G/H) and hence
dim EL(G/H) = d.

(2) It is straightforward.

(3) Let 1 <14, < d,. Applying Theorem 27.19 of [10] we get

(Mie, e ) L2(G/H ) = (Tie, Toe ) r2(q) = dy "Siirber,
which completes the proof. O

The following theorem shows that H-admissible bases lead to orthogonal decompositions of the
subspace £,(G/H).

Theorem 4.3. Let H be a closed subgroup of a compact group G. Let [n] € CT/?I and B, = {exr :
1 < (¢ <d.} be an H-admissible basis for the representation space Hr. Then B, (G/H) = {\/d 7 :
1<i<dg,1<l<drpu} is an orthonormal basis for the Hilbert space E(G/H) and hence it satisfies
the following direct sum decomposition

dr H
E-(G/H) = €P EL(G/H). (4.11)
=1
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Proof. Tt is straightforward to check that B,(G/H) spans the subspace £;(G/H). Then Proposition
4.2 guarantees that B,(G/H) is an orthonormal set in £;(G/H). Since dim&,(G/H) < dn ud, we
deduce that it is an orthonormal basis for £,(G/H), which automatically implies the decomposition
(4.11). O

Next proposition lists basic properties of H-matrix elements.

Proposition 4.3. Let H be a closed subgroup of a compact group G, p be the normalized G-invariant
measure on G/H, and (m,H,) be a continuous unitary representation of G. Then,
(1) TE =0 if and only if £.(G) C J*(G, H).
(2) If Tf # 0 then Ty (Ex(GQ)) = E-(G/H) and T (E-(G/H)) C E:(G).
(3) £:(GQ) € J*(G,H)* if and only if 7(h) = I for all h € H.
Then we can prove the following orthogonality relation concerning the functions in £(G/H).

Theorem 4.4. Let H be a closed subgroup of a compact group G, pu be a normalized G-invariant
measure on G/H and [n] # [o] € G/H. The closed subspaces £.(G/H) and E,(G/H) are orthogonal
to each other as subspaces of the Hilbert space L*(G/H, ).
Proof. Let ¢ € £:(G/H) and ¢ € &, (G/H). Then we have ¢, € £:(G) and also ¢, € & (G). Using
Proposition 4.3, Corollary 3.3, and Theorem 27.15 of [10], we get

(s V) 2(a/Hp) = (Pgs V) L2(@) = 0.
which completes the proof. O

We can define
E(G/H) := the linear span of U E-(G/H). (4.12)
[x]eG/H

Next theorem presents some analytic aspects of the function space £(G/H).
Theorem 4.5. Let H be a closed subgroup of a compact group G and i be the normalized G-invariant
measure on G/H associated to the Weil’s formula. Then,

(1) The linear operator Ty maps E(G) onto E(G/H).

(2) E(G/H) is ||.|L2(c/ 1, -dense in L*(G/H, p).

(3) E(G/H) is ||.||sup-dense in C(G/H).
Proof. (1) It is straightforward.
(2) Let ¢ € L*(G/H,p) and also f € L*(G) with Ty (f) = ¢. Then by ||.| 12(g)-density of £(G) in
L*(G) we can pick a sequence {f,} in £(G) such that f = |.|[12(¢) — lim, f,. By Proposition 4.3 we
have {Ty (fn)} € E(G/H). Then continuity of the linear map Ty : L?(G) — L?(G/H, 1) implies

¢=Tu(f) = ll-lc2c/mm —ImTa(fr),
which completes the proof.

(3) Invoking uniformly boundedness of T, uniformly density of £(G) in C(G), and the same argument
as used in (1), we get ||.||sup-density of £(G/H) in C(G/H). O
The following theorem can be considered as an abstract extension of the Peter-Weyl Theorem for

homogeneous spaces of compact groups.

Theorem 4.6. Let H be a closed subgroup of a compact group G and p be the normalized G-invariant
measure on G/H. The Hilbert space L*(G/H, i) satisfies the following orthogonality decomposition
L*(G/H,p)= P &(G/H). (4.13)
[‘n']EG/H
Proof. Using Peter-Weyl Theorem, Proposition 4.3, and since the bounded linear map Ty : L*(G) —
L?(G/H,u) is surjective we achieve that each ¢ € L?(G/H,u) has a decomposition to elements of
&-(G/H) with [7] € G/H, namely
p= > Cxpm, (4.14)

[rleG/H
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with ¢, € E:(G/H) for all [7] € CT/?J Since the subspaces &,(G/H) with [r] € CT/?J are mutually
orthogonal we conclude that decomposition (4.14) is unique for each ¢, which guarantees (4.13). O

We immediately deduce the following corollaries.

Corollary 4.1. Let H be a closed subgroup of a compact group G and p be the normalized G-invariant
measure on G/H. For each [r] € G/H, let B = {epr : 1 <L <d} be an H-admissible basis for the
representation space Hr. Then we have the following statements.

(1) The Hilbert space L*(G/H, ) satisfies the followz'ng direct sum decomposition

L*(G/H,p) = P @55 (G/H), (4.15)

[rleG/H =1

(2) The set B(G/H) :={miy: 1 <1i<dr,1 <{l<drn} constitutes an orthonormal basis for the
Hilbert space L*(G/H, ).
(3) Each ¢ € L*(G/H, 1) decomposes as the following

dr.H dn

Z A Z Z O, Til) L2(G) H ) Wit (4.16)

[rleG/a =1 =1
where the series is converges in L*(G/H, ).

Remark 4.2. Let H be a closed normal subgroup of a compact group G. Also, let i be the normalized
G-invariant measure over G/H associated to the Weil’s formula. Then G/H is a compact group and
the normalized G-invariant measure p is o Haar measure of the quotient compact group G/H. By

Theorem 4.1, we deduce that CT/-T{ = H*, and for each [n] € CT/-T{ we get T = I and dr g = dr.
Thus we obtain

L*(G/H)= @ &(G/H),

[rleHL
which precisely coincides with the decomposition associated to applying the Peter-Weyl Theorem to the
compact quotient group G/H.
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